Oleogels as a Fat Substitute in Food: A Current Review
Abstract
:1. Introduction
2. Lipids in the Food Industry
3. Oil Structuring
4. Application of Oleogel in the Food Industry
- i.
- Products already well known and produced by the industry were chosen, rich in trans and/or saturated fat, in which fat plays an essential role in the physical and sensory characteristics of the product.
- ii.
- Mostly, replacing traditional fats with oleogels is a priority to enhance the nutritional quality of the product. Other goals include stabilizing fat or aeration, delaying oxidation, or reducing product cost.
- iii.
- Analyses such as rheology, microstructure, color, and texture show the concern for understanding the structure of oleogels within a food system, compared with the traditional product.
- iv.
- Some more recent studies also include sensory analysis, demonstrating scientists’ awareness of the importance of consumer acceptance in developing a product.
4.1. Baked Products
4.1.1. Cookies
4.1.2. Cakes
4.1.3. Other Baked Products
4.2. Dairy Products
4.2.1. Ice Cream
4.2.2. Cream Cheese
4.2.3. Other Types of Cheese
4.3. Meat Products
4.3.1. Meat Patties
4.3.2. Meat Burgers
4.3.3. Emulsion-Type Sausage
4.3.4. Fermented Sausages
4.4. Breakfast Spreads
4.5. Chocolate and Confectionary
4.5.1. Chocolate
4.5.2. Chocolate Paste and Spreads
4.5.3. Filling Creams
4.6. Peanut Butter
4.7. Frying Medium
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Żarnowski, A.; Jankowski, M.; Gujski, M. Public Awareness of Diet-Related Diseases and Dietary Risk Factors: A 2022 Nationwide Cross-Sectional Survey among Adults in Poland. Nutrients 2022, 14, 3285. [Google Scholar] [CrossRef] [PubMed]
- Roche, H.M. Fatty acids and the metabolic syndrome. Proc. Nutr. Soc. 2005, 64, 23–29. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Plan to Eliminate Industrially-Produced Trans-Fatty Acids from Global Food Supply. 2018. Available online: https://www.who.int/news/item/14-05-2018-who-plan-to-eliminate-industrially-produced-trans-fatty-acids-from-global-food-supply (accessed on 15 January 2023).
- Berry, S.E.; Bruce, J.H.; Steenson, S.; Stanner, S.; Buttriss, J.L.; Spiro, A.; Gibson, P.S.; Bowler, I.; Dionisi, F.; Farrell, L.; et al. Interesterified fats: What are they and why are they used? A briefing report from the Roundtable on Interesterified Fats in Foods. Nutr. Bull. 2019, 44, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Menaa, F.; Menaa, A.; Tréton, J.; Menaa, B. Technological approaches to minimize industrial trans fatty acids in foods. J. Food Sci. 2013, 78, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Colla, K.; Costanzo, A.; Gamlath, S. Fat replacers in baked food products. Foods 2018, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Banaś, K.; Harasym, J. Natural gums as oleogelators. Int. J. Mol. Sci. 2021, 22, 12977. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Saleh, A.S.M.; Yang, S.; Wang, N.; Wang, P.; Zhu, M.; Xiao, Z. Oleogels as Animal Fat and Shortening Replacers: Research Advances and Application Challenges. Food Rev. Int. 2022, 1–22. [Google Scholar] [CrossRef]
- Tanti, R.; Barbut, S.; Marangoni, A.G. Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocoll. 2016, 61, 329–337. [Google Scholar] [CrossRef]
- Malvano, F.; Laudisio, M.; Albanese, D.; d’Amore, M.; Marra, F. Olive Oil-Based Oleogel as Fat Replacer in a Sponge Cake: A Comparative Study and Optimization. Foods 2022, 11, 2643. [Google Scholar] [CrossRef]
- Botega, D.C.Z.; Marangoni, A.G.; Smith, A.K.; Goff, H.D. The Potential Application of Rice Bran Wax Oleogel to Replace Solid Fat and Enhance Unsaturated Fat Content in Ice Cream. J. Food Sci. 2013, 78, 1334–1339. [Google Scholar] [CrossRef]
- Flöter, E.; Wettlaufer, T.; Conty, V.; Scharfe, M. Oleogels—Their applicability and methods of characterization. Molecules 2021, 26, 1673. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Hwang, H.S.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Appl. Biol. Chem. 2017, 60, 17–22. [Google Scholar] [CrossRef]
- da Pieve, S.; Calligaris, S.; Co, E.; Nicoli, M.C.; Marangoni, A.G. Shear Nanostructuring of monoglyceride organogels. Food Biophys. 2010, 5, 211–217. [Google Scholar] [CrossRef]
- Bot, A.; Veldhuizen, Y.S.J.; den Adel, R.; Roijers, E.C. Non-TAG structuring of edible oils and emulsions. Food Hydrocoll. 2009, 23, 1184–1189. [Google Scholar] [CrossRef]
- Si, H.; Cheong, L.Z.; Huang, J.; Wang, X. Physical Properties of Soybean Oleogels and Oil Migration Evaluation in Model Praline System. J. Am. Oil Chem. Soc. 2016, 93, 1075–1084. [Google Scholar] [CrossRef]
- Zetzl, A.K.; Gravelle, A.J.; Kurylowicz, M.; Dutcher, J.; Barbut, S.; Marangoni, A.G. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2014, 2, 27–40. [Google Scholar] [CrossRef]
- Totosaus, A.; Gonzaléz-Gonzaléz, R.; Fragoso, M. Influence of the type of cellulosic derivatives on the texture, and oxidative and thermal stability of soybean oil oleogel. Grasas. Y Aceites 2016, 67, 152. [Google Scholar] [CrossRef] [Green Version]
- da Silva, T.L.T.; Arellano, D.B.; Martini, S. Physical Properties of Candelilla Wax, Monoacylglycerols, and Fully Hydrogenated Oil Oleogels. J. Am. Oil Chem. Soc. 2018, 95, 797–811. [Google Scholar] [CrossRef]
- Okuro, P.K.; Malfatti-Gasperini, A.A.; Vicente, A.A.; Cunha, R.L. Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases. Food Res. Int. 2018, 111, 168–177. [Google Scholar] [CrossRef] [Green Version]
- de Godoi, K.R.R.; Basso, R.C.; Ming, C.C.; da Silva, V.M.; da Cunha, R.L.; Barrera-Arellano, D.; Ribeiro, A.P.B. Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Res. Int. 2019, 124, 108475. [Google Scholar] [CrossRef]
- da Silva, T.L.T.; Fernandes, G.D.; Arellano, D.B. The combination of monoglycerides, wax and hardfat on oleogels structuration. Braz. J. Food Technol. 2022, 25, 1–16. [Google Scholar] [CrossRef]
- Teodoro da Silva, T.L.; Danthine, S. Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Res. Int. 2022, 154, 110997. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Dewettinck, K. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lipid. Sci. Technol. 2015, 117, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Kang, S.; Liu, L.; Ma, T.; Zheng, Z.; Cao, L. Physicochemical Properties and Cookie-Making Performance as Fat Replacer of Wax-Based Rice Bran Oil Oleogels. Gels 2023, 9, 13. [Google Scholar] [CrossRef]
- Giacomozzi, A.S.; Carrín, M.E.; Palla, C.A. Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation. J. Food Sci. 2018, 83, 1505–1515. [Google Scholar] [CrossRef]
- Ferro, A.C.; de Souza Paglarini, C.; Rodrigues Pollonio, M.A.; Lopes Cunha, R. Glyceryl monostearate-based oleogels as a new fat substitute in meat emulsion. Meat Sci. 2021, 174, 108424. [Google Scholar] [CrossRef]
- Barbut, S.; Wood, J.; Marangoni, A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Sci. 2016, 122, 155–162. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.; Grędowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible Applications of Shellac Oleogels: Spreads, Chocolate Paste and Cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, H.S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT Food Sci. Technol. 2022, 155, 112972. [Google Scholar] [CrossRef]
- Hwang, H.S.; Winkler-Moser, J.K. Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. J. Food Sci. 2020, 85, 3293–3302. [Google Scholar] [CrossRef]
- Ögutcu, M.; Yilmaz, E. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Y Aceites 2014, 65, 1–11. [Google Scholar]
- Roy, S.; Hussain, S.A.; Prasad, W.G.; Khetra, Y. Quality attributes of high protein ice cream prepared by incorporation of whey protein isolate. Appl. Food Res. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in food: A review of current and potential applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.; Khatkar, B.S. Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: A review. J. Food Sci. Technol. 2016, 53, 3633–3641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, C.D.; Tavernier, I.; Danthine, S.; Rimaux, T.; Dewettinck, K. Physical compatibility between wax esters and triglycerides in hybrid shortenings and margarines prepared in rice bran oil. J. Sci. Food Agric. 2018, 98, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Rios, R.V.; Pessanha, M.D.F.; de Almeida, P.F.; Viana, C.L.; da Silva Lannes, S.C. Application of fats in some food products. Food Sci. Technol. 2014, 34, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Demirkesen, I.; Mert, B. Utilization of Beeswax Oleogel-Shortening Mixtures in Gluten-Free Bakery Products. J. Am. Oil Chem. Soc. 2019, 96, 545–554. [Google Scholar] [CrossRef]
- Bemer, H.L.; Limbaugh, M.; Cramer, E.D.; Harper, W.J.; Maleky, F. Vegetable organogels incorporation in cream cheese products. Food Res. Int. 2016, 85, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Barbut, S.; Wood, J.; Marangoni, A.G. Effects of Organogel Hardness and Formulation on Acceptance of Frankfurters. J. Food Sci. 2016, 81, 2183–2188. [Google Scholar] [CrossRef]
- Stortz, T.A.; Marangoni, A.G. Ethylcellulose solvent substitution method of preparing heat resistant chocolate. Food Res. Int. 2013, 51, 797–803. [Google Scholar] [CrossRef]
- Temkov, M.; Mureșan, V. Tailoring the structure of lipids, oleogels and fat replacers by different approaches for solving the trans-fat issue—A review. Foods 2021, 10, 1376. [Google Scholar] [CrossRef] [PubMed]
- Wettlaufer, T.; Flöter, E. Wax based oleogels and their application in sponge cakes. Food Funct. 2022, 13, 9419–9433. [Google Scholar] [CrossRef] [PubMed]
- Siraj, N.; Shabbir, M.A.; Ahmad, T.; Sajjad, A.; Khan, M.R.; Khan, M.I.; Butt, M.S. Organogelators as a Saturated Fat Replacer for Structuring Edible Oils. Int. J. Food Prop. 2015, 18, 1973–1989. [Google Scholar] [CrossRef]
- Dassanayake, L.S.K.; Kodali, D.R.; Ueno, S. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid. Interface Sci. 2011, 16, 432–439. [Google Scholar] [CrossRef]
- Patel, A.R. A colloidal gel perspective for understanding oleogelation. Curr. Opin. Food Sci. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocoll. Health 2022, 2, 100058. [Google Scholar] [CrossRef]
- Podmaniczky, F.; Gránásy, L. Molecular scale hydrodynamic theory of crystal nucleation and polycrystalline growth. J. Cryst. Growth 2022, 597, 126854. [Google Scholar] [CrossRef]
- Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar] [CrossRef]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; De Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2015, 52, 3925–3946. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.D.; Cofrades, S.; Pérez-Mateos, M.; Saiz, A.; Herranz, B. Development and Physico-Chemical Characterization of Healthy Puff Pastry Margarines Made from Olive-Pomace Oil. Foods 2022, 11, 4054. [Google Scholar] [CrossRef]
- Sarkisyan, V.; Sobolev, R.; Frolova, Y.; Malinkin, A.; Makarenko, M.; Kochetkova, A. Beeswax Fractions Used as Potential Oil Gelling Agents. J. Am. Oil Chem. Soc. 2021, 98, 281–296. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Marangoni, A.G. Dataset on the small- and large deformation mechanical properties of emulsion-filled gelatin hydrogels as a model particle-filled composite food gel. Data Br. 2021, 38, 107410. [Google Scholar] [CrossRef] [PubMed]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar]
- Wang, Q.; Espert, M.; Larrea, V.; Quiles, A.; Salvador, A.; Sanz, T. Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocoll. 2023, 134, 108007. [Google Scholar] [CrossRef]
- Patel, A.R.; Mankoč, B.; Bin Sintang, M.D.; Lesaffer, A.; Dewettinck, K. Fumed silica-based organogels and ‘aqueous-organic’ bigels. R Soc. Chem. 2015, 5, 9703–9708. [Google Scholar]
- Whitby, C.P. Structuring Edible Oils With Fumed Silica Particles. Front. Sustain. Food Syst. 2020, 4, 585160. [Google Scholar] [CrossRef]
- Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Food Chem. 2020, 309, 125704. [Google Scholar] [CrossRef] [PubMed]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydr. Polym. 2015, 127, 355–362. [Google Scholar] [CrossRef]
- Martins, A.J.; Vicente, A.A.; Pastrana, L.M.; Cerqueira, M.A. Oleogels for development of health-promoting food products. Food Sci. Hum. Wellness 2020, 9, 31–39. [Google Scholar] [CrossRef]
- Tan, S.; Peh, E.W.-Y.; Marangoni, A.G.; Henry, C.J. Effects of liquid oil vs. oleogel co-ingested with a carbohydrate-rich meal on human blood triglycerides, glucose, insulin and appetite. Food Funct. 2017, 8, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Limpimwong, W.; Kumrungsee, T.; Kato, N.; Yanaka, N.; Thongngam, M. Rice bran wax oleogel: A potential margarine replacement and its digestibility effect in rats fed a high-fat diet. J. Funct. Foods 2017, 39, 250–256. [Google Scholar] [CrossRef]
- Dong, L.; Lv, M.; Gao, X.; Zhang, L.; Rogers, M.; Cao, Y.; Lan, Y. In vitro gastrointestinal digestibility of phytosterol oleogels: Influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food Funct. 2020, 11, 9503–9513. [Google Scholar] [CrossRef]
- Patel, A.R.; Nicholson, R.A.; Marangoni, A.G. Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Curr. Opin. Food Sci. 2020, 33, 61–68. [Google Scholar] [CrossRef]
- Patel, A.R.; Cludts, N.; Bin Sintang, M.D.; Lewille, B.; Lesaffer, A.; Dewettinck, K. Polysaccharide-based oleogels prepared with an emulsion-templated approach. ChemPhysChem 2014, 15, 3435–3439. [Google Scholar] [CrossRef]
- Jang, A.; Bae, W.; Hwang, H.S.; Lee, H.G.; Lee, S. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 2015, 187, 525–539. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem. 2016, 199, 809–816. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT Food Sci. Technol. 2016, 68, 477–484. [Google Scholar] [CrossRef]
- Hwang, H.S.; Singh, M.; Lee, S. Properties of Cookies Made with Natural Wax-Vegetable Oil Organogels. J. Food Sci. 2016, 81, C1045–C1054. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, L.; Li, X.; Wu, G.; Liu, T.; Qi, X.; Jin, Q.; Wang, X.; Zhang, H. Determination of characteristic evaluation indexes for novel cookies prepared with wax oleogels. J. Sci. Food Agric. 2022, 102, 5544–5553. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, G.; Li, X.; Jin, Q.; Wang, X.; Zhang, H. Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chem. 2021, 356, 129667. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Wu, G.; Jin, Q.; Wang, X.; Zhang, H. Relationship between the microstructure and physical properties of emulsifier based oleogels and cookies quality. Food Chem. 2022, 377, 131966. [Google Scholar] [CrossRef]
- Schubert, M.; Erlenbusch, N.; Wittland, S.; Nikolay, S.; Hetzer, B.; Matthäus, B. Rapeseed Oil Based Oleogels for the Improvement of the Fatty Acid Profile Using Cookies as an Example. Eur. J. Lipid Sci. Technol. 2022, 124, 2200033. [Google Scholar] [CrossRef]
- Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: A comparative study. Food Funct. 2020, 11, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yu, Z.; Meng, Z. Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications. Int. J. Biol. Macromol. 2022, 209, 180–187. [Google Scholar] [CrossRef]
- Oh, I.K.; Lee, S. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocoll. 2018, 77, 796–802. [Google Scholar] [CrossRef]
- Giacomozzi, A.S.; Carrín, M.E.; Palla, C.A. Muffins made with monoglyceride oleogels: Impact of fat replacement on sensory properties and fatty acid profile. J. Am. Oil Chem. Soc. 2022, 1–7. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Vernon-Carter, E.J.; Carrera-Tarela, Y.; Garcia, A.; Roldan-Cruz, C. Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT Food Sci. Technol. 2020, 130, 109701. [Google Scholar] [CrossRef]
- Zhao, M.; Rao, J.; Chen, B. Effect of high oleic soybean oil oleogels on the properties of doughs and corresponding bakery products. J. Am. Oil Chem. Soc. 2022, 99, 1071–1083. [Google Scholar] [CrossRef]
- Tanislav, A.E.; Pușcaș, A.; Păucean, A.; Mureșan, A.E.; Semeniuc, C.A.; Mureșan, V.; Mudura, E. Evaluation of Structural Behavior in the Process Dynamics of Oleogel-Based Tender Dough Products. Gels 2022, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.T.; Arellano, D.B.; Martini, S. Effect of Water Addition on Physical Properties of Emulsion Gels. Food Biophys 2019, 14, 30–40. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lim, J.; Lee, J.; Hwang, H.; Lee, S. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. J. Food Sci. 2017, 82, 445–452. [Google Scholar] [CrossRef]
- Botega, D.C.Z.; Marangoni, A.G.; Smith, A.K.; Goff, H.D. Development of formulations and processes to incorporate wax oleogels in ice cream. J. Food Sci. 2013, 78, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, R.; Ract, J.N.R. Potential Use of Carnauba Wax Oleogel to Replace Saturated Fat in Ice Cream. J. Am. Oil Chem. Soc. 2022, 99, 1085–1099. [Google Scholar] [CrossRef]
- Jing, X.; Chen, Z.; Tang, Z.; Tao, Y.; Huang, Q.; Wu, Y.; Zhang, H.; Li, X.; Liang, J.; Liu, Z.; et al. Preparation of camellia oil oleogel and its application in an ice cream system. LWT Food Sci. Technol. 2022, 169, 113985. [Google Scholar] [CrossRef]
- Moriano, M.E.; Alamprese, C. Organogels as novel ingredients for low saturated fat ice creams. LWT Food Sci. Technol. 2017, 86, 371–376. [Google Scholar] [CrossRef]
- Park, C.; Bemer, H.L.; Maleky, F. Oxidative Stability of Rice Bran Wax Oleogels and an Oleogel Cream Cheese Product. J. Am. Oil Chem. Soc. 2018, 95, 1267–1275. [Google Scholar] [CrossRef]
- Huang, H.; Hallinan, R.; Maleky, F. Comparison of different oleogels in processed cheese products formulation. Int. J. Food Sci. Technol. 2018, 53, 2525–2534. [Google Scholar] [CrossRef]
- Moon, K.; Choi, K.O.; Jeong, S.; Kim, Y.W.; Lee, S. Solid fat replacement with canola oil-carnauba wax oleogels for dairy-free imitation cheese low in saturated fat. Foods 2021, 10, 1351. [Google Scholar] [CrossRef]
- Gab-Allah, R. Manufacture of pickled and un-pickled high fat soft cheese using olive and sunflower oleogels. Sciences 2018, 8, 223–230. [Google Scholar]
- Brighenti, M.; Govindasamy-Lucey, S.; Lim, K.; Nelson, K.; Lucey, J.A. Characterization of the rheological, textural, and sensory properties of samples of commercial US cream cheese with different fat contents. J. Dairy Sci. 2008, 91, 4501–4517. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers. Food Bioprocess Technol. 2019, 12, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Adili, L.; Roufegarinejad, L.; Tabibiazar, M.; Hamishehkar, H.; Alizadeh, A. Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. LWT Food Sci. Technol. 2020, 126, 109277. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Vicente, A.A.; Cunha, R.L.; Pastrana, L.M.; Quiñones, J.; Cerqueira, M.A. Omega-3 and Polyunsaturated Fatty Acids-Enriched Hamburgers Using Sterol-Based Oleogels. Eur. J. Lipid Sci. Technol. 2019, 121, 1900111. [Google Scholar] [CrossRef] [Green Version]
- Oh, I.; Lee, J.H.; Lee, H.G.; Lee, S. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Res. Int. 2019, 122, 566–572. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef]
- Panagiotopoulou, E.; Moschakis, T.; Katsanidis, E. Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT Food Sci. Technol. 2016, 73, 351–356. [Google Scholar] [CrossRef]
- Wolfer, T.L.; Acevedo, N.C.; Prusa, K.J.; Sebranek, J.G.; Tarté, R. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Sci. 2018, 145, 352–362. [Google Scholar] [CrossRef]
- Tarté, R.; Paulus, J.S.; Acevedo, N.C.; Prusa, K.J.; Lee, S.L. High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. Lwt 2020, 131, 109659. [Google Scholar] [CrossRef]
- Zampouni, K.; Soniadis, A.; Dimakopoulou-Papazoglou, D.; Moschakis, T.; Biliaderis, C.G.; Katsanidis, E. Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. Lwt 2022, 158, 113172. [Google Scholar] [CrossRef]
- Pintado, T.; Cofrades, S. Quality characteristics of healthy dry fermented sausages formulated with a mixture of olive and chia oil structured in oleogel or emulsion gel as animal fat replacer. Foods 2020, 9, 830. [Google Scholar] [CrossRef]
- Hwang, H.S.; Singh, M.; Bakota, E.L.; Winkler-Moser, J.K.; Kim, S.; Liu, S.X. Margarine from organogels of plant wax and soybean oil. J. Am. Oil Chem. Soc. 2013, 90, 1705–1712. [Google Scholar] [CrossRef]
- Hwang, H.S.; Singh, M.; Winkler-Moser, J.K.; Bakota, E.L.; Liu, S.X. Preparation of margarines from organogels of sunflower wax and vegetable oils. J. Food Sci. 2014, 79, C1926–C1932. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Kim, S.; Winkler-Moser, J.K.; Lee, S.; Liu, S.X. Feasibility of hemp seed oil oleogels structured with natural wax as solid fat replacement in margarine. J. Am. Oil Chem. Soc. 2022, 99, 1055–1070. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, Y.; Shi, Y.; Liu, Y. Crystallization and Structural Properties of Oleogel-Based Margarine. Molecules 2022, 27, 8952. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Ogutcu, M. Oleogels as spreadable fat and butter alternatives: Sensory description and consumer perception. R Soc. Chem. 2015, 5, 50259–50267. [Google Scholar] [CrossRef]
- Puscas, A.; Muresan, V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022, 8, 749. [Google Scholar] [CrossRef]
- da Silva, T.L.T.; Chaves, K.F.; Fernandes, G.D.; Rodrigues, J.B.; Bolini, H.M.A.; Arellano, D.B. Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. J. Am. Oil Chem. Soc. 2018, 95, 673–685. [Google Scholar] [CrossRef]
- Abdolmaleki, K.; Alizadeh, L.; Nayebzadeh, K.; Baranowska, H.M.; Kowalczewski, P.Ł.; Khaneghah, A.M. Potential Application of Hydrocolloid-Based Oleogel and Beeswax Oleogel as Partial Substitutes of Solid Fat in Margarine. Appl. Sci. 2022, 12, 12136. [Google Scholar] [CrossRef]
- Li, L.; Liu, G. Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. J. Food Eng. 2019, 263, 114–122. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M.; Valoppi, F.; Barba, L.; Calligaris, S.; Nicoli, M.C. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT Food Sci. Technol. 2017, 86, 523–529. [Google Scholar] [CrossRef]
- Bascuas, S.; Espert, M.; Llorca, E.; Quiles, A.; Salvador, A.; Hernando, I. Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. LWT Food Sci. Technol. 2021, 135, 110228. [Google Scholar] [CrossRef]
- Pușcaș, A.; Tanislav, A.E.; Mureșan, A.E.; Fărcaș, A.C.; Mureșan, V. Walnut Oil Oleogels as Milk Fat Replacing System for Commercially Available Chocolate Butter. Gels 2022, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Tirgarian, B.; Yadegari, H.; Bagheri, A.; Neshagaran, E.; Mardani, M.; Farmani, J. Reduced-fat chocolate spreads developed by water-in-oleogel emulsions. J. Food Eng. 2023, 337, 111233. [Google Scholar] [CrossRef]
- Doan, C.D.; Patel, A.R.; Tavernier, I.; de Clercq, N.; van Raemdonck, K. The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. Eur. J. Lipid Sci. Technol. 2016, 118, 1903–1914. [Google Scholar] [CrossRef]
- Palla, C.A.; Wasinger, M.F.; Carrín, M.E. Monoglyceride oleogels as fat replacers in filling creams for sandwich cookies. J. Sci. Food Agric. 2021, 101, 2398–2405. [Google Scholar] [CrossRef]
- da Silva, T.L.T.; Fernandes, G.D.; Arellano, D.B. Development of reduced saturated fat cookie fillings using multicomponent oleogels. J. Am. Oil Chem. Soc. 2021, 48, 1069–1082. [Google Scholar] [CrossRef]
- Stortz, T.A.; Marangoni, A.G. Heat resistant chocolate. Trends Food Sci. Technol. 2011, 22, 201–214. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Anderson, J.; Byars, J.A.; Singh, M.; Hwang, H.S. Evaluation of Beeswax, Candelilla Wax, Rice Bran Wax, and Sunflower Wax as Alternative Stabilizers for Peanut Butter. J. Am. Oil Chem. Soc. 2019, 96, 1235–1248. [Google Scholar] [CrossRef]
- Tanti, R.; Barbut, S.; Marangoni, A.G. Food Hydrocolloids Oil stabilization of natural peanut butter using food grade polymers. Food Hydrocoll. 2016, 61, 399–408. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Anderson, J.A.; Hwang, H.S. Texture and flavor evaluation of peanut butter stabilized with natural waxes. J. Food Sci. 2022, 87, 1851–1864. [Google Scholar] [CrossRef]
- Ferdaus, M.J.; Blount, R.J.S.; da Silva, R.C. Assessment of Natural Waxes as Stabilizers in Peanut Butter. Foods 2022, 11, 3127. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Jeong, S.; Oh, I.K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT Food Sci. Technol. 2017, 84, 788–794. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Khare, A.; Lal, A.B.; Bebartta, R.P. Utilising oleogel as a frying medium for deep fried Indian traditional product (Mathri) to reduce oil uptake. J. Indian Chem. Soc. 2022, 99, 100378. [Google Scholar] [CrossRef]
- Aydeniz Guneser, B.; Yılmaz, E.; Uslu, E.K. Sunflower Oil–Beeswax Oleogels Are Promising Frying Medium for Potato Strips. Eur. J. Lipid Sci. Technol. 2021, 123, 210063. [Google Scholar] [CrossRef]
Baked Foods | Oleogelator | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
Cookies | CLW * (3 or 6%) | CNO ** |
| [66] |
CLW (3 or 6%) | CNO |
| [67] | |
CLW or CRW (2.5 or 5%) | SFO |
| [68] | |
CLW, CRW, BEW, RBW (1–10%) | RBO |
| [25] | |
RBW, BEW, CLW and SFW (2, 4, 6, 8, 10%) | OO, SBO, FXO |
| [69] | |
RBW, BEW, CLW, and CRW (3, 5, 7 and 9%) | CO |
| [70] | |
HPMC, MAG, RBW, BEW, and SSL (6%) | CO |
| [71] | |
MAG, SSL, PGE, SPAN 60 (3–18%) | CO |
| [72] | |
EC, MAG, SFW (2.5–10%) | RSO |
| [73] | |
BS and MAG (5 or 10%) | Crude or refined SBO |
| [74] | |
MAG and HPMC (0–10%) | SBO |
| [75] | |
Cake | HPMC (4%) | SFO |
| [76] |
MAG (4, 7, and 10%) | HOSO |
| [26] | |
MAG (6.6%) | HOSO |
| [77] | |
MAG and HPMC (0–10%) | SBO |
| [76] | |
Sponge cake | CLW (5%) | CO |
| [78] |
SFW, BEW, and RBW (1, 5 and 10%) | CNO |
| [43] | |
Plum cake | BEW (3%) | OO |
| [10] |
Bread and cracker | MAG or RBW (10%) | HOSO |
| [79] |
Biscuits | CRW, BS, BEW, LE, MAG (10 or 16%) | SFO |
| [80] |
Dairy Foods | Oleogelator | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
Ice cream | RBW (10%) * | HOSO ** |
| [11] |
RBW, CLW, and CRW (10%) | HOSO |
| [83] | |
CRW (6%) | SBO |
| [84] | |
BEW (7%) | CMO |
| [85] | |
PHY and γ-orizanol (8–12%) | SFO |
| [86] | |
Cream cheese | RBW and EC (10%) | HOSO and SBO |
| [39] |
RBW (10%) | HOSO |
| [87] | |
Processed cheese products | RBW (0.5 or 1%) | SBO |
| [88] |
Imitation cheese | CRW (3, 6 and 9%) | CNO |
| [89] |
Pickled or unpickled soft cheese | BEW (7%) | OO or SFO |
| [90] |
Meat Products | Oleogelators | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
Pork patties | BS *: γ-oryzanol (8%) | LSO ** |
| [94] |
Beef Patties | HPMC (2, 4, and 6%) | CNO |
| [95] |
Meat burger | EC and AA (0–6%) | SBO |
| [93] |
Beef Burger | BEW (5, 7.5, and 10%) | SSO |
| [96] |
Pork burgers | EC and BEW (11%) | OO, LSO, FO mixture |
| [92] |
Beef frankfurters | EC (8 or 10%) and SMS (1.5 and 3%) | CNO |
| [40] |
Pork Frankfurter sausages | PHY:γ-oryzanol (10 or 20%) | SFO |
| [97] |
Pork frankfurter | RBW (2.5 or 10%) | SBO |
| [98] |
Bologna-type sausage | RBW (2.5 or 10%) | SBO or HOSBO |
| [99] |
Fermented sausages | MAG (15%) | OO |
| [100] |
Dry fermented sausages | BEW (10%) | OO and CHO |
| [101] |
Spreads | Oleogelators | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
Margarine and spreads | SFW * (2–10%) | SBO ** |
| [102] |
Margarine and spread products | SFW (3, 5, and 7%) | Vegetable oil |
| [103] |
Margarine | SFW, RBW, BEW or CLW (3,4 or 7%) | HPO |
| [104] |
Margarine | BEW (4–10%) | LSO |
| [105] |
Spreads or butter | BEW or SFW (5%) | OO and HZO |
| [106] |
Spreads | SLW (2 or 4%) | RSO |
| [29] |
Spreads | SLW (3–7%) | SFO |
| [107] |
Margarine | MAG (1.77%) and CLW (2.66%) | HOSO |
| [108] |
Margarine | BEW (10%) | SFO |
| [109] |
Application | Oleogelator | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
Chocolate | EC * (20 or 25%) | Ethanol |
| [41] |
MAG, EC, or BS:LE (10%) | CO ** |
| [110] | |
Chocolate paste | SLW (1.5%) | RSO |
| [29] |
MAG, BEW or PPW (5%) | PSO |
| [111] | |
HPMC (1%) + XG (0.6%) | OO or SFO |
| [112] | |
CLW or MAG (10%) | WO |
| [113] | |
MAG (20%) | CO |
| [114] | |
Filling cream | BEW (1.5–3.5%) | RBO |
| [115] |
Sandwich cookie filling | HPMC or MC (1%) | CNO |
| [9] |
MAG (10%) | HOSO |
| [116] | |
CLW + MAG (10% total) | CNO |
| [30] | |
MAG + CLW + HF (5–10% total) | SBO or HOSO |
| [117] |
Peanut butter | Oleogelator | Liquid Phase | Outcomes | Reference |
HPMC * or MC (2–10%) | PNO ** |
| [120] | |
BEW, CLW, RBW or SFW (1–2%) |
| [121] | ||
BEW, CLW, RBW or SFW (0.5–2%) |
| [119] | ||
RBW or CRW (1%) |
| [122] |
Frying medium | Oleogelator | Liquid Phase | Major Outcomes | Reference |
---|---|---|---|---|
CRW * (5 or 10%) | SBO ** |
| [123] | |
CRW (5, 10 or 15%) | SBO |
| [124] | |
BEW (3 or 8%) | SFO |
| [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.C.d.; Ferdaus, M.J.; Foguel, A.; da Silva, T.L.T. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023, 9, 180. https://doi.org/10.3390/gels9030180
Silva RCd, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels. 2023; 9(3):180. https://doi.org/10.3390/gels9030180
Chicago/Turabian StyleSilva, Roberta Claro da, Md. Jannatul Ferdaus, Aline Foguel, and Thais Lomonaco Teodoro da Silva. 2023. "Oleogels as a Fat Substitute in Food: A Current Review" Gels 9, no. 3: 180. https://doi.org/10.3390/gels9030180
APA StyleSilva, R. C. d., Ferdaus, M. J., Foguel, A., & da Silva, T. L. T. (2023). Oleogels as a Fat Substitute in Food: A Current Review. Gels, 9(3), 180. https://doi.org/10.3390/gels9030180