Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth
Abstract
:1. Introduction
2. Application of Hydrogel in Pulp Tissue Regeneration
2.1. Different Types of Hydrogels for Pulp Regeneration
2.2. Effect of Hydrogel on Dental Pulp Stem Cells
2.3. Application of Hydrogel Microspheres in Pulp Regeneration
2.4. Effect of Hydrogels on 3D Pulp Regeneration
2.5. Regeneration of Vascular Nerves in Dental Pulp by Hydrogel
2.6. Antibacterial Effect of Hydrogels on Pulp Regeneration
3. Application of Hydrogel in Periodontal Tissue Regeneration
3.1. Hydrogels Loaded with Drugs or Bioactive Factors Promote Periodontal Regeneration
3.2. Hydrogels Carry Cells or Cell-Related Products for Periodontal Regeneration
3.3. Effect of Temperature–Sensitive/Photocured Hydrogel in Periodontal Regeneration
3.4. Application of Hydrogel in Periodontal Structure Reconstruction
3.5. Hydrogels Used for Periodontal Regeneration Associated with Systemic Diseases
3.6. Clinical Study on the Application of Hydrogel to Periodontal Regeneration
4. Application of Hydrogel in Hard Tissue Regeneration of Teeth
4.1. Promotion of Mineralization of Odontogenic Stem Cells by Hydrogel
4.2. Application of Hydrogel in Enamel Regeneration
4.2.1. Hydrogels Carry Cellular or Bioactive Factors to Promote Enamel Re-Mineralization
4.2.2. Hydrogels Carry Biomimetic Polypeptide to Promote Enamel Re-Mineralization
4.3. Application of Hydrogel in Dentin Regeneration
4.4. Application of Hydrogel in Hard Tissue Disease of Teeth
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaffee, B.W.; Rodrigues, P.H.; Kramer, P.F.; Vítolo, M.R.; Feldens, C.A. Oral health-related quality-of-life scores differ by socioeconomic status and caries experience. Community Dent. Oral Epidemiol. 2017, 45, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L. Oral Health: The First Step to Well-Being. Medicina 2019, 55, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Lamster, I.; Greenspan, J.; Pitts, N.; Scully, C.; Warnakulasuriya, S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef]
- Niemczyk-Soczynska, B.; Zaszczyńska, A.; Zabielski, K.; Sajkiewicz, P. Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials 2021, 14, 6899. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, V.; Sathanantham, S.T.; Bhimavarapu, S.; Elumalai, L. Polymeric Hydrogel Scaffolds: Skin Tissue Engineering and Regeneration. Adv. Pharm. Bull. 2022, 12, 437–448. [Google Scholar] [CrossRef]
- Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019, 11, 042001. [Google Scholar] [CrossRef]
- Shi, J.; Yu, L.; Ding, J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021, 128, 42–59. [Google Scholar] [CrossRef]
- Cai, Z.; Gan, Y.; Bao, C.; Wu, W.; Wang, X.; Zhang, Z.; Zhou, Q.; Lin, Q.; Yang, Y.; Zhu, L. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Adv. Healthc. Mater. 2019, 8, e1900013. [Google Scholar] [CrossRef]
- Wu, B.; Lewis, R.W.; Li, G.; Gao, Y.; Fan, B.; Klemm, B.; Huang, J.; Wang, J.; Stuart, M.A.C.; Eelkema, R. Chemical signal regulated injectable coacervate hydrogels. Chem. Sci. 2023, 14, 1512–1523. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, F.; Wu, S.; Lu, Z.; Cheng, H. Ultrafast construction of partially hydrogen-bonded metal-hyaluronan networks with multiple biotissue-related features. Carbohydr. Polym. 2022, 295, 119852. [Google Scholar] [CrossRef]
- Conley, B.M.; Yang, L.; Bhujel, B.; Luo, J.; Luo, J.; Han, I.; Lee, K.-B. Development of a Nanohybrid Peptide Hydrogel for Enhanced Intervertebral Disc Repair and Regeneration. ACS Nano 2023, 17, 3750–3764. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Li, J.; Chen, C.; Liu, Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. Adv. Sci. 2022, 9, e2104165. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, G.; Xu, J.; Li, C.; Han, S.; Zhang, X.; Wu, P.; Lin, Y.; Wang, C.; Zhang, J.; et al. Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment of Inflammatory Diseases. Adv. Mater. 2022, 16, 34. [Google Scholar] [CrossRef]
- Dissanayaka, W.L.; Zhang, C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J. Endod. 2020, 46, S81–S89. [Google Scholar] [CrossRef]
- Dissanayaka, W.L.; Hargreaves, K.M.; Jin, L.; Samaranayake, L.P.; Zhang, C. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration In Vivo. Tissue Eng. Part A 2015, 21, 550–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducret, M.; Montembault, A.; Josse, J.; Pasdeloup, M.; Celle, A.; Benchrih, R.; Mallein-Gerin, F.; Alliot-Licht, B.; David, L.; Farges, J.-C. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent. Mater. 2019, 35, 523–533. [Google Scholar] [CrossRef]
- Moreira, M.S.; Sarra, G.; Carvalho, G.L.; Gonçalves, F.; Caballero-Flores, H.V.; Pedroni, A.C.F.; Lascala, C.A.; Catalani, L.H.; Marques, M.M. Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. BioMed Res. Int. 2021, 2021, 6684667. [Google Scholar] [CrossRef]
- Mll, A.; Dgs, B.; Ga, C.; Cado, C.; Anselmi, C.; Hebling, J.; de Souza Costa, C.A. Fibronectin-loaded Collagen/Gelatin Hydrogel is a Potent Signaling Biomaterial for Dental Pulp Regeneration. J. Endod. 2021, 47, 1110–1117. [Google Scholar]
- Noohi, P.; Abdekhodaie, M.J.; Saadatmand, M.; Nekoofar, M.H.; Dummer, P.M.H. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int. Endod. J. 2022, 2022, 13882. [Google Scholar] [CrossRef]
- AlHowaish, N.A.; AlSudani, D.I.; AlMuraikhi, N.A. Evaluation of a hyaluronic acid hydrogel (Restylane Lyft) as a scaffold for dental pulp regeneration in a regenerative endodontic organotype model. Odontology 2022, 110, 726–734. [Google Scholar] [CrossRef]
- Sevari, S.P.; Shahnazi, F.; Chen, C.; Mitchell, J.; Ansari, S.; Moshaverinia, A. Bioactive glass-containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. J. Biomed. Mater. Res. A 2020, 108, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Pandya, M.; Rufaihah, A.J.; Rosa, V.; Tong, H.J.; Seliktar, D.; Toh, W.S. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System. Stem Cells Int. 2015, 2015, 525367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Y.; Xia, Y.; Xu, C.; Meng, K.; Lian, J.; Zhang, X.; Xu, J.; Wang, C.; Zhao, B. Photocross-linked silk fibroin/hyaluronic acid hydrogel loaded with hDPSC for pulp regeneration. Int. J. Biol. Macromol. 2022, 215, 155–168. [Google Scholar] [CrossRef]
- Müller, A.S.; Artner, M.; Janjić, K.; Edelmayer, M.; Kurzmann, C.; Moritz, A.; Agis, H. Synthetic Clay–based Hypoxia Mimetic Hydrogel for Pulp Regeneration: The Impact on Cell Activity and Release Kinetics Based on Dental Pulp–derived Cells In Vitro. J. Endod. 2018, 44, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Teti, G.; Salvatore, V.; Focaroli, S.; Durante, S.; Mazzotti, A.; Dicarlo, M.; Mattioli-Belmonte, M.; Orsini, G. In vitro osteogenic and odontogenic differentiation of human dental pulp stem cells seeded on carboxymethyl cellulose-hydroxyapatite hybrid hydrogel. Front. Physiol. 2015, 6, 297. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.S.; Lee, S.H.; Hwang, Y.C.; Rosa, V.; Lee, K.W.; Min, K.S. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde. Int. Endod. J. 2016, 50, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Bhoj, M.; Zhang, C.; Green, D.W. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel. J. Endod. 2015, 41, 1100–1107. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, L.; Lin, X.; Zou, L.; Li, Y.; Ge, X.; Fu, W.; Zhang, Z.; Xiao, K.; Lv, H. Functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold promotes dental pulp regeneration. Biomed. Mater. 2022, 17, 015009. [Google Scholar] [CrossRef]
- Cavalcanti, B.N.; Zeitlin, B.D.; Nör, J.E. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent. Mater. 2013, 29, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Galler, K.M.; Hartgerink, J.D.; Cavender, A.C.; Schmalz, G.; D’Souza, R.N. A Customized Self-Assembling Peptide Hydrogel for Dental Pulp Tissue Engineering. Tissue Eng. Part A 2012, 18, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Tang, S.; Wang, L.; Xu, X.; Yan, R.; Yan, S.; Guo, Z.; Hu, K.; Yu, T.; Li, M.; et al. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int. J. Nanomed. 2021, 16, 5101–5115. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xing, X.; Peng, W.; Huang, C.; Du, Y.; Yang, H.; Zhou, J. Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for dental pulp regeneration. J. Mater. Chem. B 2023, 11, 1580–1590. [Google Scholar] [CrossRef]
- Atila, D.; Chen, C.-Y.; Lin, C.-P.; Lee, Y.-L.; Hasirci, V.; Tezcaner, A.; Lin, F.-H. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr. Polym. 2021, 278, 118976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xie, L.; Wu, H.; Yang, T.; Zhang, Q.; Tian, Y.; Liu, Y.; Han, X.; Guo, W.; He, M.; et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020, 113, 305–316. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Xie, L.; Zhang, R.; Ruojing, Q.; Tian, Y.; Chen, G.; Tian, W. hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111850. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rao, Z.; Zhao, Y.; Xu, Y.; Chen, L.; Shen, Z.; Bai, Y.; Lin, Z.; Huang, Q. A Decellularized Matrix Hydrogel Derived from Human Dental Pulp Promotes Dental Pulp Stem Cell Proliferation, Migration, and Induced Multidirectional Differentiation In Vitro. J. Endod. 2020, 46, 1438–1447.e5. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Y.; Jiang, L.; Wang, X.; Chen, Y.; Li, L.; Song, M.; Zhang, H.; Zhang, Y.S.; Zhang, X. Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration. Acta Biomater. 2023, 156, 37–48. [Google Scholar] [CrossRef]
- Sasaki, J.-I.; Abe, G.L.; Li, A.; Matsumoto, T.; Imazato, S. Large three-dimensional cell constructs for tissue engineering. Sci. Technol. Adv. Mater. 2021, 22, 571–582. [Google Scholar] [CrossRef]
- Itoh, Y.; Sasaki, J.I.; Hashimoto, M.; Katata, C.; Hayashi, M.; Imazato, S. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. J. Dent. Res. 2018, 97, 1137–1143. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Song, W.; Pan, T.; Wang, H.; Ning, T.; Wei, Q.; Xu, H.H.; Wu, B.; Ma, D. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. J. Endod. 2019, 45, 706–715. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Sarkar, B.; Kim, K.-K.; Kadincesme, N.; Paul, R.; Kumar, A.; Kobayashi, Y.; Roy, A.; Choudhury, M.; Yang, J.; et al. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater. 2021, 126, 109–118. [Google Scholar] [CrossRef]
- Khayat, A.; Monteiro, N.; Smith, E.; Pagni, S.; Zhang, A.; Yelick, P.C. GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration. J. Dent. Res. 2017, 96, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Q.; Liang, C.; Liu, X.; Xing, X.; Ma, S.; Huang, H.; Liang, C.; Liu, L.; Liao, L.; Tian, W. Vascularized dental pulp regeneration using cell-laden microfiber aggregates. J. Mater. Chem. B 2022, 10, 10097–10111. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nouet, J.; Baljinnyam, E.; Siddiqui, Z.; Fine, D.; Kumar, V.A.; Shimizu, E. iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact. Mater. 2022, 14, 290–301. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, T.; Zhang, R.; Liang, X.; Wang, G.; Tian, Y.; Xie, L.; Tian, W. Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater. 2021, 136, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Koohi-Moghadam, M.; Chen, Q.; Zhang, L.; Chopra, H.; Zhang, J.; Dissanayaka, W.L. HIF-1α Stabilization Boosts Pulp Regeneration by Modulating Cell Metabolism. J. Dent. Res. 2022, 101, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Chatzistavrou, X.; Papagerakis, P.; Ge, L.; Qin, M.; Wang, Y. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomater. Sci. Eng. 2019, 5, 4624–4633. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Li, L.; Liu, Y. Anti-Inflammatory and Repairing Effects of Mesoporous Silica-Loaded Metronidazole Composite Hydrogel on Human Dental Pulp Cells. J. Health Eng. 2022, 2022, 6774075. [Google Scholar] [CrossRef]
- Bekhouche, M.; Bolon, M.; Charriaud, F.; Lamrayah, M.; Da Costa, D.; Primard, C.; Costantini, A.; Pasdeloup, M.; Gobert, S.; Mallein-Gerin, F.; et al. Development of an antibacterial nanocomposite hydrogel for human dental pulp engineering. J. Mater. Chem. B 2020, 8, 8422–8432. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Daghrery, A.; Dubey, N.; Li, C.; Mei, L.; Fenno, C.; Aytac, Z.; Bottino, M.C. Hybrid Antimicrobial Hydrogel as Injectable Therapeutics for Oral Infection Ablation. Biomacromolecules 2020, 21, 3945–3956. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Bordini, E.A.F.; Ferreira, J.A.; Mei, L.; Dubey, N.; Fenno, J.C.; Piva, E.; Lund, R.G.; Schwendeman, A.; Bottino, M.C. Injectable MMP-Responsive Nanotube-Modified Gelatin Hydrogel for Dental Infection Ablation. ACS Appl. Mater. Interfaces 2020, 12, 16006–16017. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Cho, T.H.; Han, J.J.; Kim, I.S.; Park, Y.; Hwang, S.J. Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng. Regen. Med. 2016, 13, 171–181. [Google Scholar] [CrossRef]
- Chen, F.M.; Zhao, Y.; Zhang, R.; Jin, T.; Sun, H.-H.; Wu, Z.; Jin, Y. Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. J. Control. Release 2007, 121, 81–90. [Google Scholar] [CrossRef]
- Guo, J.; Sun, H.; Lei, W.; Tang, Y.; Hong, H.; Yang, F.R.; Huang, C. MMP-8-Responsive Polyethylene Glycol Hydrogel for Intraoral Drug Delivery. J. Dent. Res. 2019, 98, 564–571. [Google Scholar] [CrossRef]
- Yoshida, W.; Matsugami, D.; Murakami, T.; Bizenjima, T.; Imamura, K.; Seshima, F.; Saito, A. Combined effects of systemic parathyroid hormone (1–34) and locally delivered neutral self-assembling peptide hydrogel in the treatment of periodontal defects: An experimental in vivo investigation. J. Clin. Periodontol. 2019, 46, 1030–1040. [Google Scholar] [CrossRef]
- Zang, S.; Mu, R.; Chen, F.; Wei, X.; Zhu, L.; Han, B.; Yu, H.; Bi, B.; Chen, B.; Wang, Q.; et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Mater. Sci. Eng. C 2019, 99, 919–928. [Google Scholar] [CrossRef]
- Chen, F.-M.; Zhao, Y.-M.; Wu, H.; Deng, Z.-H.; Wang, Q.-T.; Zhou, W.; Liu, Q.; Dong, G.-Y.; Li, K.; Wu, Z.-F.; et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. J. Control. Release 2006, 114, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-Z.; Ge, S.-H.; Sun, Q.-F.; Guo, H.-M.; Yang, P.-S. A Pilot Study Evaluating the Effect of Recombinant Human Bone Morphogenetic Protein-2 and Recombinant Human Beta-Nerve Growth Factor on the Healing of Class III Furcation Defects in Dogs. J. Periodontol. 2010, 81, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xie, L.; Wu, Y.; Wu, Y.; Liu, Y.; Gao, Y.; Yang, J.; Zhang, X.; Jiang, L. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater. Today Bio 2022, 16, 100360. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Wang, C.; Zhang, Q.; Qu, X.; Liang, C.; Si, C.; Wang, L. Treatment of Periodontal Inflammation in Diabetic Rats with IL-1ra Thermosensitive Hydrogel. Int. J. Mol. Sci. 2022, 23, 13939. [Google Scholar] [CrossRef]
- Almoshari, Y.; Ren, R.; Zhang, H.; Jia, Z.; Wei, X.; Chen, N.; Li, G.; Ryu, S.; Lele, S.M.; Reinhardt, R.A.; et al. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 2020, 261, 120293. [Google Scholar] [CrossRef]
- Mou, J.; Liu, Z.; Liu, J.; Lu, J.; Zhu, W.; Pei, D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: Preparation, characterization and evaluation. Drug Deliv. 2019, 26, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Bai, X.; Yang, J.; Li, J.; Xing, J.; Yuan, H.; Xie, J.; Li, J. Preparation and characterisation of a gellan gum-based hydrogel enabling osteogenesis and inhibiting Enterococcus faecalis. Int. J. Biol. Macromol. 2020, 165, 2964–2973. [Google Scholar] [CrossRef] [PubMed]
- He, X.-T.; Li, X.; Xia, Y.; Yin, Y.; Wu, R.-X.; Sun, H.-H.; Chen, F.-M. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater. 2019, 88, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Tarawneh, O.; Hamadneh, I.; Huwaitat, R.; Al-Assi, A.R.; El Madani, A. Characterization of Chlorhexidine-Impregnated Cellulose-Based Hydrogel Films Intended for the Treatment of Periodontitis. BioMed Res. Int. 2021, 2021, 9853977. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-C.; Chao, Y.-C.; Hsiao, M.-H.; Chou, H.-S.; Jheng, Y.-H.; Yu, X.-H.; Lee, N.; Yang, C.; Liu, D.-M. Inhibition of Periodontitis Induction Using a Stimuli-Responsive Hydrogel Carrying Naringin. J. Periodontol. 2017, 88, 190–196. [Google Scholar] [CrossRef]
- Jeong, J.-O.; Park, J.-S.; Kim, E.J.; Jeong, S.-I.; Lee, J.Y.; Lim, Y.-M. Preparation of Radiation Cross-Linked Poly(Acrylic Acid) Hydrogel Containing Metronidazole with Enhanced Antibacterial Activity. Int. J. Mol. Sci. 2019, 21, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminu, N.; Chan, S.-Y.; Yam, M.-F.; Toh, S.-M. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int. J. Pharm. 2019, 570, 118659. [Google Scholar] [CrossRef]
- Li, A.; Khan, I.; Khan, I.; Yousaf, A.; Shahzad, Y. Gellan Gum-Based Bilayer Mucoadhesive Films Loaded with Moxifloxacin Hydrochloride and Clove Oil for Possible Treatment of Periodontitis. Drug Des. Dev. Ther. 2021, 15, 3937–3952. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater. 2020, 5, 1113–1126. [Google Scholar] [CrossRef]
- Xu, X.; Gu, Z.; Chen, X.; Shi, C.; Liu, C.; Liu, M.; Wang, L.; Sun, M.; Zhang, K.; Liu, Q.; et al. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019, 86, 235–246. [Google Scholar] [CrossRef]
- Boonlai, W.; Tantishaiyakul, V.; Hirun, N.; Sangfai, T.; Suknuntha, K. Thermosensitive Poloxamer 407/Poly(Acrylic Acid) Hydrogels with Potential Application as Injectable Drug Delivery System. AAPS PharmSciTech 2018, 19, 2103–2117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.; Sun, M.; Cheng, Z.; Jia, W.; Jiao, K.; Wang, S.; Jiang, K.; Yang, Y.; Dai, Z.; et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022, 146, 37–48. [Google Scholar] [CrossRef]
- Sowmya, S.; Mony, U.; Jayachandran, P.; Reshma, S.; Kumar, R.A.; Arzate, H.; Nair, S.V.; Jayakumar, R. Tri-Layered Nanocomposite Hydrogel Scaffold for the Concurrent Regeneration of Cementum, Periodontal Ligament, and Alveolar Bone. Adv. Healthc. Mater. 2017, 6, e201601251. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, Z.; Han, J.; Jiang, X.; Lei, L.; Yang, X.; Sun, W.; Gou, Z.; Chen, L. Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for periodontal tissue regeneration in dogs. Biomater. Res. 2022, 26, 68. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ji, Y.; Huang, G.; Ling, K.; Zhang, X.; Xu, F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 2015, 7, 044105. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, Y.; Zhong, T.; Wan, W.; Yang, Q.; Li, A.; Zhang, X.; Lin, M. Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACS Biomater. Sci. Eng. 2017, 3, 3534–3545. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, X.; Chen, Y.; Zhang, J.; Gai, K.; Chen, J.; Huo, F.; Guo, Q.; Guo, W.; Gou, M.; et al. Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Adv. Healthc. Mater. 2023, 12, e2202169. [Google Scholar] [CrossRef]
- Wang, H.; Chang, X.; Ma, Q.; Sun, B.; Li, H.; Zhou, J.; Hu, Y.; Yang, X.; Li, J.; Chen, X.; et al. Bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration. Bioact. Mater. 2023, 21, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Xu, J.; Liu, G.; Ma, C.; Bao, L.; Cong, Y.; Wang, Z.; Zhao, Y.; Xu, W.; Chen, C. Penetrating Macrophage-Based Nanoformulation for Periodontitis Treatment. ACS Nano 2022, 16, 18253–18265. [Google Scholar] [CrossRef]
- de Santana, R.B.; de Santana, C.M. Human intrabony defect regeneration with rhFGF-2 and hyaluronic acid—A randomized controlled clinical trial. J. Clin. Periodontol. 2015, 42, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Dong, Z.; Ke, X.; Luo, J.; Li, J. Advances in biomineralization-inspired materials for hard tissue repair. Int. J. Oral Sci. 2021, 13, 42. [Google Scholar] [CrossRef]
- Berthoud, V.; Gao, J.; Minogue, P.; Jara, O.; Mathias, R.; Beyer, E. Connexin Mutants Compromise the Lens Circulation and Cause Cataracts through Biomineralization. Int. J. Mol. Sci. 2020, 21, 5822. [Google Scholar] [CrossRef]
- Sharma, V.; Srinivasan, A.; Nikolajeff, F.; Kumar, S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater. 2020, 120, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Bao, L.; Lin, T.; Lu, Y.; Wu, Y. Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel. Arch. Oral Biol. 2019, 109, 104582. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Z.; Jiang, S.; Dai, X.; Wang, G.; Wang, Y.; Yang, Z.; Gao, J.; Zou, H. An amelogenin-based peptide hydrogel promoted the odontogenic differentiation of human dental pulp cells. Regen. Biomater. 2022, 9, rbac039. [Google Scholar] [CrossRef] [PubMed]
- Alaohali, A.; Salzlechner, C.; Zaugg, L.; Suzano, F.; Martinez, A.; Gentleman, E.; Sharpe, P. GSK3 Inhibitor-Induced Dentinogenesis Using a Hydrogel. J. Dent. Res. 2021, 101, 46–53. [Google Scholar] [CrossRef]
- Buyuksungur, S.; Hasirci, V.; Hasirci, N. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. J. Biomed. Mater. Res. Part A 2021, 109, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Cao, C.; Wang, A.; Zhao, Y.; Jin, M.; Wang, Y.; Chen, S.; Yu, M.; Yang, Z.; Qu, X.; et al. Injectable Double-Network Hydrogel-Based Three-Dimensional Cell Culture Systems for Regenerating Dental Pulp. ACS Appl. Mater. Interfaces 2023, 15, 7821–7832. [Google Scholar] [CrossRef]
- Aksel, H.; Sarkar, D.; Lin, M.H.; Buck, A.; Huang, G.T.-J. Cell-derived Extracellular Matrix Proteins in Colloidal Microgel as a Self-Assembly Hydrogel for Regenerative Endodontics. J. Endod. 2022, 48, 527–534. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Li, C.; Weir, M.D.; Wang, P.; Reynolds, M.A.; Zhao, L.; Xu, H.H.K. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1125–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyac, B.R.; Chicatun, F.; Hoac, B.; Nelea, V.; Chaussain, C.; Nazhat, S.N.; McKee, M.D. Mineralization of Dense Collagen Hydrogel Scaffolds by Human Pulp Cells. J. Dent. Res. 2013, 92, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Westhrin, M.; Xie, M.; Olderøy, M.; Sikorski, P.; Strand, B.L.; Standal, T. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices. PLoS ONE 2015, 10, e0120374. [Google Scholar] [CrossRef] [Green Version]
- Dangaria, S.J.; Ito, Y.; Walker, C.; Druzinsky, R.; Luan, X.; Diekwisch, T.G. Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 2009, 78, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, K.; Láng, O.; Láng, J.; Perczel-Kovách, K.; Gyulai-Gaál, S.; Kádár, K.; Kőhidai, L.; Varga, G. A novel hydrogel scaffold for periodontal ligament stem cells. Interv. Med. Appl. Sci. 2018, 10, 162–170. [Google Scholar] [CrossRef]
- Huang, Z.; Sargeant, T.D.; Hulvat, J.F.; Mata, A.; Bringas, P., Jr.; Koh, C.-Y.; Stupp, S.I.; Snead, M.L. Bioactive Nanofibers Instruct Cells to Proliferate and Differentiate during Enamel Regeneration. J. Bone Miner. Res. 2008, 23, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, D.; Bherwani, A.K.; Simon, M.; Rafailovich, M.H. Biomineralization on enzymatically cross-linked gelatin hydrogels in the absence of dexamethasone. J. Mater. Chem. B 2015, 3, 5210–5219. [Google Scholar] [CrossRef]
- Melo, M.; Morais, W.A.; Passos, V.F.; Lima, J.P.M.; Rodrigues, L.K.A. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles. Clin. Oral Investig. 2013, 18, 1343–1350. [Google Scholar] [CrossRef]
- Muşat, V.; Anghel, E.M.; Zaharia, A.; Atkinson, I.; Mocioiu, O.C.; Buşilă, M.; Alexandru, P. A Chitosan–Agarose Polysaccharide-Based Hydrogel for Biomimetic Remineralization of Dental Enamel. Biomolecules 2021, 11, 1137. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, J.; Chen, X.; Xiu, P.; Zhang, Y.; Lv, X.; Jiang, X.; Wang, K.; Zhang, L. A novel amelogenesis-inspired hydrogel composite for the remineralization of enamel non-cavitated lesions. J. Mater. Chem. B 2022, 10, 10150–10161. [Google Scholar] [CrossRef]
- Ruan, Q.; Moradian-Oldak, J. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. J. Vis. Exp. 2014, 89, e51606. [Google Scholar]
- Ruan, Q.; Siddiqah, N.; Li, X.; Nutt, S.; Moradian-Oldak, J. Amelogenin–chitosan matrix for human enamel regrowth: Effects of viscosity and supersaturation degree. Connect. Tissue Res. 2014, 55 (Suppl. S1), 150–154. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, S.; Ruan, Q.; Mukherjee, K.; Nutt, S.; Moradian-Oldak, J. The Presence of MMP-20 Reinforces Biomimetic Enamel Regrowth. J. Dent. Res. 2017, 97, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Q.; Liberman, D.; Bapat, R.; Chandrababu, K.; Phark, J.H.; Moradian-Oldak, J. Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J. Biomed. Eng. Inform. 2016, 2, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Moshy, S.; Abbass, M.M.; El-Motayam, A.M. Biomimetic remineralization of acid etched enamel using agarose hydrogel model. F1000Research 2018, 7, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Mei, M.L.; Li, Q.-L.; Lo, E.C.M.; Chu, C.H. Agarose Hydrogel Biomimetic Mineralization Model for the Regeneration of Enamel Prismlike Tissue. ACS Appl. Mater. Interfaces 2013, 6, 410–420. [Google Scholar] [CrossRef]
- Cao, C.Y.; Li, Q.-L. Scanning electron microscopic analysis of using agarose hydrogel microenvironment to create enamel prism-like tissue on dentine surface. J. Dent. 2016, 55, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mei, M.L.; Li, Q.-L.; Lo, E.C.M.; Chu, C.H. Enamel prism-like tissue regeneration using enamel matrix derivative. J. Dent. 2014, 42, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Mohabatpour, F.; Yazdanpanah, Z.; Papagerakis, S.; Chen, X.; Papagerakis, P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J. Funct. Biomater. 2022, 13, 71. [Google Scholar] [CrossRef]
- Ikeda, Y.; Neshatian, M.; Holcroft, J.; Ganss, B. The enamel protein ODAM promotes mineralization in a collagen matrix. Connect. Tissue Res. 2018, 59 (Suppl. S1), 62–66. [Google Scholar] [CrossRef]
- Fan, Y.; Wen, Z.T.; Liao, S.; Lallier, T.; Hagan, J.L.; Twomley, J.T.; Zhang, J.-F.; Sun, Z.; Xu, X. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries. J. Bioact. Compat. Polym. 2012, 27, 585–603. [Google Scholar] [CrossRef]
- Li, Z.C.; Qin, X.; Ren, Q.; Hu, D.; Tian, T.; He, T.; Li, W.; Zhang, L.L. Rational Design of β-sheet Peptides with Self-Assembly into Nanofibres on Remineralisation of Initial Caries Lesions. Chin. J. Dent. Res. 2020, 23, 131–141. [Google Scholar] [PubMed]
- Ruan, Q.; Zhang, Y.; Yang, X.; Nutt, S.; Moradian-Oldak, J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 2013, 9, 7289–7297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.; Li, Q.-L.; Cao, Y.; Fang, H.; Xia, R.; Zhang, Z.-H. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci. Rep. 2017, 7, srep41955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohabatpour, F.; Duan, X.; Yazdanpanah, Z.; Tabil, X.; Lobanova, L.; Zhu, N.; Papagerakis, S.; Chen, X. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineeringin vitro. Biofabrication 2022, 15, 015022. [Google Scholar] [CrossRef]
- Ikeda, Y.; Holcroft, J.; Ikeda, E.; Ganss, B. Amelotin Promotes Mineralization and Adhesion in Collagen-Based Systems. Cell. Mol. Bioeng. 2022, 15, 245–254. [Google Scholar] [CrossRef]
- Wu, X.-T.; Mei, M.L.; Li, Q.-L.; Cao, C.Y.; Chen, J.-L.; Xia, R.; Zhang, Z.-H.; Chu, C.H. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix. Materials 2015, 8, 7889–7899. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhou, Z.; Fan, J.; Zhang, L.; Zhang, Z.; Wu, Z.; Shi, Y.; Zheng, H.; Zheng, Z.; Tang, R.; et al. Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization. J. Nanobiotechnol. 2021, 19, 385. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Wang, W.; Liu, Y.; Li, X.; Yang, J.; Li, L.; Wu, G.; Pan, Y. Notoginsenoside R1 functionalized gelatin hydrogels to promote reparative dentinogenesis. Acta Biomater. 2021, 122, 160–171. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Fok, A.; Rodriguez-Cabello, J.C.; Aparicio, C. Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Density. ACS Appl. Mater. Interfaces 2015, 7, 25784–25792. [Google Scholar] [CrossRef] [Green Version]
- Bordini, E.A.F.; Ferreira, J.A.; Dubey, N.; Ribeiro, J.S.; Costa, C.A.D.S.; Soares, D.G.; Bottino, M.C. Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl. Bio Mater. 2021, 4, 6993–7006. [Google Scholar] [CrossRef]
- Kikuchi, N.; Kitamura, C.; Morotomi, T.; Inuyama, Y.; Ishimatsu, H.; Tabata, Y.; Nishihara, T.; Terashita, M. Formation of Dentin-like Particles in Dentin Defects above Exposed Pulp by Controlled Release of Fibroblast Growth Factor 2 from Gelatin Hydrogels. J. Endod. 2007, 33, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Ishimatsu, H.; Kitamura, C.; Morotomi, T.; Tabata, Y.; Nishihara, T.; Chen, K.-K.; Terashita, M. Formation of Dentinal Bridge on Surface of Regenerated Dental Pulp in Dentin Defects by Controlled Release of Fibroblast Growth Factor–2 From Gelatin Hydrogels. J. Endod. 2009, 35, 858–865. [Google Scholar] [CrossRef]
- Holiel, A.A.; Mahmoud, E.M.; Abdel-Fattah, W.M. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: A 2-year randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 4621–4634. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.; Souza, N.; Moreira, M.; Rodrigues, N.; Silva, P.; Franca, C.; Sercia, A.; Subbiah, R.; Tahayeri, A.; Ferracane, J. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clin. Oral Investig. 2022, 27, 1215–1225. [Google Scholar] [CrossRef]
- Zhen, L.; Liang, K.; Luo, J.; Ke, X.; Tao, S.; Zhang, M.; Yuan, H.; He, L.; Bidlack, F.; Yang, J.; et al. Mussel-Inspired Hydrogels for Fluoride Delivery and Caries Prevention. J. Dent. Res. 2022, 101, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Zuccheri, T.; Carletta, A.; Palazzo, B.; Colonna, M.; Rimondini, L. In vitro efficacy of a novel potassium oxalate hydrogel for dentin hypersensitivity. Eur. J. Oral Sci. 2017, 125, 151–159. [Google Scholar] [CrossRef]
- Ling, Z.; He, Y.; Huang, H.; Xie, X.; Li, Q.L.; Cao, C.Y. Effects of oligopeptide simulating DMP-1/mineral trioxide aggregate/agarose hydrogel biomimetic mineralisation model for the treatment of dentine hypersensitivity. J. Mater. Chem. B 2019, 7, 5825–5833. [Google Scholar] [CrossRef]
Hydrogel | Cells | Achievement | Year | Ref. |
---|---|---|---|---|
chitosan | DPSCs | Chitosan is beneficial to promote the regeneration of human pulp tissue due to its antibacterial effect | 2019 | [16,17] |
Stemcell from the apical papilla (SCAPs) | Chitosan hydrogel can improve the effect of pulp regeneration through cell homing method | 2021 | ||
fibronectin | DPSCs | Collagen/gelatin hydrogel supplemented with 10 μg/mL FN showed strong bioactivity and chemotaxis on hDPSCs cultured in vitro | 2021 | [18] |
platelet-rich fibrin | SCAPs | The novel PrFe-loaded ChitMA/ColMA hydrogel is injectable, cytocompatible, chemically attractive and bioactive to promote odontogenic differentiation | 2022 | [19] |
hyaluronic acid | human bone marrow mesenchymal stem cells (hBMSCs) | Hyaluronic acid can maintain cell viability and proliferation, and promote osteogenic/dentin differentiation of hBMSCs | 2022 | [20] |
bioactive glass | DPSCs | Bioactive glass microparticles enhance the osteogenic differentiation of DPSCs | 2020 | [21] |
polyethylene glycol | DPSCs | Hydrogels promote the aggregation of DPSCs and their odontogenic differentiation | 2015 | [22] |
silk fibroin | DPSCs | Pulp stem cells cultured with silk fibroin combined with gel showed good growth, proliferation and osteogenic differentiation ability | 2022 | [23] |
synthetic clay | DPSCs | The synthetic clay-based hydrogels are a promising biomaterial with no obvious toxic effect on DPSCs and are promising for pulp regeneration | 2018 | [24] |
carboxymethyl cellulose-hydroxyapatite hybrid | DPSCs | carboxymethyl cellulose–hydroxyapatite hybrid hydrogels can be considered promising candidates for pulp complex and periodontal tissue engineering | 2015 | [25] |
Cinnamaldehyde (CMA) | DPSCs | CA crosslinked collagen scaffolds are beneficial to hDPSCs adhesion, proliferation and differentiation | 2016 | [26] |
alginate | DPSCs/HUVECs | Rgd-alginate scaffold produced a microenvironment that significantly enhanced the proliferation of DPSCs/HUVECs combination | 2015 | [27] |
Bioactive Factor | Cells | Achievement | Year | Ref. |
---|---|---|---|---|
BMP-2/VEGF | N/A | Both the BMP-2 group and the BMP-2/VEGF group can promote periodontal tissue regeneration | 2016 | [52] |
Bone morphogenetic proteins (BMP) | Periodontal Ligament Stem Cells (PDLSCs.) | Dexgma/gelatin hydrogel scaffolds containing BMP microspheres can promote attachment, proliferation and osteogenic differentiation of PDLSCs. | 2007 2019 | [53,56] |
Matrix metalloproteinase 8 (MMP-8) | N/A | MMP-8 reactive hydrogels can release mmp-8 with antibacterial activity, which has the potential to be used in the treatment of chronic periodontitis and peri-implant inflammation | 2019 | [54] |
Self-assembling peptide (SAP) | PDLSCs | Intermittent systemic parathyroid hormone and locally neutral SAP hydrogels promote periodontal healing | 2019 | [55] |
Insulin-like growth factor-I (IGF-I) | N/A | Locally controlled slow-release IGF-I by adjusting the crosslinking density of hydrogel can promote the regeneration of periodontal membrane and alveolar bone | 2006 | [57] |
Recombinant human beta-nerve growth factor (rh beta-NGF) | N/A | Topical application of rhBMP2 and rh β-ngf improved the quality and quantity of regenerated bone in artificially constructed Beagle Type III bifurcation defects | 2010 | [58] |
Dexamethasone | PDLSCs | Dexamethasone nanocomposite hydrogel effectively reduced periodontitis in the rat model of periodontitis and attenuated inflammatory-induced bone loss. | 2022 | [59] |
Interleukin-1 receptor antagonist (IL-1ra) | mouse mononuclear macrophage leukemia cells (RAW 264.7) | Heat-sensitive hydrogel loaded with il-1ra can effectively inhibit periodontal inflammation and reduce alveolar bone resorption in diabetic periodontitis rats | 2022 | [60] |
Kinase 3 beta inhibitor (BIO) | mouse embryonic osteoblast progenitor cells (MC3T3-E1) | PF127-BIO hydrogel treatment is highly effective in preserving alveolar bone and ligaments and preventing periodontal inflammation in rats | 2020 | [61] |
Minocycline and zinc oxide nanoparticals (ZnO NPs) | gingival cell | Compared to Perio® (2% Minocycline ointment), hydrogels have a significant therapeutic effect and the ability of gum tissue to repair itself | 2019 | [62] |
Chlorhexidine (CHX) | BMSCs | Chx-supported hydrogel has good antibacterial action against Enterococcus faecalis and can promote alveolar bone regeneration | 2020 | [63] |
interleukin (IL)-4/stromal cell-derived factor (SDF)-1α | BMSCs | Simultaneous use of immunomodulators and homing factors in high-hardness hydrogels has been shown to induce stem cell homing, regulate cell differentiation, and induce periodontal tissue regeneration. | 2019 | [64] |
Chlorhexidine | N/A | Hydrogels containing chlorhexidine stop the growth of oral streptococcus and Clostridium albicans | 2021 | [65] |
Naringin | PDLSCs | Naringin—CHC-β-Gp-glycerol colloid hydrogel can inhibit the induction of experimental periodontitis, and has good treatment and inflammatory response | 2016 | [66] |
Metronidazole (MD) | mouse embryonic fibroblast (NIH 3T3) | MD/PAA hydrogel showed good antibacterial activity against Escherichia coli, Staphylococcus aureus and Streptococcus mutans without cytotoxicity | 2019 | [67] |
Ornidazole | PDLSCs | The number of defective new bone and cementum implanted with BMP-7/ORN hydrogel increased significantly | 2019 | [56] |
Triclosan (TCS)/flurbiprofen (FLB) [68] | N/A | Hydrogels containing TCS/PLB have anti-inflammatory and antibacterial effects in rats | 2019 | [68] |
Moxifloxacin hydrochloride (Mox)/clove Essential oil (CEO) | N/A | Hydrogels containing MOX/CEO showed high antibacterial activity against both gram-positive and Gram-negative bacteria | 2021 | [69] |
Cell | Achievement | Year | Ref. |
---|---|---|---|
hDPCs/HUVECs | The differentiation and mineralization ability of odontoblast in the coculture group was significantly enhanced | 2020 2015 | [15,85] |
The 3D-printed Alg-Gel was more suitable for the growth of hDPSCs, and the scaffold extract could better promote cell proliferation and differentiation | 2019 | [40] | |
RAD/Dentonin has good biocompatibility and can promote the adhesion proliferation, migration, odontogenic differentiation and mineralization of hDPSCs | 2021 | [28] | |
Amylogenic peptide hydrogels promoted the odontogenic differentiation and enhanced the mineralization of hDPSCs | 2022 | [86] | |
hDPSCs | Hyaluronic acid hydrogels release NP928, Wnt/β-catenin activity in hDPSCs, and promote restorative dentin formation | 2021 | [87] |
GelMA promotes osteogenic differentiation of DPSCs and expresses two key matrix proteins, osteopontin and osteocalcin | 2021 | [88] | |
In 3D cell culture system, the characteristics of DN hydrogel promoted the in vitro odontogenic differentiation and mineralization of hDPSCs | 2023 | [89] | |
Most of the DPSCs cultured in PEG-hydrogel maintained circular aggregation and showed the greatest enhancement of tooth-promoting gene expression | 2015 | [22] | |
Higher cell viability, calcium deposition, and alkaline phosphatase activity were observed in GelMA | 2022 | [90] | |
hiPSC-MSCs/hDPSCs/hBMSCs | All cells proliferated and differentiated into bone lineages within CPC hydrogel fibers | 2016 | [91] |
hSHED | The use of 3D high-density collagen scaffolds promoted the differentiation and mineralization of SHED bone/odontoblast cells | 2013 | [92] |
hMSCs | The expression levels of RUNX2, COL1AI, SP7 and BGLAP in the hydrogels-induced differentiation in the osteogenic direction were higher than those of MSC in traditional cell culture | 2015 | [93] |
hPDLSCs/hDFCs | RGD additive may promote the application of hydrogel in the mineralized tissue engineering of hPDLSCs and hDFCs | 2009 | [94] |
hPDLSCs | PDLSCs can adhere, survive, migrate, and proliferate on HydroMatrix, which also supports their osteogenic differentiation | 2018 | [95] |
Hydrogel | Achievement | Year | Ref. |
---|---|---|---|
Chitosan/agarose | Chitosan-agarose hydrogels can regenerate layered HAP structures similar to those of natural enamel at the nano to micro scales | 2021 | [99] |
QP5 | An amelogenin-derived peptide named QP5 can promote enamel re-mineralization by directing calcium and phosphorus ions provided by bioactive glass (BG) | 2022 | [100] |
Amelogenin-chitosan hydrogel | Amelogenin-chitosan hydrogel can promote significant and lasting enamel repair | 2014 | [101,102] |
CS-AMEL hydrogel containing MMP-20 significantly increased the modulus and hardness of the repaired enamel (1.8 times and 2.4 times, respectively). | 2018 | [103] | |
CS-AMEL hydrogel can effectively repair erosion and caries under ph cycling conditions | 2016 | [104] | |
Agarose hydrogel | Agarose hydrogels can deposit minerals on the enamel surface after demineralization, and the density increases with time | 2018 | [105] |
The elastic modulus and nano hardness of regenerated enamel prismatic structure are similar to those of natural enamel | 2014 | [106] | |
As a re-mineralized microenvironment, hydrogels initiate the occlusion of dentin tubules and the formation of prism-like tissue of enamel on the dentin surface | 2016 | [107] | |
Enamel matrix derivative (EMD) | EMD promotes in vitro biomimetic mineralization and promotes prismatic formation of human enamel after demineralization | 2014 | [108] |
Alginate-carboxymethyl chitosan hydrogels | Oxidized alginate—carboxymethyl chitosan hydrogel can regenerate enamel tissue | 2022 | [109] |
Odontogenic ameloblast-associated protein (ODAM) hydrogels | ODAM promotes HA nucleation in a dose-dependent manner in SBF | 2018 | [110] |
Amelelogenin | The surface microhardness of the re-mineralized enamel was significantly improved by combining the recombinant full-length amelogenin protein with fluoride | 2012 | [111] |
Self-assembled beta-sheet peptide | Self-assembled β-sheet peptide D8 can be used as a template to induce HAP nucleation and promote biomimetic re-mineralization of early caries. | 2020 | [112] |
Hydrogel | Achievement | Year | Ref. |
---|---|---|---|
AMTN gel | AMTN gel can form hydroxyapatite deposits on and within collagen substrates. Coating dentin with rhAMTN promoted the precipitation of surface mineral deposits | 2022 | [116] |
agarose hydrogel | The dentin after demineralization is re-mineralized and the dentin tubules are blocked by growing HA crystals | 2017 | [114] |
The agarose hydrogel combined with a new electric field-assisted biomimetic mineralization system can re-mineralize the completely demineralized dentine collagen matrix | 2015 | [117] | |
Hydroxypropy-lmethylcellulose (HPMC) | Hydroxyl and methoxy groups in HPMC can assist the stability of PAsp-ACP nanoparticles, maintain their biomimetic mineralization activity, and increase the thickness of dentin mineralization (3–4 µm). | 2021 | [118] |
Methacrylic acid functional hydrogel | Gel-MA/NGR1 has a strong ability to promote restorative dentin formation | 2021 | [119] |
Recombinamer-based hydrogels | After 28 days of mineralization, mineral density can reach 1.9 g/cm3, which is comparable to that of natural bone and dentin | 2015 | [120] |
GelMA | Loaded dexamethasone-modified hydrogels may have the ability to trigger in situ mineralized tissue regeneration under inflammatory conditions | 2021 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Bi, F.; Guo, W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023, 9, 245. https://doi.org/10.3390/gels9030245
Zhang Z, Bi F, Guo W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels. 2023; 9(3):245. https://doi.org/10.3390/gels9030245
Chicago/Turabian StyleZhang, Zhijun, Fei Bi, and Weihua Guo. 2023. "Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth" Gels 9, no. 3: 245. https://doi.org/10.3390/gels9030245
APA StyleZhang, Z., Bi, F., & Guo, W. (2023). Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels, 9(3), 245. https://doi.org/10.3390/gels9030245