Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanism of Composite Surface Modification
2.2. Influence of Modification Conditions on Oil Absorption
2.2.1. Effect of Acid Modification Conditions
2.2.2. Effect of Anionic Surfactant Modification Conditions
2.2.3. Characterization of Rice Straw
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Rice Straw
4.2.1. Pretreatment of Rice Straw
4.2.2. Modification of Rice Straw
4.3. Determination of Oil Adsorption Rate
4.4. Characterization of Rice Straw
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sammarco, P.W.; Kolian, S.R.; Warby, R.A.; Bouldin, J.L.; Subra, W.A.; Porter, S.A. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater horizon oil spill, gulf of Mexico. Mar. Pollut. Bull. 2013, 73, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Schrope, M. Oil spill: Deep wounds. Nat. News 2011, 472, 152–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, T.M.; Bianca, P.D.; Krysa, J. Analysis of inland crude oil spill threats, vulnerabilities, and emergency response in the Midwest United States. Risk Anal. 2012, 32, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Kolokoussis, P.; Karathanassi, V. Oil spill detection and mapping using sentinel 2 imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.; Bode, A.; Lorenzo, J.; Álvarez-Ossorio, M.T.; Miranda, A.; Patrocinio, T.; Anadón, R.; Viesca, L.; Rodríguez, N.; Valdés, L.; et al. The effect of the “Prestige” oil spill on the plankton of the N-NW Spanish coast. Mar. Pollut. Bull. 2006, 53, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakakis, E.; Hahladakis, J.; Gidarakos, E. The “Sea Diamond” shipwreck: Environmental impact assessment in the water column and sediments of the wreck area. Int. J. Environ. Sci. Technol. 2014, 11, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Gu, X.; Xue, M.; Li, Y.; Dong, S.; Chen, G. Resource utilization of medical waste under COVID-19: Waste mask used as crude oil fluidity improver. J. Clean. Prod. 2022, 358, 131903. [Google Scholar] [CrossRef]
- Hammouda, S.; Chen, Z.; An, C.; Lee, K. Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. J. Clean. Prod. 2021, 311, 127630. [Google Scholar] [CrossRef]
- Zhang, Z.; Sèbe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 2014, 26, 2659–2668. [Google Scholar] [CrossRef]
- Zhou, Z.; Dong, S.; Zhang, X.; Zhang, J.; Chen, G. Synthesis of multi-alkylpolyamine and performance in crude oil as flow improver. Tenside Surfact. Det. 2022, 59, 104–110. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, Q.; Liu, Z.; Tang, L.; Liang, L.; Zhang, C.; Li, Q.; Xu, N.; Sun, J.; et al. Achieving the super gas-wetting alteration by functionalized nano-silica for improving fluid flowing capacity in gas condensate reservoirs. ACS Appl. Mater. Interfaces 2021, 13, 10996–11006. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Wang, Q.; Liang, L.; Tang, L.; Zhang, C.; Lan, J.; Meng, L.; Jiang, B. Design of fluorine-modified nanocrystalline cellulose achieving super gas-wetting alteration of reservoir cores. J. Mol. Liq. 2021, 333, 115933. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, Q.; Tang, L.; Liang, L.; Zeng, Y.; Lan, J.; Xu, N. The influence of fluorochemical-modified graphene oxide on the gas-wetting alteration of reservoir cores. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126565. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, Q.; Tang, L.; Yuan, L.; Wang, G.; Zhang, R. Optimization the synthesis parameters of gas-wetting alteration agent and evaluation its performance. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 438–445. [Google Scholar] [CrossRef]
- Ma, L.; Slaný, M.; Guo, R.; Du, W.; Li, Y.; Chen, G. Study on synergistic catalysis of ex-situ catalyst and in-situ clay in aquathermolysis of water-heavy oil-ethanol at low temperature. Chem. Eng. J. 2023, 453, 139872. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Jia, H.; Wen, H.; Li, J.; Liu, W.; Li, J. The investigation on Fe3O4 magnetic flocculation for high efficiency treatment of oily micro-polluted water. J. Environ. Manag. 2019, 244, 399–407. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Z.; Shi, X.; Zhang, X.; Dong, S.; Zhang, J. Synthesis of alkylbenzenesulfonate and its behavior as flow improver in crude oil. Fuel 2021, 288, 119644. [Google Scholar] [CrossRef]
- Wang, D.; Li, D.; Lv, P.; Xu, Y.; Wei, Q. Deposition of polytetrafluoroethylene nanoparticles on graphene oxide/polyester fabrics for oil adsorption. Surf. Eng. 2019, 35, 426–434. [Google Scholar] [CrossRef]
- Chen, C.H.; Saleemi, S.; Liu, X.H.; Qiu, Y.P.; Xu, F.J. Hydrophobic lipophilic modified cotton fabric for oil absorption applications. Nat. Fibers 2018, 29, 146–154. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Liu, Y.; Tian, Y.; Li, Y. Efficient adsorption of oil in water by hydrophobic nonwoven fabrics coated with cross-linked polydivinylbenzene fibers. J. Chem. Technol. Biotechnol. 2019, 94, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Song, X.; Huang, X.; Wang, L.; Li, B.; Xue, H. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation. Appl. Surf. Sci. 2018, 439, 394–404. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Tai, N.H.; Lee, S.B.; Kuo, W.-S. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energ. Environ. Sci. 2012, 5, 7908–7912. [Google Scholar] [CrossRef]
- Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Chen, B.; Chen, F.; Yang, Q.; Bu, X.; et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Fei, T.; Gong, W. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation. Chem. Eng. J. 2018, 345, 648–658. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Alotaibi, M.A.; Alhammad, B.A.; Alharbi, B.M.; Refay, Y.; Badawy, S.A. Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy 2020, 10, 790. [Google Scholar] [CrossRef]
- Li, D.; Zhu, F.Z.; Li, J.Y.; Na, P.; Wang, N. Preparation and characterization of cellulose fibers from corn straw as natural oil sorbents. Ind. Eng. Chem. Res. 2013, 52, 516–524. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, F.; Li, Y.; Zhang, J.; Chen, S.; Qu, C.; Chen, G. Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. J. Pet. Sci. Eng. 2018, 164, 87–90. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, W.; Dong, S.; Zhang, J.; Chen, G. Synthesis of aluminium alkylbenzene sulfonate and its behavior as a flow improver for crude oil. Tenside Surfactants Deterg. 2022, 59, 353–361. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, X.; Cai, Z.; O’reilly, S.; Hao, X.; Zhao, D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Mar. Pollut. Bull. 2014, 79, 16–33. [Google Scholar] [CrossRef]
- Chougan, M.; Ghaffar, S.H.; Al-Kheetan, M.J.; Gecevicius, M. Wheat straw pre-treatments using eco-friendly strategies for enhancing the tensile properties of bio-based polylactic acid composites. Ind. Crops Prod. 2020, 155, 112836. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Jin, J.; Wang, K.; Tang, L.; Zhang, Y.; Dai, C. Synthesis and evaluation of two gas-wetting alteration agents for a shale reservoir. Energy Fuels 2018, 32, 1515–1524. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, Q.; Li, Q.; Zhang, Y.; Yuan, L. Synthesis and evaluation of properties of N, N-bis (perfluorooctyl) imine acetate sodium as a gas-wetting alteration agent. RSC Adv. 2018, 8, 7924–7931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, Y.; Guo, G.; Wang, K.; Gomado, F.; Zhang, C. The effect of fluorocarbon surfactant on the gas-wetting alteration of reservoir. Pet. Sci. Technol. 2018, 36, 951–958. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Do, N.D.; Thai, N.N.T.; Thai, Q.B.; Huynh, H.K.P.; Phan, A.N. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater. Chem. Phys. 2020, 253, 123363. [Google Scholar]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Jiang, F.; Kondo, T.; Hsieh, Y.L. Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustain. Chem. Eng. 2016, 4, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Hsieh, Y.L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 2013, 95, 32–40. [Google Scholar] [CrossRef]
- Shin, Y.S.; Han, K.S.; Arey, B.W.; Bonheyo, G.T. Cotton fiber-based sorbents for treating crude oil spills. ACS Omega 2020, 5, 13894–13901. [Google Scholar] [CrossRef]
- Sun, X.-F.; Sun, S.; Sun, J.X. Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J. Agric. Food Chem. 2002, 50, 6428–6433. [Google Scholar] [CrossRef]
- Chai, W.B.; Liu, X.Y.; Zhang, X.Y.; Li, B.B.; Yin, T.T.; Zou, J.C. Preparation and characterization of polypropylene fibergrafted polybutylmethacrylate as oil sorbent, Desalin. Water. Treat. 2015, 57, 18560–18571. [Google Scholar] [CrossRef]
- Amin, J.S.; Abkenar, M.V.; Zendehboudi, S. Natural sorbent for oil spill cleanup from water surface: Environmental implication. Ind. Eng. Chem. Res. 2015, 54, 10615–10621. [Google Scholar] [CrossRef]
μ30 /(mPa·s) | Pour Point t/°C | ρ20 /(g·cm−3) | Resins W/% | Asphaltenes W/% | Aromatic Hydrocarbons W/% | Saturated Hydrocarbons W/% |
---|---|---|---|---|---|---|
36.9 | 18.5 | 0.886 | 12.1 | 6.8 | 25.2 | 55.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, J.; Li, W.; Dou, M.; Ma, L.; Wang, Q.; Zhao, B.; Chen, G. Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw. Gels 2023, 9, 285. https://doi.org/10.3390/gels9040285
Li Y, Liu J, Li W, Dou M, Ma L, Wang Q, Zhao B, Chen G. Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw. Gels. 2023; 9(4):285. https://doi.org/10.3390/gels9040285
Chicago/Turabian StyleLi, Yongfei, Jiangbo Liu, Wenjuan Li, Miao Dou, Liwa Ma, Qian Wang, Bin Zhao, and Gang Chen. 2023. "Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw" Gels 9, no. 4: 285. https://doi.org/10.3390/gels9040285
APA StyleLi, Y., Liu, J., Li, W., Dou, M., Ma, L., Wang, Q., Zhao, B., & Chen, G. (2023). Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw. Gels, 9(4), 285. https://doi.org/10.3390/gels9040285