Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of AC Hydrogels
2.2. Mechanical Strength of AC Hydrogels
2.3. Degradation of AC Hydrogels by Lysozyme
2.4. Blood-Clotting Test
2.5. Treatment of Wounds with AC Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of CG
4.3. Preparation of AC Hydrogels
4.4. Compression Test
4.5. Degradation of AC Hydrogels by Lysozyme
4.6. Blood-Clotting Test
4.7. Treatment of Wound with AC Hydrogels
4.8. Histological Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovington, L.G. Advances in wound dressing. Clin. Dermatol. 2007, 25, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater. 2018, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Naseri-Nosar, M.; Ziora, Z.M. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr. Polym. 2018, 189, 379–398. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan-A versatile semi-synthetic polymer in biomedical application. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbial. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Lu, B.; Wang, T.; Wang, L.; Chen, J.; Yu, K.; Liu, J.; Dai, F.; Wu, D. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf. B Biointerfaces 2015, 136, 1026–1034. [Google Scholar] [CrossRef]
- Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing application of chitosan. Adv. Drug Deliv. Rev. 2001, 52, 105–115. [Google Scholar] [CrossRef]
- Feng, P.; Luo, Y.; Ke, C.; Qiu, H.; Wang, W.; Zhu, Y.; Hou, R.; Xu, L.; Wu, S. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotecnol. 2021, 9, 650598. [Google Scholar] [CrossRef]
- Shariatinia, Z.; Zahraee, Z. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J. Colliod Interface Sci. 2017, 501, 60–76. [Google Scholar] [CrossRef]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Han, J.; Lin, H. Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohydr. Polym. 2017, 156, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Than-ardna, B.; Tamura, H.; Furuike, T. Preparation, Characterization, and Properties of Chitosan-Based Semi-Interpenetrating Polymer Networks and Poly(2-hydroxyethyl methacrylate) Structure. Macromol. Chem. Phys. 2022, 223, 2200282. [Google Scholar] [CrossRef]
- Takei, T.; Nakahara, H.; Ijima, H.; Kawakami, K. Synthesis of a chitosan derivative soluble at neutral pH and gellable by freeze-thawing, and its application in wound care. Acta Biomater. 2012, 8, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Yoshitomi, H.; Fukumoto, K.; Danjo, S.; Yoshinaga, T.; Nishimata, H.; Yoshida, M. Toxic Chemical Cross-linker-free Cryosponges Made from Chitosan-Gluconic acid Conjugate for Chondrocyte Culture. J. Chem. Eng. Jpn. 2017, 50, 142–148. [Google Scholar] [CrossRef]
- Takei, T.; Fukumoto, K.; Danjo, S.; Yoshinaga, T.; Nishimata, H.; Yoshida, M. In Vitro and In Vivo Characterization of Hydroxyapatite/Chitosan-Gluconic Acid Conjugate Scafforlds. J. Chem. Eng. Jpn. 2017, 50, 577–582. [Google Scholar] [CrossRef]
- Takei, T.; Nakahara, H.; Tanaka, S.; Nishimata, H.; Yoshida, M.; Kawakami, K. Effect of chitosan-gluconic acid conjugate/poly(vinyl alchohol) cryogel as wound dressing on partial-thickness wounds in diabetic rats. J. Mater. Sci. Mater. Med. 2013, 24, 2479–2487. [Google Scholar] [CrossRef]
- Takei, T.; Danjo, S.; Sakoguchi, S.; Yoshinaga, T.; Nishimata, H.; Yoshida, M. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing. J. Biosci. Bioeng. 2018, 125, 490–495. [Google Scholar] [CrossRef]
- Pasparakis, G.; Tsitsilianis, C. LCST polymers: Thermoresponsive nanostructured assemblies towards bioapplications. Polymer 2020, 211, 123146. [Google Scholar] [CrossRef]
- Ma, G.; Qian, B.; Yang, J.; Hu, C.; Nie, J. Synthesis and properties of photosensitive chitosan derivatives(1). Int. J. Biol. Macromol. 2010, 46, 558–561. [Google Scholar] [CrossRef]
- Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M.Q. PEG-Grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release 2005, 103, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Wirsen, A.; Albertsson, A.C. Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid. J. Appl. Polym. Sci. 1999, 74, 3193–3202. [Google Scholar] [CrossRef]
Name | Glucosamine Units | Sodium Gluconates | EDC | NHS | Concentration of Chitosan [% (w/v)] | Gluconic Acid Content /100 Glucosamine Units |
---|---|---|---|---|---|---|
CG8 | 1 | 0.25 | 0.25 | 0.125 | 2 | 8.0 |
CG26 | 1 | 0.5 | 0.5 | 0.25 | 2 | 26.3 |
CG54 | 1 | 2 | 2 | 1 | 1 | 54.0 |
Temperature [°C] | |||||||
---|---|---|---|---|---|---|---|
121 | 100 | 80 | 60 | 40 | Room Temp. | ||
Time | 20 min | + | + | − | − | − | − |
120 min | + | + | + | + | − | − | |
3 d | ND | ND | ND | ND | + | − | |
7 d | ND | ND | ND | ND | ND | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, Y.; Ohzuno, Y.; Saito, Y.; Fujiwara, Y.; Yoshida, M.; Takei, T. Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels 2023, 9, 280. https://doi.org/10.3390/gels9040280
Yamashita Y, Ohzuno Y, Saito Y, Fujiwara Y, Yoshida M, Takei T. Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels. 2023; 9(4):280. https://doi.org/10.3390/gels9040280
Chicago/Turabian StyleYamashita, Yusuke, Yoshihiro Ohzuno, Yoichi Saito, Yukio Fujiwara, Masahiro Yoshida, and Takayuki Takei. 2023. "Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing" Gels 9, no. 4: 280. https://doi.org/10.3390/gels9040280
APA StyleYamashita, Y., Ohzuno, Y., Saito, Y., Fujiwara, Y., Yoshida, M., & Takei, T. (2023). Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels, 9(4), 280. https://doi.org/10.3390/gels9040280