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Abstract: Globally, water contamination by heavy metals is a serious problem that affects the envi-
ronment and human health. Adsorption is the most efficient way of water treatment for eliminating
heavy metals. Various hydrogels have been prepared and used as adsorbents to remove heavy metals.
By taking advantage of poly(vinyl alcohol) (PVA), chitosan (CS), cellulose (CE), and the process for
physical crosslinking, we propose a simple method to prepare a PVA-CS/CE composite hydrogel
adsorbent for the removal of Pb(II), Cd(II), Zn(II) and Co(II) from water. Structural analyses of
the adsorbent were examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron
microscopy-energy dispersive X-ray (SEM-EDX) analysis, and X-ray diffraction (XRD). PVA-CS/CE
hydrogel beads had a good spherical shape together with a robust structure and suitable functional
groups for the adsorption of heavy metals. The effects of adsorption parameters such as pH, contact
time, adsorbent dose, initial concentration of metal ions, and temperature on the adsorption capacity
of PVA-CS/CE adsorbent were studied. The adsorption characteristics of PVA-CS/CE for heavy met-
als may be completely explained by pseudo-second-order adsorption and the Langmuir adsorption
model. The removal efficiency of PVA-CS/CE adsorbent for Pb(II), Cd(II), Zn(II), and Co(II) was 99,
95, 92, and 84%, respectively, within 60 min. The heavy metal’s hydrated ionic radius may be crucial
in determining the adsorption preference. After five consecutive adsorption–desorption cycles, the
removal efficiency remained over 80%. As a result, the outstanding adsorption-desorption properties
of PVA-CS/CE can potentially be extended to industrial wastewater for heavy metal ion removal.

Keywords: chitosan; poly(vinyl alcohol); cellulose; composite hydrogels; heavy metals; adsorption;
wastewater treatment

1. Introduction

Water pollution has become a global environmental problem that threatens ecosys-
tems and human health. Indiscriminate dumping of industrial wastes contaminates sur-
face and groundwater [1–4]. Heavy metals and organic dyes are the most common con-
taminants found in industrial wastewater, which has a disastrous impact on sustainable
ecosystems [5,6]. Heavy metals are characterized as metallic elements with a density that is
higher than the density of water [5]. Heavy metals are non-biodegradable in nature as well;
they can be absorbed and accumulated in sediments accordingly, and their level of toxicity
and negative impact will increase on living organisms [7].

Due to their high carcinogenicity and toxic effect, heavy metals cause several diseases
and significant physiological disorders such as anemia, hypophrenia, acute gastroenteritis,
and nervous system damage to human health. Particularly, the presence of Pb(II), Ni(II),
Cd(II), Cu(II), Co(II), and Cr(VI) in the effluent is a major environmental concern [8]. The
harmful nature of heavy metal ions to public health and the natural ecosystem highlights
the necessity of effective treatment of industrial wastewater [9].
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Various treatment approaches have been developed for the removal of heavy metals
ion exchange [10], adsorption [11,12], chemical precipitation [13,14], membrane separa-
tion [15,16], flocculation-coagulation [17], flotation [18], and electrochemical methods [19].
Amongst all the treatments proposed, adsorption using sorbents is one of the most popular
methods since the proper design of the adsorption process will produce high-quality treated
effluents. Adsorption is now recognized as an effective, efficient, and economic method for
water remediation applications [20,21]. Furthermore, adsorption is a reversible process so
that adsorbents can be sustained and reused through desorption [22]. Physical conditions
such as pH, initial adsorbate and adsorbent dosage, contact time, and temperature are the
most fundamental factors that affect the adsorption capacity of adsorbent materials. The
optimization of these factors is very critical and should be considered first to design the
adsorption process at a large scale [11,12,23].

For the removal of heavy metal ions, a variety of adsorbent materials have been used,
including clay minerals, carbon nanomaterials, metal oxide nanoparticles, and polymeric
hydrogels [23,24]. In general, the advantages of bio-based polymeric hydrogels as an
adsorbent material have drawn considerable attention. They have created crosslinked
three-dimensional network topologies, for instance, with excellent water sorption and
retention capacities. Accordingly, they can capture and store different heavy metal ions
found in water within their crosslinked network structure [20,23,24]. In addition, the func-
tional groups in their network structures, such as carboxyl (−COOH), hydroxyl (−OH),
and amine (−NH2), can afford the essential coordinating sites for the heavy metal ions.
Additionally, significant advantages include easy fabrication, good mechanical properties,
regeneration, and biodegradation. The term “biodegradability” describes a material’s ca-
pacity to degrade through the action of microorganisms into end products that are safe and
non-toxic. The breakdown of hydrogels is affected by a number of factors, including molec-
ular weight, hydrophilicity, and how the polymer interacts with water. The breakdown
of polymers by solubilization and hydrolysis is also influenced by other environmental
factors such as pH, salinity, and temperature. Enzymatic hydrolysis is another method by
which hydrogels can be broken down, and this class of hydrogels includes biopolymers
such as proteins and polysaccharides [23].

Hydrogels prepared from biopolymers such as polysaccharides (e.g., alginate, hyaluronic
acid, cellulose, chitin, and chitosan) have widely been used in industrial applications be-
cause they are sustainable, biodegradable, economical, and eco-friendly [21,23,24]. Chitosan
(CS) is a natural polymer (cationic polysaccharide). It is a high-abundance and cost-effective
biopolymer that is biodegradable and biocompatible [25]. CS is used as an adsorbent for the
removal of heavy metals because of the reactive functional groups (e.g., −OH and −NH2)
in its molecular structure. These functional groups contribute to hydrophilicity and active
adsorption sites through various types of interactions, including electrostatic, coordination,
and hydrogen bonding [26,27]. However, similar to other polysaccharides, CS has some
disadvantages, such as instability of its main structure, lack of mechanical strength, high
solubility in acidic solutions, and deformation after drying [23,28]. Thus, modification
of CS through blending with other materials by chemical or physical crosslinking is an
essential step in improving mechanical resistance, reducing hydrophilicity, and stabilizing
CS in extremely acidic environments [26]. In wastewater treatment, studies have shown
that poly(vinyl alcohol) (PVA) can strengthen and support the structure of CS-polymers
by forming hydrogen bonds with the NH2 groups of CS [26,29]. Moreover, PVA is used
extensively to remove heavy metal ions from water due to its excellent chemical stability,
biodegradability, biocompatibility, hydrophilicity, and high adsorption capacity [30].

Recently, a range of reinforcing agents and/or fillers, including inorganic, organic, or
polymeric micro/nanomaterials, have been incorporated within polymeric hydrogels to
improve and impart tailored properties to crosslinked networks. These fillers strengthen the
polymer matrix leading to composite hydrogels offering enhanced absorption and mechan-
ical properties. Therefore, finding completely renewable fillers having good compatibility
with both PVA and CS so as to improve the properties of their blend still remains a challenge.
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Microcrystalline cellulose (CE) has received considerable attention as a reinforcing agent
because of its favorable properties, such as large surface area, high mechanical strength,
low density, non-toxic nature, biocompatibility, and biodegradability [31]. Thus, incorpo-
rating CE into the PVA-CS blended system offers efficient adsorbent features with high
adsorption capabilities. However, to the best of our knowledge, little effort has previously
been reported on hydrogel prepared by incorporating CE into PVA-CS via a physically
crosslinking approach for heavy metal removal from water.

In view of these facts mentioned above, we show a simple, economic, and eco-friendly
preparation of PVA-CS/CE composite hydrogels with good comprehensive performance
and enhanced properties. The effect of CE content on the physical properties of the hydrogel,
including the crystallinity and swelling ratio, was investigated. In addition, the PVA-CS/CE
composite hydrogels were applied to adsorb different heavy metal ions, including Pb(II),
Cd(II), Zn(II), and Co(II). The effects of pH, contact time, initial ion concentration, adsorbent
dose, and temperature on the adsorption process were examined. Isotherms and kinetic
models were studied to address the controlling mechanisms of heavy metal ions adsorption
onto PVA-CS/CE. The prepared hydrogel can be utilized to collect and recover heavy metals
from industrial wastewater and other hazardous conditions in a facile and effective manner.

2. Results and Discussion
2.1. Design Rationale of Composite Hydrogel Beads

The physically crosslinked PVA-CS/CE composite hydrogel beads were successfully
prepared. Figure 1a–f shows the digital images of wet and dry hydrogel beads before and
after the adsorption of Pb(II), Cd(II), Co (II), and Zn(II) respectively. Adsorption of metal
ions onto hydrogel beads was confirmed by light-yellow and pink colors (Figure 1c–f).
Wet beads were ~4.0 mm in diameter and had a consistently spherical structure with a
smooth surface (Figure 1a). The beads’ shape was altered after air-drying, creating a rough
surface with superior mechanical strength morphology. According to the research of Li and
colleagues [32], this deformation is unavoidable as water evaporates from the wet hydrogel
beads during the drying process, causing the hydrogel beads’ volume to shrink.
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Figure 1. PVA-CS/CE composite hydrogel beads (a) before drying, (b) after 48 h of air drying, as
well as dried beads after adsorption of (c) Pb(II), (d) Cd(II), (e) Co(II), or (f) Zn(II). Insets show the
size of beads.

The percentage of CE fillers was fixed at 0.5%, and the ratio between the PVA and
CS was 1:1. These parameters were chosen because they provide the best adsorption
conditions for the removal of heavy metals and the stability of composite beads [32]. To
evaluate the adsorption ability of prepared composite hydrogel beads, preliminary adsorp-
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tion experiments were conducted. Figure 2 reveals a comparison of the percent removal
of heavy-metal ions using two types of adsorbent beads: PVA-CS as the control hydrogel
beads and PVA-CS/CE as the modified CS-based polymer hydrogel. Remarkably, the
control beads had lower removal efficiency than the modified beads with CE. These results
highlighted a significant correlation between CE incorporation and the efficiency of the
removal of heavy metals. The use of CE as a filler in the structure of CS biopolymer can
improve the adsorption capacity and mechanical stability of the adsorbent through surface
accessibility of groups as a result of “pillaring” effects [33]. Moreover, the superior mechan-
ical properties of CE relative to CS suggest that crosslinking of these two biopolymers may
lead to improved and modified properties in their composite structure, in turn producing
denser and mechanically stronger hydrogel beads [33,34]. Considering the enhancement
we documented, PVA-CS/CE (0.5 wt.%) was chosen for further studies on adsorption.
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Figure 2. Effect of CE content (0, and 0.5 wt.%) on percent removal of Pb(II), Cd(II), Co(II), and Zn(II)
at hydrogel beads (C0 [heavy metals] = 50 mg/L, volume = 50 mL, pH (Pb and Cd) = 6, pH (Co and
Zn) = 8, bead dose = 0.5 g, time = 200 min, temperature = 30 ◦C).

2.2. Structure and Chemical Composition

The surface functional groups of PVA, CS, CE, and PVA-CS/CE composite hydrogel
were detected by FTIR spectroscopy (Figure 3a). The broad band at 3649–3170 cm−1 was
attributed to the stretching of hydrogen–bonded –OH and –NH groups of the polysaccha-
ride unit for CS and PVA [1,29]. The peak at 2938 cm−1 was attributed to the vibrational
stretching of –CH2. The peak at 1652 cm−1 corresponded to the stretching of C=N due
to the reaction of the NH2 of CS and OH of PVA. The peak at 1590 cm−1 was associated
with the stretching vibration of NH2 of CS [29,35]. The peak at 1458 cm−1 was ascribed
to the CH2 vibration of crosslinked PVA. FTIR spectroscopy showed that CE had been
introduced into the PVA-CS-based polymer. Figure 3b presents XRD patterns of PVA, CS,
CE, and PVA-CS, as well as PVA-CS/CE composite hydrogel. The pure PVA exhibited the
three typical diffraction peaks at 2θ = 19.5◦, 22.9◦, and 40.8◦, corresponding to the (101),
(200), and (102) planes of PVA crystallites, while CS presented a broad peak at 2θ around
21◦ because of its amorphous structure [35]. The XRD pattern of CE exhibits two distinct
diffraction peaks, at 2θ = 16.4◦ and 22.8◦ due to the reflection from the different crystal
planes of CE, such as (010) and (002) [35,36]. The PVA-CS and PV-CS/CE hydrogels show
diffraction peaks at 2θ values of 25◦ to 40◦, which may relate to greater crystallinity of
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hydrogels due to strong hydrogen bonding between the donor-acceptor groups (–NH2
and –OH) of CS and/or PVA or CE [34]. It was observed that the characteristic peaks of
PVA are slightly shifted toward low 2θ values with the incorporation of CS and CE in the
composite formulation. Moreover, all peaks of CE disappeared in PVA-CS/CE composite
hydrogel because the content of CE was too low. From this evidence, the authors concluded
that intermolecular interactions between PVA and CS are formed, which decreases the
crystallinity of the PVA-CS/CE composite hydrogel [36].
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2.3. Morphology

The morphologies and main element composition of PVA-CS/CE beads before and
after adsorbing heavy metal ions were characterized through SEM and EDX, as illustrated
in Figure 4. In all cases, SEM micrographs revealed spherical or slightly oval-shaped beads
with robust, compact surfaces and well-crosslinked network structures. It can be observed
that the CE is homogeneously distributed in the PVA-CS matrix without the presence of
macroscopic aggregates. Before the adsorption of heavy metals, the SEM image illustrated
the surface texture of PVA-CS/CE composite beads, having holes and small openings on the
surface. This fact, along with the roughness of the pore walls, provides more contact sites
and allows water to act as a transport channel for heavy metal ions from water media into
the interior of the adsorbent network via the abundant pores structure [32]. In general, after
adsorption, the surface morphology was observed to have much asperity and to be more
coarsely grained. It is clearly noted that the surface structure remains crosslinked network
structure. However, the channels became compact, and a reduction in hydrogel pores was
significant. EDX provided an elemental composition of PVA-CS/CE beads before and after
the uptake of metal ions. The EDX spectrum for the intact PVA-CS/CE hydrogel before
immersion in the metal ions solutions did not show the characteristic peaks of heavy metal
ions. However, the spectrum exhibited the emergence of carbon, oxygen, nitrogen, and
sodium [37,38]. After being loaded with heavy metal ions, the EDX spectra clearly showed
the presence of Pb(II), Cd(II), Zn(II), and Co(II) in PVA-CS/CE beads, which indicates the
PVA-CS/CE beads being coated with the heavy metal ions successfully.
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2.4. Swelling Behavior

The swelling behavior of polymeric hydrogels is a complicated phenomenon that
includes three consecutive stages: diffusion of the solvent into the crosslinked network
structure, chain relaxation inside the hydrated gels, and network expansion. The SR of
hydrogels is influenced by hydrophilic groups, the characteristics of the solution, and the
elasticity of the polymer network. Functional groups cause electrostatic repulsion inside
the network, accordingly expanding the gel and ultimately resulting in equilibrium [39].
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Figure 5 depicts the swelling behavior of the PVA-CS/CE composite hydrogel soaked
in buffer solutions with different pH values of 3, 7, and 9 as a function of time. At pH 7 and
9, the PVA-CS/CE hydrogel had a lower SR than those at pH 3.
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in acidic solutions (pH 3), and the electrostatic repulsions induced by these ionic groups
can increase the hydrophilicity of the hydrogel, thus expanding the hydrogel crosslinked
networks. In contrast, swelling decreases under neutral (pH 7) and basic (pH 9) conditions
due to the deprotonation of these ionic groups, thereby reducing repulsive forces and
causing the formation of hydrogen bonds between the NH2 groups of CS and OH groups of
PVA, which tends to increase the entanglement. As a result, the intramolecular interaction
increases, and the pore size is reduced, which results in a reduction in the SR [28]. These
results are in agreement with previously reported data [40].

2.5. Adsorption Studies of Heavy Metals
2.5.1. Effect of pH on Metal Adsorption

The pH plays a significant role in controlling sorption because the proton concentration
impacts metal solubility, the ionization of functional groups on hydrogel beads, and the
contact with the adsorbent [41,42]. Based on the pH, metal ions can be present as cationic
species or metal hydroxides [43]. Heavy-metal ions can be present in different oxidation
states, and most heavy-metal ions form hydroxide precipitates in basic solutions [6,44]. In
an acidic medium, hydrogen ions (H+) can protonate electron-rich groups such as NH2 to
NH3

+, carboxyl (COO−) groups, or OH groups. As a result of such protonation, the positive
charge on the adsorbent surface increases. Nevertheless, in basic media, the presence of a
negatively charged hydroxyl group (OH−) creates a negative surface on the adsorbent [6].
In addition, the overall charge on the surface of hydrogel beads is affected by the availability
of functional groups on the surface and their reactivity towards H+ and OH−. Specifically,
a net surface charge is shifted from net positive at low pH to net negative at high pH. So,
the pH at which an adsorbent has zero charge (pHPZC) is an important parameter as it
effectively predicts the surface charge at different pH values. The latter is not the neutral
point (pH = 7); instead, it is the point at which the number of positive and negative ions are
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equal. The pHpzc is controlled by the type and number of functional groups present on the
hydrogel surface. A net positive charge is obtained below pHpzc, which indicates that the
adsorbent can adsorb the negatively charged ions via electrostatic forces. In contrast, above
pHpzc, the net surface charge of the adsorbent is negative, which suggests that positive ions
are attracted by electric forces [45].

Figure 6 shows the surface-charge density of PVA-CS/CE composite beads as a func-
tion of pH. The intersection of the curve with the x-axis at ∆pH (pHinitial − pHfinal) equaling
zero gives pHpzc. The pHpzc of the adsorbent was measured at pH 5. If pH > 5, then the
surface of the adsorbent is negatively charged, and if pH < 5, then the surface could have
a positive charge. The pHpzc is an important factor in adsorption because it explains the
behavior of heavy metals on the surface of the adsorbent.
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The adsorption of Pb(II), Cd(II), Zn(II), and Co(II) ions on PVA-CS/CE composite
hydrogel was measured at pH 3–9 (Figure 7a). Removal of Pb(II) and Cd(II) was increased
upon increasing the initial pH of the solution from 3 to 6, and maximum removal of Pb(II)
and Cd(II) was observed at pH 6. Conversely, the maximum removal of Zn(II) and Co(II)
on the PVA-CS/CE composite hydrogel was achieved at pH 8. The pHpzc of PVA-CS/CE
hydrogel was 5, so the removal efficiency of Pb(II), Cd(II), Zn(II), and Co(II) increased if
pH > 5. Moreover, the low adsorption of metals in acidic media (pH < 7) is attributed to the
competition of H+ with the cationic forms of metal ions onto adsorption sites. Importantly,
at low pH, an electrostatic repulsion is formed due to the adsorption of cationic metal
ions and the positive surface of the composite, which reduces the removal efficiency of the
metal [43,46]. However, in basic media, a small number of metal ions are present in their
cationic form, whereas most metal ions change to become metal hydroxides and precipitate.
In this sense, the adsorption of ions increases in basic media. The effect of pH in our study
is similar to that reported previously [43,46].
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Figure 7. Effects of different factors on the removal efficiency of Pb(II), Cd(II), Zn(II), and Co(II) onto
PVA-CS/CE composite hydrogel beads: (a) pH (Co[Metals] = 50 mg/L, V = 50 mL, bead dose = 0.5 g,
pH = 3–10, t = 200 min, T = 30 ◦C), (b) Contact time (Co[Metals] = 50 mg/L, V = 50 mL, pH = 6 (Pb
and Cd) and pH = 8 (Zn and Co), bead dose = 0.5 g, T = 30 ◦C), (c) Initial concentration of metals
(V = 50 mL, pH = 6 (Pb and Cd) and pH = 8 (Zn and Co), bead dose = 0.5 g, t = 200 min, T = 30 ◦C),
(d) Adsorbent dose (Co[Metals] = 50 mg/L, V = 50 mL, pH = 6 (Pb and Cd) and pH = 8 (Zn and Co),
t = 200 min, T = 30 ◦C), (e) Temperature (Co[Metals] = 50 mg/L, V = 50 mL, pH = 6 (Pb and Cd) and
pH = 8 (Zn and Co), bead dose = 0.5 g, t = 300 min.), and (f) Reusability (Co[Metals] = 50 mg/L,
V = 50 mL, pH = 6 (Pb and Cd) and pH = 8 (Zn and Co), bead dose = 0.5 g, t = 200 min, T = 30 ◦C).
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2.5.2. Effect of Contact Time

Contact time is an important parameter in batch adsorption [47]. The effects of contact
time on the removal of Pb(II), Cd(II), Zn(II), and Co(II) by the PVA-CS/CE composite
hydrogel were studied between 20 min and 200 min (Figure 7b). A three-step sorption
mechanism was observed. The first step was a rate-limiting step and corresponded to
surface diffusion. The second step was also a rate-limiting step and was related to the
sorption of metal ions and adsorbent beads. The final step was the equilibrium [48]. The
experimental findings demonstrate that PVA-CS/CE adsorbs heavy metal ions in the
medium at a very rapid rate. Pb(II), Cd(II), and Zn(II) all reached adsorption equilibrium
states in less than an hour, whereas Co(II) took 140 min. For Pb(II), Cd(II), Zn(II), and
Co(II), the removal efficiency of PVA-CS/CE was approximately 99, 95, 92, and 76%,
respectively, at equilibrium. It is worth mentioning that the rapid removal of metallic
ions on the adsorbent surface at the initial stage of the process can be attributed to the
availability of more active adsorption sites at the beginning of adsorption, which permits
the rapid accumulation of metallic ions on the adsorption sites. As this process continues,
the active sites are filled, the accessibility of metal ions to the active sites becomes low due
to the saturation of active sites, and eventually, adsorption approaches an equilibrium at a
certain time [24,36].

2.5.3. Effect of the Initial Concentration of Heavy Metals

With regard to the removal of metal ions from industrial wastewater, the initial
concentration of metallic ions is an important factor in observing the adsorption capacity
of adsorbent composite beads [24]. Adsorption tests were also carried out with other
parameters fixed at initial heavy metal concentrations of 50 to 200 mg/L (Figure 7c).
The removal efficiency of metallic ions was a function of their initial concentration. It
could be noticed that the removal efficiency decreased with increasing initial heavy metals
concentration. For example, at initial Zn(II) concentrations of 50, 150, and 200 mg/L,
the removal rate of beads was approximately 92, 85, and 80%, respectively. This meant
that even at low metal ion concentrations, hydrogel beads had an abundance of active
adsorption sites, resulting in high adsorption for the majority of the metal ions. However, as
the concentration of metal ions increased, adsorption sites would become saturated [37,49].

2.5.4. Effect of Adsorbent Dose

The adsorbent dose is an important factor when determining the maximum number
of ions adsorbed with respect to functional groups [44]. The effect of the adsorbent dose on
the removal efficiency of heavy metal ions was investigated in the range from 0.1 to 0.5 g,
and the results are presented graphically in Figure 7d. It was found that for a constant
metal ion concentration, an increase in percent removal was observed as the adsorbent
dose increased until saturation was reached. For example, in the case of Pb(II) and Cd(II),
the percent removal increased from 84 to 98% and 79 to 93%, respectively, as the adsorbent
dose increased from 0.1 g to 0.5 g. The reason for this phenomenon may be attributed to an
increase in the number of active adsorption sites when the adsorbent mass increased [44,50].
Similar results have been reported by Esrafili et al. [43].

Moreover, the experimental results (Figure 7c) showed that when the initial concentra-
tion of the metal ion was 50 mg/L, and the PVA-CS/EC amount was 0.2 g, the removal
efficiency of Pb(II), Cd(II), Zn(II), and Co(II) was 93, 88, 83, and 57%, respectively. The
affinity of adsorption by PVA-CS/EC was discovered to decrease in the following order:
Pb(II) > Cd(II) > Zn(II) > Co(II). The hydrated metal ion radius effect is responsible for
these observations [50,51]. Metal ions in an aqueous medium form are hydrated with water
molecules, and the ionic radii of Pb(II), Cd(II), Zn(II), and Co(II) are 1.19, 0.96, 0.74, and
0.74 Å, respectively. Due to steric overcrowding on the surface, when the ionic radius of a
metal ion is large, it is simple to react with water molecules and produces a fast saturation
of adsorption sites [50]. Due to the hydrophilicity of PVA-CS/CE, metal ions from the sur-
rounding environment are readily attracted to the adsorbent in the form of hydrated ions,
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leading to favorable interactions between cationic pollutants and the anionic adsorbent
surface [52]. Given that Pb(II) has the biggest ionic radius and has achieved the maximum
adsorption rate among the four heavy metal ions. It seems that the difference in removal
efficiency order and adsorption capacity may be related not only to metal ions’ properties
but also to physical-chemical properties of the adsorbent, such as morphology, surface area,
and pores distribution as well as hard-hard and soft-soft preferences between functional
groups and metal ions [50]. Therefore, a material that is a good adsorbent for one adsorbate
may not be the right adsorbent for another.

2.5.5. Effect of Temperature

The effect of temperature on the removal of heavy-metal ions by PVA-CS/CE from an
aqueous solution was investigated (Figure 7e). The adsorption efficiency increased with
an increase in the temperature of the solution from 20 ◦C to 30 ◦C for all the metal ions
because of an increase in the rate of diffusion and mobility of ions toward adsorption
sites [51,52]. However, the percent removal of Pb(II), Cd(II), Zn(II), and Co(II) decreased as
the temperature increased to 40 ◦C. Metal ions adsorbed on the surface of a hydrogel can be
expelled into an aqueous solution as the saturation point of a heated solution decreases due
to ion desorption from the gel surface [53]. The reduction in the number of ions removed
with increasing temperature showed that adsorption was exothermic and favored a low
temperature. Our results are in complete agreement with those of other scholars [51,53,54].

2.5.6. Reusability of the Adsorbent

In addition to an adsorbent’s exceptional ability to bind to heavy metal ions, regenera-
tion, and reusability are important traits of a top-notch adsorbent. If the adsorbent cannot
be used repeatedly or if its adsorption efficiency is dramatically decreased after repeated
use, its application value is diminished. In this regard, the adsorption ability of composites
was tested for five successive cycles of sorption-desorption. First, the adsorbent beads
were washed with HCl for 15 min. Thereafter, the adsorbent beads were filtered and dried.
The collected adsorbent was utilized for the removal of Pb(II), Cd(II), Zn(II), and Co(II) for
five consecutive experiments, and the recovery experiment was repeated for each cycle
of adsorption (Figure 7f). After the fifth adsorption process, the adsorbent could remove
up to 80% of heavy-metal ions. This phenomenon might have occurred because, under an
acidic condition, repulsion between protonated NH2 groups and metal ions takes place,
which accelerates desorption [55]. Thus, the as-prepared hydrogel beads were reusable for
five cycles of adsorption and could be considered adsorbents for the adsorption of heavy
metal ions.

2.6. Adsorption Isotherms

Sorption data were calculated using isotherm equations to describe the adsorption be-
haviors of the investigated heavy metal ions in an aqueous solution. The equations consider
the adsorbent’s surface property and affinity, from which the theoretical Langmuir and
Freundlich models were developed to calculate the adsorption isotherms. The Freundlich
model depicts the adsorption behavior on heterogeneous adsorbent surfaces, assuming
the formation of multilayer adsorption on the surface. The Langmuir isotherm model
defines the adsorption behavior associated with monolayer adsorption on the surface of
an adsorbent [56]. Table 1 shows the fitting parameters for the Freundlich and Langmuir
isotherms for the adsorption of Pb(II), Cd(II), Zn(II), and Co(II) onto PVA-CS/CE adsorbent
beads. Figure 8a,b show the linear relationships between qe and Ce of the Langmuir and
Freundlich correlations of each metal ion.

Adsorption of Pb(II), Cd(II), Zn(II), and Co(II) by the PVA-CS/CE hydrogel demon-
strated a superior correlation coefficient (R2) defined by the Langmuir equation when
compared to the regression values of the isotherm. These results suggested that a mono-
layer of each adsorbate formed on the surface of the adsorbents, supporting the Langmuir
isotherm as a more accurate description of the adsorption behaviors of Pb(II), Cd(II), Zn(II),
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and Co(II) onto the PVA-CS/CE hydrogel [57]. When KF and 1/n, two parameters related
to the Freundlich isotherm, were examined, a high KF value suggested a good capac-
ity for the adsorption of the metal ions. Moreover, the 1/n value in the 0.1–1.0 range
suggested a successful adsorption process. The quantified qm values obtained after the
Langmuir isotherm were consistent with the trend identified from these experimental data
on adsorption optimization [58].

Table 1. Adsorption isotherm parameters of Pb(II), Cd(II), Zn(II), and Co(II) onto PVA-CS/CE.

Model Parameter Pb(II) Cd(II) Zn(II) Co(II)

Langmuir
equation

qm (mg/g) 50.54 41.82 26.74 20.53

RL 0.054–0.187 0.029–0.109 0.015–0.014 0.043–0.141

R2 0.993 0.968 0.996 0.994

KL 0.087 0.163 1.422 0.121

Freundlich
equation

KF (L/mg) 5.26 4.34 9.22 4.67

1/n 0.688 0.438 0.407 0.753

R2 0.979 0.999 0.993 0.997
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2.7. Adsorption Kinetics

The adsorption of Pb(II), Cd(II), Zn(II), and Co(II) onto PVA-CS/CE stimulated the
formation of metal-adsorbent complexes by coordinating these cationic ions with the free
electrons of nitrogen and oxygen atoms [43]. The transfer of metal ions onto the surface of
the adsorbents defines the rate of adsorption [59]. The adsorption kinetics of metallic ions
was studied using pseudo-first-order and pseudo-second-order kinetic models. Figure 9a,b
show the linear plots for pseudo-first-order and pseudo-second-order kinetic models,
respectively, and Table 2 displays the time-dependent parameters of adsorption kinetics
and the results of the fitting. The pseudo-second-order kinetic model best characterized
the adsorption of Pb(II), Cd(II), Zn(II), and Co(II) onto PVA-CS/CE adsorbent, according
to the interpretive results. For all heavy metals, the R2 values of the pseudo-second-order
kinetic model for adsorption were over 0.99, and for Cd(II) and Zn(II) ions, they even
equaled one. The R2 values for all metal ions in the pseudo-first-order kinetic model,
however, were lower than 0.99. Moreover, Pb(II), Cd(II), Zn(II), and Co(II) ion equilibrium
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adsorption capacities (qe) predicted from the pseudo-second-order were 4.9671, 4.9531,
4.0566, and 4.2694 mg/g, respectively, which were compatible with the experimental results
(Table 2). However, for heavy metals, the estimated qe values from the pseudo-first-order
significantly diverged from the experimental results. Therefore, the pseudo-second-order
kinetic model was more adapted for PVA-CS/CE adsorption of heavy metals than the
pseudo-first-order kinetic model [55].
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Table 2. Kinetic parameters for the sorption of metal ions in a batch-adsorption system.

Model Parameter Pb(II) Cd(II) Zn(II) Co(II)

Pseudo-first order
R2 0.8434 0.9098 0.5026 0.9031
qe (mg/g) 0.4045 0.1476 0.5277 0.8332
K1 (min−1) 0.0353 0.0173 0.0584 0.0136

Pseudo-second order
R2 0.9996 1.00 1.00 0.9974
qe (mg/g) 4.9671 4.9531 4.0566 4.2694
K2 (g/mg.min) 0.0953 0.2748 0.1625 0.0343

qe (experimental) 4.9321 4.9423 4.9901 4.1561

2.8. Adsorption Mechanism of Heavy Metal Ions

Based on the proposed structure of the PVA-CS/CE composite hydrogel that con-
tained several hydroxyl and amino groups, electrostatic and coordination interactions were
possible mechanisms for the adsorption of metal ions, including Pb(II), Cd(II), Zn(II), and
Co(II) on the surface of the hydrogel [23,51]. At pH > pHPZC, functional groups, such as
–OH, are deprotonated that creates anions (such as –O–) on the adsorbent surface, resulting
in electrostatic–attractive interactions between cationic metal ions contaminants and the
anionic adsorbent surface (Figure 10). Moreover, cations can attract atoms in functional
groups with lone pair electrons (i.e., O and N) in outer orbitals, resulting in the adsorption
of cations on the adsorbate surface via coordination interaction.

Table 3 compares the maximum adsorption capacity values of the PVA-CS/CE hydro-
gel beads synthesized in this study and other previously published data. For the metal ion
removal application, the prepared PVA-CS/CE showed good adsorption characteristics. It
is simple to fabricate and has excellent removal rates for Pb(II), Cd(II), Zn(II), and Co(II)
ions as well as quick adsorption equilibrium, stability, and reusability.
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of water by PVA-CS/CE composite hydrogel.

Table 3. Comparison of adsorption capacities of Pb(II), Cd(II), Zn(II), and Co(II) for different Adsorbents.

Metal Adsorbent Adsorption Capacity (mg/g) Reference

Pb(II) Chitosan/polyvinyl alcohol/β-cyclodextrin membrane 13.44 [60]
Chitosan/activated carbon/polyvinyl alcohol composite 22.47 [20]

Chitosan/cellulose composite 26.81 [61]
Ethylenediamine modified chitosan 30.57 [62]

PVA-CS/CE composite hydrogel beads 50.54 This study
Cd(II) Chitosan/polyvinyl alcohol/polyvinylpyrrolidone hydrogel 08.36 [63]

Poly(maleic acid)-grafted crosslinked chitosan microspheres 39.21 [64]
Chitosan-coated cotton fibers 15.74 [65]

PVA-CS/CE composite hydrogel beads 41.82 This study
Zn(II) Chitosan/cellulose composite 19.81 [61]

Xanthate-modified magnetic chitosan composite 20.8 [66]
Ethylenediamine modified chitosan 19.4 [62]

PVA-CS/CE composite hydrogel beads 26.74 This study
Co(II) Chitosan/poly(vinyl alcohol) magnetic composite 14.39 [67]

Potassium hydroxide-modified activated carbon fiber 14.80 [68]
Poly(vinyl alcohol)/chitosan nanofiber membrane 17.80 [69]

PVA-CS/CE composite hydrogel beads 20.53 This study

3. Conclusions

An easy physical crosslinking route has been proposed to prepare the environmentally
friendly PVA-CS/CE composite hydrogel beads with good adsorption performance for
Pb(II), Cd(II), Zn(II), and Co(II) from aqueous solutions. The incorporation of CE into
the PVA-CS matrix significantly improved the adsorption capacities of the metal ions.
The experimental findings showed that the optimal pH for Pb(II) and Cd(II) was 6, and
8 for Zn(II) and Co(II), and that adsorption equilibrium was reached in 60 min for Pb(II),
Cd(II), and Zn(II), but 140 min for Co(II). Pb(II) > Cd(II) > Zn(II) > Co(II) is the order of
heavy metal affinity for PVA-CS/EC adsorbent. Adsorption isotherm data fit well with
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the Langmuir isotherm model, indicating a homogeneous adsorption mechanism with
monolayer-deposited ions, while kinetic data of each metal ion preferably followed the
pseudo-second-order kinetic model. The removal efficiencies for Pb(II), Cd(II), Zn(II), and
Co(II) during the fifth reuse cycle were 94.41, 91.72, 89.03, and 80.62%, respectively. This
demonstrates that the PVA-CS/CE adsorbent may be recycled about five times before being
used again, which lowers waste generation and has a valuable use for the treatment of
industrial wastewater. Even though hydrogels have received a lot of research, several areas
still need to be explored. Currently, the only application for bio-based hydrogel adsorbents
in heavy metal removal is on a lab scale. As a result, additional study is required to scale
up for a large-scale application in order to understand the cost effectiveness and adsorption
efficacy better. In addition, the research should focus on the creation of bio-based hydrogel
materials with high mechanical strength that are simpler to separate from the liquid phase
for water remediation.

4. Experimental
4.1. Materials

The materials used for this study were PVA (molecular weight (MW) = 13,000–23,000 gmol−1;
89 mol% hydrolyzed), CS (93% degree of deacetylation, Mw = 200,000 gmol−1), CE (micro-
crystalline powder with an average particle size of 45 ± 5 µm), acetic acid (CH3COOH),
hydrochloric acid (HCl), nitric acid (HNO3), and sodium hydroxide (NaOH). All these
materials were purchased from MilliporeSigma (Burlington, MA, USA) and used without
further purification. Stock solutions (1000 ppm) of standard solutions of lead, cadmium,
cobalt, and zinc were purchased from Romil (Cambridge, UK). A series of standard solu-
tions of Pb(II), Cd(II), Zn(II), and Co(II) (1.0, 2.0, 3.0, 4.0, and 5.0 mg/L) were prepared from
the stock solution and diluted by HNO3 (2.0 wt.%). All polymeric solutions were prepared
in deionized water (0.055 µScm−1) except CS with CH3COOH (2.0 wt.%).

4.2. Preparation of PVA-CS/CE Hydrogel Beads

The PVA-CS/CE hydrogel beads were fabricated via the physical crosslinking method,
as described in a previous study [20]. PVA (4 g) was dissolved in deionized water (50 mL),
and CS (2 g) was dissolved in CH3COOH solution (2% v/v, 100 mL). PVA and CS solutions
were mixed under continuous stirring at 70 ◦C for 2 h to produce a homogenous solution.
CE powder (0.5% w/w) was added into the stirring homogeneous solution at 70 ◦C. The
stirring was continued at 70 ◦C for another 3 h. After that, the solution was poured dropwise
into NaOH solution (10%, 300 mL) to form hydrogel beads and maintained overnight. The
hydrogel beads were collected by filtration, washed with deionized water, and dried at
room temperature.

4.3. Characterization of PVA-CS/CE Composite Hydrogels

Fourier transform infrared (FTIR) spectroscopy was used to characterize the functional
groups on the surface of adsorbents and to observe interactions in the adsorbent–adsorbate
system. A Prestige-21 instrument (Shimadzu, Beijing, China) was used to record the IR
spectra of the adsorbent material before and after adsorption. The adsorbent was finely
ground with KBR and pressed to make pellets before FTIR spectroscopy. After that, the
spectra were examined in transmission mode from 400 cm−1 to 4000 cm−1. A scanning
electron microscope (SEM) was used to investigate the surface morphology of PVA-CS/CE
composite hydrogel beads before and after the adsorption of metallic ions. SEM images
were obtained using a JSM-5300 instrument (Jeol, Tokyo, Japan) working at 20 kV. Before
SEM, samples were coated with gold to a thickness of 0.04 µm using sputter-coating
equipment (JFC 1100 E; Jeol) after being ultrasonically washed for 30 s. The elemental
compositions of PVA-CS (control hydrogel) and PVA-CS/CE composite hydrogel beads
before and after adsorption of heavy metal ions were determined by energy dispersive X-ray
(EDX) microanalysis attached to the SEM system. Uncoated samples were analyzed at 15 kV
for 60 s. Crystal structural analysis of the pure PVA, CS, CE, and their composite hydrogel
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was performed by powder X-ray diffraction (XRD) measurements using a Diffractometer
(XRD-7000, Shimadzu, Japan). The X-ray beam was Cu-Kα radiation (λ = 0.1542 nm),
operated at 40 kV and 30 mA. The XRD pattern was recorded in the 2θ range from 10◦ to
100◦ with a scanning rate was 5◦ per min.

4.4. Swelling Ratio Test

The swelling ratio (SR) provides information about the water absorption capacity of a
hydrogel. SR of PVA-CS/CE composite hydrogel beads was measured in deionized water
and solutions with different pH values (3, 7, and 9). Approximately 0.5 g of dried hydrogel
beads were immersed in deionized water (100 mL), and the pH was adjusted to 3, 7, or 9 at
room temperature until the beads swelled to equilibrium. Over specific time periods, the
swollen beads were removed and wiped with tissue paper to remove residues of surface
water. Then, the mass of the fully swollen samples was determined. Equation (1) was used
to calculate the SR in various solutions [29].

R (%) =

[
Ww − Wd

Wd

]
× 100 (1)

where Ww and Wd are the weight of wet hydrogel and dry hydrogel, respectively.

4.5. Adsorption of Heavy Metals

To investigate the removal percentage and adsorption capacities of the PVA-CS/CE
adsorbent for heavy metal ions, 0.5 g of adsorbent was placed in a 100-mL Erlenmeyer flask
containing 50 mL aqueous medium with 50 mg/L initial concentration of Pd(II), Cd(II),
Zn(II), and Co(II). Each batch adsorption was kept on a shaker with a speed of 170 rpm
at 25 ◦C. Then, aliquots (5 mL) were collected after 200 min, passed through filter paper
(0.45 µm), and analyzed using inductively coupled plasma-optical emission spectroscopy
(ICP-OES, Perkin Elmer Avio 220, USA) to measure Pb(II) (at 220.35 nm), Cd(II) (228.8 nm),
Zn(II) (206.2 nm), and Co(II) (228.61 nm). The removal percentage and adsorption capacity
of the PVA-CS-/CE adsorbent for each metal ion was calculated from Equations (2) and (3),
respectively [70].

Removal (%)= [(C0 − Ce)/C0] × 100 (2)

qe = ((C0 − Ce)× V)/m (3)

where qe = equilibrium adsorption capacity of the synthesized adsorbent (mg/g), C0 = initial
concentration of the heavy metal in the aqueous medium (mg/L), Ce = concentration of the
heavy metal in the aqueous medium after adsorption (mg/L), V = volume of the heavy
metal ion solution, and m = mass of the adsorbent (g).

The effect of several parameters, such as pH (3–9), initial metal ion concentrations
(50–200 mg/L), adsorbent dose (0.1–0.5 g), contact time (25–200 min), and temperature
(20–40 ◦C) on the adsorption was studied. Adsorption experiments with various initial
concentrations ranging from 50 to 200 mg/L were carried out to investigate the optimized
initial concentration of the metal ion. Heavy metal solutions’ pH was raised from 3 to
9. After adjusting the pH with 0.1 M HNO3 or 0.1 M NaOH solutions, the mixture was
agitated continuously for 25–200 min. Isothermal experiments at 20, 30, and 40 ◦C were
carried out to investigate the effect of temperature. The adsorbent dose ranged from 0.1 to
0.5 g in this set of experiments.

4.6. Adsorbent Reusability

Multiple sorption-desorption cycles were used to assess the suitability of recovering
PVA-CS/CE hydrogel beads. Hydrogel beads (0.5 g) were added to a metallic ion solution
(50 mg/L, 50 mL) at pH 6 (Pb and Cd) and pH 8 (Zn and Co). At 30 ◦C, the solutions
were agitated in a water-bath shaker for 200 min. The saturated metal-loaded beads
were collected, washed in deionized water, and dried at room temperature for 48 h. For
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desorption, the dried beads were placed in a 50 mL of 0.1 M HCl solution and agitated at
170 rpm for 30 min. The beads were filtered from the solution, rinsed several times with
deionized water to remove surface metal, and dried at room temperature for 48 h before
reuse. The same adsorption method was carried out using the recycled adsorbent beads
under identical circumstances. There were five sorption-desorption cycle tests performed.
Equation (4) was used to determine how effective adsorbent beads were in being reused [71]:

Reuse efficiency (%) =
qn
q1

× 100% (4)

where q1 and qn (mg/g) represent the initial and fifth-time adsorption capacities of metal
ions by reused PVA-CS/CE composite hydrogel, respectively.

4.7. Adsorption Isotherms

Adsorption isotherms reveal how well adsorbate ions coordinate with the adsorbent
and when the equilibrium point is reached between the adsorbed metal ions and residual
ions in a solution [72]. Two adsorption isotherms were used to investigate adsorption
mechanisms, Langmuir and Freundlich, as described in Equations (5)–(7), respectively [72].

Ce

qe
=

1
KLqm

+
Ce

qm
(5)

RL =
1

1 + KLC0
(6)

ln qe = lnKF +
1
n

lnCe (7)

where Ce (mg/L) is the concentration of metal ions at equilibrium, qe (mg/g) is the number
of metal ions adsorbed at equilibrium and saturation, qm (mg/g) is the saturated adsorp-
tion capacity, KL (L/mg) and KF [(mg/g)(L/mg)1/n] represent the Langmuir adsorption
equilibrium constant and Freundlich constant, respectively, and RL refers to the degree of
adsorption for favorable and multilayer adsorption; 1/n should be between 0 and 1.

4.8. Adsorption Kinetics

Kinetic models were used to study the adsorption mechanism of Pb(II), Cd(II), Zn(II),
and Co(II) on PVA-CS/CE composite hydrogel beads. Experimental data were modeled
by pseudo-first-order and pseudo-second-order kinetic models. The linear forms of both
models are explained in Equations (8) and (9) [73]:

ln
(
qe − qt

)
= lnqe − K1t (8)

t
qt

=
1

K2q2
e
+

1
qe

t (9)

where qt and qe (mg/g) are the amount of metal removed per unit mass of adsorbent (mg/g)
at a certain time t and at equilibrium, respectively. K1 (1/min) is a pseudo-first-order rate
constant, and K2 (g/mg·min) is the rate constant of a pseudo-second-order reaction

4.9. Statistical Analysis

A one-way ANOVA test was used to see whether there were any significant differences
between data from the experimental groups. This was followed by Tukey’s posthoc test
and a Student t-test. Each experiment was run in at least five repetitions, and all data were
provided as mean and standard deviation (M ± SD). A p-value of 0.05 or less was regarded
as significant.
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