Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Multifactorial Design of Experiment
2.2. Depth-Dose Curves
2.3. Simulated Single Isocenter Multitarget Treatment
3. Conclusions
4. Materials and Methods
4.1. Materials and Design of Experiments
4.2. Experimental Set-Up
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, D. The importance of 3D dosimetry. J. Phys. Conf. Ser. 2015, 573, 012009. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, L.J. True 3D chemical dosimetry (gels, plastics): Development and clinical role. J. Phys. Conf. Ser. 2015, 573, 012003. [Google Scholar] [CrossRef]
- Adamovics, J.A.; Coakley, R.J. Chemical dosimeters. J. Phys. Conf. Ser. 2019, 1305, 012028. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; James Jabaseelan Samuel, E. Studies on the tissue and water equivalence of some 3D printing materials and dosimeters. Rad. Phys. Chem. 2022, 198, 110259. [Google Scholar] [CrossRef]
- Schreiner, L.J. Reviewing three dimensional dosimetry: Basics and utilization as presented over 17 Years of DosGel and IC3Ddose. J. Phys. Conf. Ser. 2017, 847, 012001. [Google Scholar] [CrossRef] [Green Version]
- Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.B.; Oldham, M.; Schreiner, L.J. Polymer gel dosimetry. Phys. Med. Biol. 2010, 55, R1. [Google Scholar] [CrossRef]
- Elter, A.; Dorsch, S.; Thomas, S.; Hentschke, C.M.; Floca, R.O.; Runz, A.; Karger, C.P.; Mann, P. PAGAT gel dosimetry for everyone: Gel production, measurement and evaluation. Biomed. Phys. Eng. Exp. 2021, 7, 057001. [Google Scholar] [CrossRef]
- Olding, T.; Schreiner, L.J. Cone-beam optical computed tomography for gel dosimetry II: Imaging protocols. Phys. Med. Biol. 2011, 56, 1259. [Google Scholar] [CrossRef]
- Dekker, K.H.; Hazarika, R.; Jordan, K.J. Stray light in cone beam optical computed tomography: III. Evaluation of a redesigned large-volume commercial scanner based on a convergent light source. Phys. Med. Biol. 2018, 63, 21NT02. [Google Scholar] [CrossRef]
- Pikaev, A.K.; Kriminskaya, Z.K. Use of tetrazolium salts in dosimetry of ionizing radiation. Rad. Phys. Chem. 1998, 52, 555. [Google Scholar] [CrossRef]
- Penev, K.I.; Wang, M.; Mequanint, K. Tetrazolium salt monomers for gel dosimetry I: Principles. J. Phys. Conf. Ser. 2017, 847, 012048. [Google Scholar] [CrossRef]
- Ascención, Y.; Dietrich, J.; Mequanint, K.; Penev, K.I. Tetrazolium salt monomers for gel dosimetry II: Dosimetric characterization of the ClearView™ 3D dosimeter. J. Phys. Conf. Ser. 2017, 847, 012049. [Google Scholar] [CrossRef] [Green Version]
- Kwiatos, K.; Maras, P.; Kadlubowski, S.; Stempień, Z.; Dudek, M.; Kozicki, M. Tetrazolium salts-Pluronic F-127 gels for 3D radiotherapy dosimetry. Phys. Med. Biol. 2018, 63, 095012. [Google Scholar] [CrossRef]
- Gossman, M.S.; Courter, E.J.L. Stereotactic radiosurgery delivery verification using tetrazolium salt-based gel as a dosimeter. Can. J. Phys. 2017, 95, 725–730. [Google Scholar] [CrossRef]
- Colnot, J.; Huet, C.; Gschwind, R.; Clairand, I. Characterisation of two new radiochromic gel dosimeters TruView™ and ClearView™ in combination with the vista™ optical CT scanner: A feasibility study. Phys. Med. 2018, 52, 154–164. [Google Scholar] [CrossRef]
- Ba Sunbul, N.; Oraiqat, I.; Rosen, B.; Miller, C.; Meert, C.; Matuszak, M.M.; Clarke, S.; Pozzi, S.; Moran, J.M.; El Naqa, I. Application of radiochromic gel dosimetry to commissioning of a megavoltage research linear accelerator for small-field animal irradiation studies. Med. Phys. 2021, 48, 1404–1416. [Google Scholar] [CrossRef]
- Du, D.; Quinn, B.; Penev, K.; Kim, J.; Cunningham, J.; Miller, J.; Glide-Hurst, C. Novel 3D Gel Dosimetry to Support High Fidelity MR-Guided Radiotherapy Delivery. Med. Phys. 2019, 46, E310–E311. [Google Scholar]
- Brzozowski, P.; Penev, K.I.; Mequanint, K. Gellan gum gel tissue phantoms and gel dosimeters with tunable electrical, mechanical and dosimetric properties. Int. J. Biol. Macromol. 2021, 180, 332–338. [Google Scholar] [CrossRef]
- Hazarika, R.; Penev, K.I.; Mequanint, K.; Jordan, K. Initial performance evaluation of a 3D gel dosimeter based on modified tetrazolium compounds. J. Phys. Conf. Ser. 2019, 1305, 012036. [Google Scholar] [CrossRef]
- Penev, K.I.; Mequanint, K. New directions for tetrazolium—Gellan gum gel dosimeters. J. Phys. Conf. Ser. 2022, 2167, 012031. [Google Scholar] [CrossRef]
- Pikaev, A.K.; Kriminskaya, Z.K. Radiolysis of solutions of tetrazolium salts. Russ. Chem. Rev. 1998, 67, 671–680. [Google Scholar] [CrossRef]
- Picone, C.S.F.; Cunha, R.L. Influence of pH on formation and properties of gellan gels. Carbohydr. Polym. 2011, 84, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Milas, M.; Shi, X.; Rinaudo, M. On the Physicochemical Properties of Gellan Gum. Biopolymers 1990, 30, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Xu, L.; Barnett, R. Three-dimensional reproducibility assessment of radiochromic ClearView™ gel in custom vessel. J. Phys. Conf. Ser. 2022, 2167, 012013. [Google Scholar] [CrossRef]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, D.A.; Dempsey, J.F. Evaluation of the gamma dose distribution comparison method. Med. Phys. 2003, 30, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
Factor | Base Unit | Background, 103 × μ0, cm−1 | Dose Sensitivity 103 × S, cm−1 Gy−1 | Auto-Reduction 103 × R, cm−1 day−1 | Dose Rate Effect, % at 600 vs. 100 cGy/min | ||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | p | Coeff. | p | Coeff. | p | Coeff. | p | ||
Constant | −20.4 ± 3.4 | 0.004 | 7.38 ± 0.46 | <0.001 | n.s. | 0.381 | 5.64 ± 1.62 | 0.025 | |
Gn | % | 61.8 ± 2.5 | <0.001 | −2.25 ± 0.34 | 0.003 | n.s. | 0.454 | 4.72 ± 1.21 | 0.017 |
BNC | mM | 25.6 ± 4.7 | 0.005 | 3.76 ± 0.64 | 0.004 | 7.60 ± 0.82 | <0.001 | −19.5 ± 2.3 | <0.001 |
LiCl | M | 634 ± 39 | <0.001 | n.s. | 0.177 | −20.8 ± 6.9 | 0.039 | n.s. | 0.494 |
LiLac | M | 506 ± 39 | <0.001 | −16.7 ± 5.4 | 0.036 | −19.7 ± 6.9 | 0.046 | 189 ± 19 | <0.001 |
MP | % | n.s. | 0.805 | 8.32 ± 2.14 | 0.018 | 7.15 ± 2.76 | 0.06 | n.s. | 0.325 |
PAM | % | 182 ± 40 | 0.011 | n.s. | 0.195 | 34.2 ± 7.0 | 0.008 | 94.5 ± 19.3 | 0.008 |
R2 | 0.989 | 0.938 | 0.949 | 0.896 |
Ingredients | Dose Sensitivity 103 × S, cm−1Gy−1 | Dose Rate Effect, % at 600 vs. 100 cGy/min | |||||||
---|---|---|---|---|---|---|---|---|---|
ωGn % | CBNC mM | CLiCl M | ωMP % | ωPAM % | Model | Experiment | Model | Experiment | |
D1 | 1.25 | 0.57 | 0 | 0 | 0 | 6.82 | 6.23 ± 0.09 | 0.42 | −1.73 ± 0.12 |
D2 | 0.70 | 0.375 | 0.05 | 0.125 | 0.05 | 8.59 | 8.76 ± 0.07 | 1.23 | 0.61 ± 0.10 |
D3 | 0.60 | 0.30 | 0.10 | 0.125 | 0.05 | 8.15 | 8.12 ± 0.07 | 1.98 | 4.92 ± 0.10 |
R2 | >0.999 | 0.964 |
1%/1 mm | 2%/1 mm | 3%/1 mm | 1%/2 mm | 2%/2 mm | 3%/2 mm | |
---|---|---|---|---|---|---|
A1 | (56.4%) | (75.2%) | (88.1%) | (77.7%) | (88.7%) | 95.7% |
D2 | (39.3%) | (81.1%) | (93.9%) | (66.9%) | 96.6% | 99.2% |
Formulation | ωGn % | CBNC mM | CLiX mM | ωMP % | ωPAM % |
---|---|---|---|---|---|
Set A. Two-factorial study of Gn and BNC | |||||
A1 | 1.25 | 0.25 | – | – | – |
A2 | 1.25 | 0.50 | – | – | – |
A3 | 0.75 | 0.25 | – | – | – |
A4 | 0.75 | 0.50 | – | – | – |
A5 | 1.00 | 0.375 | – | – | – |
A6 | 0.50 | 0.625 | – | – | – |
Set B. Individual effects of additives | |||||
B1 | 0.75 | 0.25 | – | – | – |
B2 | 0.75 | 0.25 | 50 LiCl | – | – |
B3 | 0.75 | 0.25 | 50 LiLac | – | – |
B4 | 0.75 | 0.25 | – | 0.125 | – |
B5 | 0.75 | 0.25 | – | – | 0.05 |
Set C. Combined effects of additives | |||||
C1 | 0.70 | 0.25 | – | – | 0.05 |
C2 | 0.70 | 0.25 | 50 LiCl | – | 0.05 |
C3 | 0.70 | 0.25 | – | 0.125 | 0.05 |
C4 | 0.70 | 0.25 | 50 LiLac | 0.125 | 0.05 |
C5 | 0.70 | 0.375 | 50 LiLac | 0.125 | 0.05 |
C6 | 0.70 | 0.50 | 50 LiLac | 0.125 | 0.05 |
Set. D. Model-derived formulation | |||||
D1 | 1.25 | 0.57 | 0 | 0 | 0 |
D2 | 0.75 | 0.375 | 50 LiCl | 0.125 | 0.05 |
D3 | 0.60 | 0.30 | 100 LiCl | 0.125 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penev, K.I.; Mulligan, M.; Mequanint, K. Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters. Gels 2023, 9, 334. https://doi.org/10.3390/gels9040334
Penev KI, Mulligan M, Mequanint K. Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters. Gels. 2023; 9(4):334. https://doi.org/10.3390/gels9040334
Chicago/Turabian StylePenev, Kalin I., Matt Mulligan, and Kibret Mequanint. 2023. "Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters" Gels 9, no. 4: 334. https://doi.org/10.3390/gels9040334
APA StylePenev, K. I., Mulligan, M., & Mequanint, K. (2023). Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters. Gels, 9(4), 334. https://doi.org/10.3390/gels9040334