Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adhesion Properties
2.2. Mechanical Properties
2.3. Sorption
2.4. Permeability
2.5. IR Spectroscopy
2.6. Thermal Analysis
2.7. Antimicrobial Activity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis
4.3. IR Spectroscopy
4.4. Thermal Analysis
4.5. Mechanical Analysis
4.6. Sorption
4.7. Water Vapor Permeability
4.8. Oxygen Permeability
4.9. Determination of Antimicrobial Activity
4.10. Statistical Analysis
4.11. Other Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peppas, N.A.; Slaughter, B.V.; Kanzelberger, M.A. Hydrogels. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 10, pp. 385–395. [Google Scholar] [CrossRef]
- Deo, K.A.; Lokhande, G.; Gaharwar, A.K. Nanostructured Hydrogels for Tissue Engineering and Regenerative Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Spang, M.T.; Christman, K.L. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 2018, 68, 1–14. [Google Scholar] [CrossRef]
- Sun, G.; Shen, Y.I.; Harmon, J.W. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv. Healthc. Mater. 2018, 7, 1800016. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, B.; Sun, Y.; Wang, C.; Mukherjee, S.; Yang, C.; Chen, Y. Injectable Enzyme-Based Hydrogel Matrix with Precisely Oxidative Stress Defense for Promoting Dermal Repair of Burn Wound. Macromol. Biosci. 2020, 20, 2000036. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wang, T.; Zheng, X.; Huang, Y.; Chen, Y.; Dan, W. High strength and bioactivity polyvinyl alcohol/collagen composite hydrogel with tannic acid as cross-linker. Polym. Eng. Sci. 2021, 61, 278–287. [Google Scholar] [CrossRef]
- Bogdanov, S.B.; Gilevich, I.V.; Melkonyan, K.I.; Sotnichenko, A.S.; Alekseenko, S.N.; Porhanov, V.A. Total full-thickness skin grafting for treating patients with extensive facial burn injury: A 10-year experience. Burns 2021, 47, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef]
- He, H.; Liu, D.; Ince, C. Colloids and the microcirculation. Anesth. Analg. 2018, 126, 1747–1754. [Google Scholar] [CrossRef]
- Ertmer, C.; Rehberg, S.; Van Aken, H.; Westphal, M. Relevance of non-albumin colloids in intensive care medicine. Best Pract. Res. Clin. Anaesthesiol. 2009, 23, 193–212. [Google Scholar] [CrossRef]
- Ghavami, Y.; Mobayen, M.R.; Vaghardoost, R. Electrical Burn Injury: A Five-Year Survey of 682 Patients. Trauma Mon. 2014, 19, e18748. [Google Scholar] [CrossRef]
- Li, S.; Cong, Y.; Fu, J. Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 2021, 9, 4423–4443. [Google Scholar] [CrossRef]
- Shimokawa, Y.; Hayakawa, E.; Takahashi, K.; Okai, K.; Hattori, Y. Journal of Drug Delivery Science and Technology Pharmaceutical formulation analysis of gelatin-based soft capsule film sheets using near-infrared spectroscopy. J. Drug Deliv. Sci. Technol. 2018, 48, 174–182. [Google Scholar] [CrossRef]
- Chou, S.F.; Luo, L.J.; Lai, J.Y.; Ma, D.H.K. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery. Int. J. Pharm. 2016, 511, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Althans, D.; Enders, S. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions. Mol. Phys. 2014, 112, 2249–2257. [Google Scholar] [CrossRef]
- Birkedal, H.; Chen, Y. Mussel Inspired Self-Healing Materials: Coordination Chemistry of Polyphenols, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Osetrov, K.O.; Uspenskaya, M.V.; Olekhnovich, R.O.; Strelnikova, I.E. Synthesis of cross-linked tannin-gelatin hydrogels. Russ. Chem. Bull. 2022, 71, 557–563. [Google Scholar] [CrossRef]
- Gehrke, S.H.; Fisher, J.P.; Palasis, M.; Lund, M.E. Factors determining hydrogel permeability. Ann. N. Y. Acad. Sci. 1997, 831, 179–184. [Google Scholar] [CrossRef]
- Poncet-Legrand, C.; Cabane, B.; Bautista-Ortín, A.B.; Carrillo, S.; Fulcrand, H.; Pérez, J.; Vernhet, A. Tannin oxidation: Intra-versus intermolecular reactions. Biomacromolecules 2010, 11, 2376–2386. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Shchekoltsova, A.O.; Sinitskaya, E.S.; Vernaya, O.I.; Nuzhdina, A.V.; Bakeeva, I.V.; Ezernitskaya, M.G.; Semenov, A.M.; Shabatina, T.I.; Melnikov, M.Y. Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int. J. Biol. Macromol. 2020, 160, 583–592. [Google Scholar] [CrossRef]
- Sripriya, R.; Kumar, R.; Balaji, S.; Kumar, M.S.; Sehgal, P.K. Characterizations of polyanionic collagen prepared by linking additional carboxylic groups. React. Funct. Polym. 2011, 71, 62–69. [Google Scholar] [CrossRef]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- López-Angulo, D.; Bittante, A.M.Q.B.; Luciano, C.G.; Ayala-Valencia, G.; Flaker, C.H.C.; Djabourov, M.; Sobral, P.J.D.A. Effect of Laponite® on the structure, thermal stability and barrier properties of nanocomposite gelatin films. Food Biosci. 2020, 35, 100596. [Google Scholar] [CrossRef]
- Bogomolova, L.G.; Znamenskay, T.V. Method of preparation of gelatinol A.s. 192357 USSR [Text in Russian]. Available online: https://patents.google.com/patent/SU192357A1/ru?oq=192357 (accessed on 1 April 2023).
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Prim. 2020, 6, 11. [Google Scholar] [CrossRef]
- Chai, H.; Chaudhari, N.; Kornhaber, R.; Cuttle, L.; Fear, M.; Wood, F.; Martin, L. Chemical burn to the skin: A systematic review of first aid impacts on clinical outcomes. Burns 2022, 48, 1527–1543. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- ASTM E96/E96M-16; Standard Test Methods for Water Vapor Transmission of Materials [TeKCT]. ASTM International: West Conshohocken, PA, USA, 2016.
- Osetrov, K.; Uspenskaya, M.; Sitnikova, V. The Influence of Oxidant on Gelatin–Tannin Hydrogel Properties and Structure for Potential Biomedical Application. Polymers 2022, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2012; Volume 32. [Google Scholar]
- EUCAST. MIC Determination of Non-Fastidious and Fastidious Organisms. Available online: https://www.eucast.org/ast_of_bacteria/mic_determination/ (accessed on 2 April 2022).
pH | k, min−1 | n | k2·106, g·(mmole·min)−1 |
---|---|---|---|
2 | 4.50 ± 0.11 | 0.70 ± 0.03 | 3.14 ± 0.11 |
2.5 | 3.21 ± 0.09 | 0.53 ± 0.03 | 0.37 ± 0.02 |
3 | 4.17 ± 0.10 | 0.66 ± 0.02 | 1.30 ± 0.04 |
3.5 | 3.67 ± 0.09 | 0.61 ± 0.02 | 1.15 ± 0.04 |
4 | 2.77 ± 0.07 | 0.53 ± 0.01 | 0.22 ± 0.02 |
4.5 | 2.98 ± 0.08 | 0.53 ± 0.02 | 0.45 ± 0.02 |
5 | 2.85 ± 0.07 | 0.52 ± 0.02 | 0.43 ± 0.02 |
5.5 | 3.26 ± 0.09 | 0.55 ± 0.02 | 0.32 ± 0.02 |
6 | 1.19 ± 0.03 | 0.17 ± 0.01 | 0.49 ± 0.03 |
6.5 | 1.99 ± 0.04 | 0.35 ± 0.01 | 1.14 ± 0.04 |
7 | 1.23 ± 0.03 | 0.19 ± 0.01 | 0.42 ± 0.02 |
7.5 | 0.43 ± 0.01 | 0.05 ± 0.01 | 1.13 ± 0.04 |
8 | 4.35 ± 0.11 | 0.67 ± 0.03 | 0.34 ± 0.02 |
8.5 | 4.17 ± 0.10 | 0.64 ± 0.03 | 0.52 ± 0.03 |
9 | 3.98 ± 0.10 | 0.60 ± 0.02 | 0.94 ± 0.04 |
Sample | WWTR, g/m2 | OP, mg/L |
---|---|---|
Open (control probe) | 4510 ± 50 | 10.5 ± 0.03 |
HP-Fe | 3610 ± 40 | 9.7 ± 0.02 |
Closed (control probe) | 70 ± 5 | 9.1 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osetrov, K.; Uspenskaya, M.; Zaripova, F.; Olekhnovich, R. Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®. Gels 2023, 9, 330. https://doi.org/10.3390/gels9040330
Osetrov K, Uspenskaya M, Zaripova F, Olekhnovich R. Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®. Gels. 2023; 9(4):330. https://doi.org/10.3390/gels9040330
Chicago/Turabian StyleOsetrov, Konstantin, Mayya Uspenskaya, Faliya Zaripova, and Roman Olekhnovich. 2023. "Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®" Gels 9, no. 4: 330. https://doi.org/10.3390/gels9040330
APA StyleOsetrov, K., Uspenskaya, M., Zaripova, F., & Olekhnovich, R. (2023). Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®. Gels, 9(4), 330. https://doi.org/10.3390/gels9040330