Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections
Abstract
:1. Introduction
2. Results and Discussion
2.1. Box–Behnken Design’s Optimization of Transethosomes
- Response 1 (Y1): The impact of independent factors on particle size
- Response 2 (Y2): The impact of independent factors on PDI
- Response 3 (Y3): The impact of independent variables on entrapment efficiency
Optimized Formula
2.2. Size, Polydispersity, and % Entrapment of the Optimized Formulation
2.3. Morphological Characteristics of Optimized TES
2.4. Evaluation of HTC-Based TES Gel (HTC-TESG)
2.5. Texture Analysis
2.6. In Vitro Drug Release
2.7. Dermatokinetic Study
2.8. Confocal Laser Scanning Microscopy (CLSM)
2.9. Antibacterial Activity of Hexatriacontane
2.9.1. Minimum Inhibitory Concentration of the Hexatriacontane
2.9.2. Minimum Bactericidal Concentrations of HTC
2.10. Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Development of Hexatriacontane-Loaded Transethosomes (HTC-TES)
4.2.2. Preparation of HTC-Loaded Transethosomes Gel (HTC-TESG)
4.2.3. Optimization of HTC-Loaded Transethosome Using Experimental Design
4.3. Characterization
4.3.1. Globule Size, Polydispersity Index (PDI), and Zeta Potential
4.3.2. Morphology of Transethosomes
4.3.3. Entrapment Efficiency
4.3.4. In Vitro HTC Release Study
4.4. Evaluation of HTC-Based TES Gel
4.4.1. Physical Evaluation
4.4.2. Texture Analysis of Gel
4.4.3. pH and HTC Content
4.4.4. Spreadability
4.4.5. Extrudability
4.4.6. Dermatokinetics Study
4.4.7. Confocal Laser Scanning Microscopy
4.5. HTC Antibacterial Activity
4.5.1. Bacterial Strains
4.5.2. Inoculum Preparation
4.5.3. Antibacterial Activity of Free Hexatriacontane and Hexatriacontane-Loaded Transethosomes
4.5.4. Determination of Minimum Inhibitory Concentrations of the HTC
4.5.5. Determination of Minimum Bactericidal Concentrations of the HTC
4.6. Stability Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. The Challenge of Emerging and Re-Emerging Infectious Diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredricks, D.N. Microbial Ecology of Human Skin in Health and Disease. J. Investig. Dermatol. Symp. Proc. 2001, 6, 167–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awang-Jamil, Z.; Aminuddin, M.F.; Zaidi, B.Q.; Basri, A.M.; Ahmad, N.; Taha, H. Phytochemicals and Antimicrobial Analysis of Selected Medicinal Plants from Brunei Darussalam. Biodiversitas J. Biol. Divers. 2021, 22, 601–606. [Google Scholar] [CrossRef]
- Selvan, A.T.; Subramanian, N.S.; Ramadevi, M.; Prasad, B.S.G.; Muthu, S.K. Bioactive compound identification, phytochemical estimation, in-vitro antiinflammatory and antioxidant activity of Pupalia lappacea. Int. J. Pharmacogn. 2014, 1, 596–604. [Google Scholar]
- Yassa, N.; Masoomi, F.; Rohani Rankouhi, S.E.; Hadjiakhoondi, A. Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, Population of Guilan. DARU J. Pharm. Sci. 2009, 17, 175–180. [Google Scholar]
- Nayak, B.; Roy, S.; Roy, M.; Mitra, A.; Karak, K. Phytochemical, antioxidant and antimicrobial screening of Suaeda maritima L (Dumort) against human pathogens and multiple drug resistant bacteria. Indian J. Pharm. Sci. 2018, 80, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.M.; Bartha, R. Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 1989, 55, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Dhankhar, S.; Dhankhar, S.; Kumar, M.; Ruhil, S.; Balhara, M.; KChhillar, A. Analysis toward innovative herbal antibacterial & antifungal drugs. Recent Pat. Anti-Infect. Drug Discov. 2012, 7, 242–248. [Google Scholar]
- Gamal El-Din, M.I.; Youssef, F.S.; Altyar, A.E.; Ashour, M.L. GC/MS Analyses of the essential oils obtained from different jatropha species, their discrimination using chemometric analysis and assessment of their antibacterial and anti-biofilm activities. Plants 2022, 11, 1268. [Google Scholar] [CrossRef]
- Hexatriacontane C36H74—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hexatriacontane (accessed on 27 January 2023).
- Shirzad, M.; Jamehbozorgi, S.; Akbarzadeh, I.; Aghabozorg, H.R.; Amini, A. The Role of Polyethylene Glycol Size in Chemical Spectra, Cytotoxicity, and Release of PEGylated Nanoliposomal Cisplatin. Assay Drug Dev. Technol. 2019, 17, 231–239. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef]
- Godin, B.; Touitou, E. Erythromycin Ethosomal Systems: Physicochemical Characterization and Enhanced Antibacterial Activity. Curr. Drug Deliv. 2005, 2, 269–275. [Google Scholar] [CrossRef]
- Solanki, A.B.; Parikh, J.R.; Parikh, R.H. Formulation and Optimization of Piroxicam Proniosomes by 3-Factor, 3-Level Box-Behnken Design. AAPS PharmSciTech 2007, 8, 43–49. [Google Scholar] [CrossRef]
- Cevc, G.; Blume, G. New, Highly Efficient Formulation of Diclofenac for the Topical, Transdermal Administration in Ultradeformable Drug Carriers, Transfersomes. Biochim. Biophys. Acta-Biomembr. 2001, 1514, 191–205. [Google Scholar] [CrossRef] [Green Version]
- El Maghraby, G.M.M.; Williams, A.C.; Barry, B.W. Skin Delivery of Oestradiol from Lipid Vesicles: Importance of Liposome Structure. Int. J. Pharm. 2000, 204, 159–169. [Google Scholar] [CrossRef]
- Paul, A.; Cevc, G.; Bachhawat, B.K. Transdermal Immunisation with an Integral Membrane Component, Gap Junction Protein, by Means of Ultradeformable Drug Carriers, Transfersomes. Vaccine 1998, 16, 188–195. [Google Scholar] [CrossRef]
- Raza, K.; Singh, B.; Mahajan, A.; Negi, P.; Bhatia, A.; Katare, O.P. Design and Evaluation of Flexible Membrane Vesicles (FMVs) for Enhanced Topical Delivery of Capsaicin. J. Drug Target. 2011, 19, 293–302. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, B.; Raza, K.; Wadhwa, S.; Katare, O.P. Tamoxifen-Loaded Lecithin Organogel (LO) for Topical Application: Development, Optimization and Characterization. Int. J. Pharm. 2013, 444, 47–59. [Google Scholar] [CrossRef]
- Mombeiny, R.; Tavakol, S.; Kazemi, M.; Mehdizadeh, M.; Hasanzadeh, A.; Karimi Babaahmadi, M.; Abedi, A.; Keyhanvar, P. Anti-Inflammatory Ethosomal Nanoformulation in Combination with Iontophoresis in Chronic Wound Healing: An Ex Vivo Study. IET Nanobiotechnology 2021, 15, 710–718. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. Enhanced Transdermal Delivery of an Anti-Hypertensive Agent via Nanoethosomes: Statistical Optimization, Characterization and Pharmacokinetic Assessment. Int. J. Pharm. 2013, 443, 26–38. [Google Scholar] [CrossRef]
- Ayaz Atalan, Y.; Tayanç, M.; Erkan, K.; Atalan, A. Development of nonlinear optimization models for wind power plants using box-Behnken design of experiment: A case study for Turkey. Sustainability 2020, 12, 6017. [Google Scholar] [CrossRef]
- Abdulbaqi, I.M.; Darwis, Y.; Assi, R.A.; Khan, N.A. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation. Drug Des. Dev. Ther. 2018, 12, 795–813. [Google Scholar] [CrossRef] [Green Version]
- Esim, O.; Bakirhan, N.K.; Sarper, M.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Influence of emulsifiers on the formation and in vitro anticancer activity of epirubicin loaded PLGA nanoparticles. J. Drug Deliv. Sci. Technol. 2020, 60, 102027. [Google Scholar] [CrossRef]
- Nasr, A.M.; Moftah, F.; Abourehab, M.A.; Gad, S. Design, Formulation, and Characterization of Valsartan Nanoethosomes for Improving Their Bioavailability. Pharmaceutics 2022, 14, 2268. [Google Scholar] [CrossRef]
- Zaki, R.M.; Seshadri, V.D.; Mutayran, A.S.; Elsawaf, L.A.; Hamad, A.M.; Almurshedi, A.S.; Yusif, R.M.; Said, M. Wound Healing Efficacy of Rosuvastatin Transethosomal Gel, I Optimal Optimization, Histological and In Vivo Evaluation. Pharmaceutics 2022, 14, 2521. [Google Scholar] [CrossRef]
- Mishra, K.K.; Kaur, C.D. Screening of process variables using Box-Behnken design in the fabrication of Berberine-hydrochloride loaded transethosomes for enhanced transdermal delivery: TJPS-2021-0201. R1. Thai J. Pharm. Sci. (TJPS) 2022, 46, 191–202. [Google Scholar]
- Mahmoud, T.M.; Nafady, M.M.; Farouk, H.O.; Mahmoud, D.M.; Ahmed, Y.M.; Zaki, R.M.; Hamad, D.S. Novel Bile Salt Stabilized Vesicles-Mediated Effective Topical Delivery of Diclofenac Sodium: A New Therapeutic Approach for Pain and Inflammation. Pharmaceuticals 2022, 15, 1106. [Google Scholar] [CrossRef]
- Shahi, J.; Bajaj, R. Optimization and characterization of 5-fluorouracil transethosomes for skin cancer therapy using response surface methodology. Int. J. Adv. Res. 2018, 6, 1225–1233. [Google Scholar]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In Lipid Nanocarriers for Drug Targeting; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 473–508. [Google Scholar]
- Raza, K.; Singh, B.; Singla, S.; Wadhwa, S.; Garg, B.; Chhibber, S.; Katare, O.P. Nanocolloidal Carriers of Isotretinoin: Antimicrobial Activity against Propionibacterium Acnes and Dermatokinetic Modeling. Mol. Pharm. 2013, 10, 1958–1963. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, V.; Rai, G.; Pharmaceutics, R.; Khasla, R. Transfersomes as Versatile and Flexible Nano-Vesicular Carriers in Skin Cancer Therapy: The State of the Art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef] [PubMed]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of Transethosomes Formulation for Dermal Fisetin Delivery: Box–Behnken Design, Optimization, in Vitro Skin Penetration, Vesicles–Skin Interaction and Dermatokinetic Studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, S.; Aqil, M.; Ahad, A.; Imam, S.S.; Waheed, A.; Qadir, A.; Ali, A. Nanostructured Lipid Carrier for Transdermal Gliclazide Delivery: Development and Optimization by Box-Behnken Design. Inorg. Nano-Metal Chem. 2022, 1–14. [Google Scholar] [CrossRef]
- Ahad, A.; Raish, M.; Ahmad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Development and Biological Evaluation of Vesicles Containing Bile Salt of Telmisartan for the Treatment of Diabetic Nephropathy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Pathan, I.B.; Jaware, B.P.; Shelke, S.; Ambekar, W. Curcumin Loaded Ethosomes for Transdermal Application: Formulation, Optimization, in-Vitro and in-Vivo Study. J. Drug Deliv. Sci. Technol. 2018, 44, 49–57. [Google Scholar] [CrossRef]
- Imam, S.S.; Ahad, A.; Aqil, M.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by Design Based Risperidone Nano Soft Lipid Vesicle as a New Strategy for Enhanced Transdermal Drug Delivery: In-Vitro Characterization, and in-Vivo Appraisal. Mater. Sci. Eng. C 2017, 75, 1198–1205. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. The Ameliorated Longevity and Pharmacokinetics of Valsartan Released from a Gel System of Ultradeformable Vesicles. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and Evaluation of Nanostructured Lipid Carrier as a Vehicle for Oral Delivery of Etoposide. Eur. J. Pharm. Sci. 2011, 43, 174–179. [Google Scholar] [CrossRef]
- Zhang, Z.; Bu, H.; Gao, Z.; Huang, Y.; Gao, F.; Li, Y. The Characteristics and Mechanism of Simvastatin Loaded Lipid Nanoparticles to Increase Oral Bioavailability in Rats. Int. J. Pharm. 2010, 394, 147–153. [Google Scholar] [CrossRef]
- Jagdale, S.; Chaudhari, B. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone. Recent Pat. Antiinfect. Drug Discov. 2017, 12, 61–78. [Google Scholar] [CrossRef]
- Xia, M.Q.; Tian, C.L.; Liu, L.; Hu, R.F.; Gui, S.Y.; Chu, X.Q. Transdermal Administration of Ibuprofen-Loaded Gel: Preparation, Pharmacokinetic Profile, and Tissue Distribution. AAPS PharmSciTech 2020, 21, 84. [Google Scholar] [CrossRef]
- Dantas, M.G.B.; Reis, S.A.G.B.; Damasceno, C.M.D.; Rolim, L.A.; Rolim-Neto, P.J.; Carvalho, F.O.; Quintans-Junior, L.J.; Da Silva Almeida, J.R.G. Development and Evaluation of Stability of a Gel Formulation Containing the Monoterpene Borneol. Sci. World J. 2016, 2016, 7394685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uprit, S.; Kumar Sahu, R.; Roy, A.; Pare, A. Preparation and Characterization of Minoxidil Loaded Nanostructured Lipid Carrier Gel for Effective Treatment of Alopecia. Saudi Pharm. J. 2013, 21, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, P.; Singh, B.; Sharma, G.; Beg, S.; Katare, O.P. Biocompatible Lidocaine and Prilocaine Loaded-Nanoemulsion System for Enhanced Percutaneous Absorption: QbD-Based Optimisation, Dermatokinetics and in Vivo Evaluation. J. Microencapsul. 2015, 32, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.; Mashru, R. Development and validation of analytical method of berberine and its quantification in multicomponent homeopathic formulations. World J. Pharm. 2017, 6, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Kausar, H.; Mujeeb, M.; Ahad, A.; Moolakkadath, T.; Aqil, M.; Ahmad, A.; Akhter, M.H. Optimization of Ethosomes for Topical Thymoquinone Delivery for the Treatment of Skin Acne. J. Drug Deliv. Sci. Technol. 2019, 49, 177–187. [Google Scholar] [CrossRef]
- Imran, M.; Khan, A.S.; Khan, M.A.; Saeed, M.U.; Noor, N.; Warsi, M.H.; Qadir, A. Antimicrobial Activity of Different Plants Extracts against Staphylococcus Aureus and Escherichia Coli. Polim. Med. 2021, 51, 69–75. [Google Scholar] [CrossRef]
- Loo, C.H.; Basri, M.; Ismail, R.; Lau, H.L.N.; Tejo, B.A.; Kanthimathi, M.S.; Hassan, H.A.; Choo, Y.M. Effect of Compositions in Nanostructured Lipid Carriers (NLC) on Skin Hydration and Occlusion. Int. J. Nanomed. 2013, 8, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Evaluation of the Physical Stability of SLN and NLC before and after Incorporation into Hydrogel Formulations. Eur. J. Pharm. Biopharm. 2004, 58, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(A) | ||||||
Formulation Code | A | B | C | Y1 | Y2 | Y3 |
F1 | 90 | 25 | 10 | 183.95 | 0.262 | 87.89 |
F2 | 90 | 15 | 5 | 270.87 | 0.293 | 55.21 |
F3 | 90 | 25 | 10 | 175.65 | 0.199 | 86.98 |
F4 | 70 | 15 | 10 | 110.32 | 0.892 | 71.31 |
F5 | 90 | 35 | 15 | 189.11 | 0.298 | 50.12 |
F6 | 90 | 25 | 10 | 179.03 | 0.311 | 86.13 |
F7 | 70 | 25 | 5 | 170.45 | 0.453 | 52.43 |
F8 | 70 | 35 | 10 | 120.54 | 0.934 | 65.31 |
F9 | 110 | 25 | 5 | 261.33 | 0.432 | 51.98 |
F10 | 70 | 25 | 15 | 70.11 | 0.765 | 55.32 |
F11 | 90 | 35 | 15 | 175.55 | 0.432 | 58.32 |
F12 | 90 | 25 | 10 | 179.87 | 0.342 | 86.88 |
F13 | 110 | 25 | 15 | 199.76 | 0.564 | 61.76 |
F14 | 110 | 25 | 10 | 230.12 | 0.876 | 76.32 |
F15 | 90 | 25 | 10 | 185.43 | 0.271 | 87.11 |
F16 | 90 | 15 | 15 | 140.21 | 0.432 | 56.32 |
F17 | 110 | 35 | 10 | 212.71 | 0.765 | 78.54 |
(B) | ||||||
Quadratic model | R2 | Adjusted R2 | Predicted R2 | SD | %CV | |
Response (Y1) | 0.9926 | 0.9832 | 0.9041 | 6.57 | 3.66 | |
Response (Y2) | 0.9836 | 0.9624 | 0.9084 | 0.0482 | 9.61 | |
Response (Y3) | 0.9936 | 0.9854 | 0.9043 | 1.76 | 2.57 |
Homogeneity | Appearance | Washability | Phase Separation | Odor |
Homogeneous | Translucent | Washable | NO | NO |
Color | Drug content (%) | pH | Spreadability (g·cm/s) | Extrudability (gm) |
Off-white | 89.62 ±0.35 | 7.28 ±0.61 | 17.14 ± 3.10 | 4.48 ± 0.41 |
Cohesiveness | Consistency (gm·s) | Firmness (gm) | Work of cohesion | |
−118.29 | 1949.18 | 232.65 | −1431.70 |
Dermatokinetics Parameters | HTC-TES-Gel | HTC-CF-Gel | ||
---|---|---|---|---|
Epidermis Mean ± SD | Dermis Mean ± SD | Epidermis Mean ± SD | Dermis Mean ± SD | |
Tskin max (h) | 2 | 2 | 2 | 2 |
Cskin max (μg/cm2) | 223.26 ± 1.26 | 181.9 ± 0.54 | 119.86 ± 1.11 | 96.69 ± 1.47 |
AUC0–8 (μg/cm2h) | 869.57 ± 2.45 | 735.57 ± 1.22 | 474.58 ± 1.29 | 416.27 ± 0.45 |
Ke (h−1) | 0.1216 ± 0.19 | 0.1315 ± 2.14 | 0.1126 ± 0.09 | 0.1415 ± 1.01 |
Hexatriacontane | Zones of Inhibition (mm) | |
---|---|---|
Bacterial strain | Gram-positive pathogenic bacteria (S. aureus) | Gram-negative pathogenic bacteria (E. coli) |
Free hexatriacontane | 18.46 ± 0.97 | 15.46 ± 0.71 |
Hexatriacontane-loaded transethosome | 17.41 ± 0.61 | 14.72 ± 0.59 |
Gentamicin (5 μg) | 19.25 ± 0.37 | 16.31 ± 0.68 |
Hexatriacontane Concentration [mg/mL] | Inhibition Zones (mm) | ||
---|---|---|---|
Gram-Positive Pathogenic Bacteria (S. aureus) | Gram-Negative Pathogenic Bacteria (E. coli) | ||
Free hexatriacontane | 1.25 | 0.01 ± 0.0 | 0.0 ± 0.0 |
2.50 | 8.6 ± 0.51 | 9.6 ± 0.49 | |
5.0 | 12.6 ± 0.57 | 13.1 ± 0.61 | |
10.0 | 16.6 ± 0.69 | 14.53 ± 0.71 | |
12.0 | 21.07 ± 0.71 | 19.47 ± 0.76 | |
15.0 | 23.4 ± 0.51 | 22.41 ± 0.46 | |
Hexatriacontane-loaded transethosomes | 1.25 | 0.02 ± 0.0 | 0.46 ± 0.01 |
2.50 | 9.6 ± 0.21 | 9.71 ± 0.71 | |
5.0 | 13.5 ± 0.61 | 14.21 ± 0.67 | |
10.0 | 17.21 ± 0.26 | 17.49 ± 0.71 | |
12.0 | 22.47 ± 0.51 | 23.51 ± 0.75 | |
15.0 | 24.32 ± 0.41 | 24.21 ± 0.97 |
Evaluation Parameters for HTC-TES Gel | Months | |||
---|---|---|---|---|
Initial | 1 | 2 | 3 | |
Appearance | No change in appearance | |||
Phase separation | No phase separation was observed | |||
Homogeneity | No change in homogeneity | |||
pH | 7.28 | 7.14 | 7.24 | 7.20 |
Drug content (%) | 89.62 ± 0.35 | 89.57 ± 0.19 | 88.26 ± 0.35 | 87.19 ± 0.14 |
Spreadability | No change in spreadability | |||
Extrudability | No change in extrudability |
Factor | Level Used, Actual Coded | ||
Independent variables | Low (−1) | Medium (0) | High (+1) |
A = Lipoid S 100 (mg) | 70 | 90 | 110 |
B = Ethanol (%) | 15 | 25 | 35 |
C = Sodium cholate (mg) | 5 | 10 | 15 |
Dependent variable | Goal | ||
Y1 = Particle size (nm) | Minimize | ||
Y2 = PDI | Minimize | ||
Y3 = Entrapment efficiency (%) | Maximize |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aodah, A.H.; Hashmi, S.; Akhtar, N.; Ullah, Z.; Zafar, A.; Zaki, R.M.; Khan, S.; Ansari, M.J.; Jawaid, T.; Alam, A.; et al. Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels 2023, 9, 322. https://doi.org/10.3390/gels9040322
Aodah AH, Hashmi S, Akhtar N, Ullah Z, Zafar A, Zaki RM, Khan S, Ansari MJ, Jawaid T, Alam A, et al. Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels. 2023; 9(4):322. https://doi.org/10.3390/gels9040322
Chicago/Turabian StyleAodah, Alhussain H., Sana Hashmi, Naseem Akhtar, Zabih Ullah, Ameeduzzafar Zafar, Randa Mohammed Zaki, Shamshir Khan, Mohammad Javed Ansari, Talha Jawaid, Aftab Alam, and et al. 2023. "Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections" Gels 9, no. 4: 322. https://doi.org/10.3390/gels9040322
APA StyleAodah, A. H., Hashmi, S., Akhtar, N., Ullah, Z., Zafar, A., Zaki, R. M., Khan, S., Ansari, M. J., Jawaid, T., Alam, A., & Ali, M. S. (2023). Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels, 9(4), 322. https://doi.org/10.3390/gels9040322