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Abstract: This study aimed to develop hydrogels for tissue adhesion that are biocompatible, antioxi-
dant, and antibacterial. We achieved this by using tannic acid (TA) and fungal-derived carboxymethyl
chitosan (FCMCS) incorporated in a polyacrylamide (PAM) network using free-radical polymeriza-
tion. The concentration of TA greatly influenced the physicochemical and biological properties of the
hydrogels. Scanning electron microscopy showed that the nanoporous structure of the FCMCS hydro-
gel was retained with the addition of TA, resulting in a nanoporous surface structure. Equilibrium-
swelling experiments revealed that increasing the concentration of TA significantly improved water
uptake capacity. Antioxidant radical-scavenging assays and porcine skin adhesion tests confirmed
the excellent adhesive properties of the hydrogels, with adhesion strengths of up to 39.8 ± 1.2 kPa
for 1.0TA-FCMCS due to the presence of abundant phenolic groups on TA. The hydrogels were also
found to be biocompatible with skin fibroblast cells. Furthermore, the presence of TA significantly
enhanced the antibacterial properties of the hydrogels against both Gram-positive (Staphylococcus
aureus) and Gram-negative (Escherichia coli) bacteria. Therefore, the developed drug-free antibacterial
and tissue-adhesive hydrogels can potentially be used as wound dressings for infected wounds.

Keywords: tissue adhesive; biocompatible; antibacterial; antioxidant; hydrogel; wound dressing

1. Introduction

Hydrogels are water-absorbing polymers that can absorb and retain large amounts
of water, making them useful for wound-dressing applications [1]. They are soft and
flexible, making them comfortable to wear, and they can be designed to release drugs or
other therapeutic agents to aid in wound healing [2]. So far, various types of hydrogel
dressings have been developed in different forms, such as films, sheets, gels, foams, and
nanoparticles [3]. They can be designed to have different mechanical properties, such as
stiffness and elasticity, in order to match specific wound types and stages of healing [3,4].
Furthermore, the use of hydrogels is of particular interest with respect to wound-dressing
because they can provide a moist wound-healing environment, which is optimal for wound
healing. They can also provide a barrier against infection and help to reduce pain and
inflammation. Some hydrogels can be designed to promote the growth of new tissue and
blood vessels, which can help accelerate wound healing. So far, antibiotic-drug-loaded
hydrogels have been studied as a potential treatment option for infected wounds. These
hydrogels are designed to release antibiotics over a sustained period, providing a high
concentration of the drug directly to the wound site. However, their use must be carefully
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balanced against the risk of allergic reactions and antibiotic resistance [5,6]. It is important
to carefully select the appropriate antibiotic, consider the risk of antibiotic resistance, and
monitor the patient for any adverse effects. In this regard, drug-free antibacterial hydrogels
have more benefits for wound-dressing applications.

There are several advantages of using natural polymers instead of synthetic polymers
for wound-dressing applications [7]. Some of these advantages include biocompatibility,
biodegradability, non-toxicity, natural healing properties, and sustainability. Among the
various types of natural polymers, chitosan (CS) is a natural polymer derived from chitin,
which is a major component of the exoskeletons of crustaceans, insects, and fungi [8].
Carboxymethyl chitosan (CMCS) is a water-soluble derivative of CS that has been modified
by carboxymethylation, resulting in a more hydrophilic and water-soluble material [9].
CMCS hydrogels can be synthesized by crosslinking CMC with a crosslinking agent, such
as glutaraldehyde or genipin [10]. The resulting hydrogel has high water content and can
absorb and retain large amounts of fluid, providing a moist wound-healing environment.
One of the advantages of CMCS hydrogels is their antimicrobial activity. Studies have
shown that CMCS hydrogels can inhibit the growth of various bacteria and fungi, including
Staphylococcus aureus and Candida albicans, which are common wound pathogens [11].
In addition to their antimicrobial properties, CMCS hydrogels can also promote wound
healing. CMCS has been shown to enhance the proliferation and migration of fibroblasts,
which are essential for the formation of new tissue. It can also stimulate the production
of collagen and other extracellular matrices (ECM) proteins, which provide structural
support to a wound. Recently, fungal-derived carboxymethyl chitosan (FCMCS) hydrogels
have been studied in relation to their potential application as wound dressings [12–15].
FCMCS hydrogels have the additional advantage of being derived from a sustainable and
renewable source. Fungi are fast-growing and can be easily cultured in large quantities,
making FCMCS an eco-friendlier alternative to CS derived from crustaceans. Overall,
FCMCS hydrogels constitute a promising technology for wound dressing, which can
potentially improve wound-healing outcomes and reduce the risk of infection [12–15].

Adhesive hydrogels are hydrophilic materials designed to adhere to surfaces such
as skin or tissue without causing discomfort or damage. These hydrogels have adhesive
and cohesive properties, enabling them to stick to a surface while maintaining structural
integrity. Adhesive hydrogels have widespread applications in biomedical fields, such
as wound healing, drug delivery, and tissue engineering. They provide a moist wound-
healing environment and can directly deliver therapeutic agents to a wound or tissue
defect site. Designing adhesive hydrogels presents a challenge with respect to balancing
strong adhesion and gentle removal. This balance is necessary to keep the hydrogel in
place without causing pain or damage during removal [16,17]. Researchers have developed
various approaches to address this challenge, including incorporating adhesion-promoting
molecules, designing hydrogels with hierarchical structures, or using reversible adhesion
strategies. Tannic acid (TA) is a natural polyphenolic compound found in several plants,
including tea, coffee, grapes, and oak bark, that has been shown to adhere to tissues in TA-
based hydrogels [18–20]. These hydrogels are formed by crosslinking TA with a polymer
matrix such as polyvinyl alcohol or CS, resulting in high water content that allows for
the absorption and retention of large amounts of fluid, which promotes moist wound
healing. TA hydrogels possess antibacterial and anti-inflammatory properties, allowing
them to inhibit the growth of various bacteria, including Staphylococcus aureus, and
scavenge free radicals while reducing the release of inflammatory cytokines. Additionally,
TA can enhance the proliferation and migration of fibroblasts, which are essential for
forming new tissue, while stimulating collagen production to provide structural support to
a wound [21]. So far, various types of TA-based hydrogels loaded with silver nanoparticles
and other antibiotic drugs have been developed for wound-dressing applications [18–20].
One issue with silver nanoparticles is their potential toxicity to human cells, particularly
at high concentrations or after prolonged exposure. The use of silver nanoparticles in
wound dressings has raised concerns about the potential for these particles to enter the
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bloodstream and accumulate in the body, which could harm a patient. Another potential
problem with drug-loaded TA-based hydrogels is the risk of adverse effects posed by the
drug itself. Depending on the type and dose of drug used, patients may experience side
effects such as allergic reactions or systemic toxicity. Additionally, the efficacy of the drug
may be limited by its ability to penetrate the wound bed and reach the target tissue. Thus,
the use of drug-free approaches via the employment of antibacterial polymers based on
CMCS offer more advantages with respect to improving biocompatibility and enhancing
wound healing [12–15].

By considering the potential benefits of FCMCS and TA for wound healing, in this
study, we developed FCMCS- and TA-based drug-free hydrogels with antibacterial and
tissue adhesive properties for wound-dressing applications. We expect that the combination
of TA and FCMCS can result in a synergistic effect, thereby enhancing the properties of the
hydrogel. TA can act as a crosslinking agent, promoting the formation of a stable hydrogel
network. FCMCS can improve the water retention capacity of a hydrogel as well as its
mechanical strength and elasticity. Overall, adhesive hydrogels constitute a promising
technology that can potentially improve biomedical applications, especially in wound
healing and tissue engineering.

2. Results and Discussion
2.1. Preparation of TA-FCMCS Hydrogels and Its Characterization

A simple procedure has been employed for the preparation of TA-FCMCS hydrogels
for wound-dressing applications. In the first step, FCMCS hydrogels were prepared using
an acrylamide (AM) monomer, N,N′-methylene-bis(acrylamide) (BIS) as a crosslinker in the
presence of ammonium persulfate (APS) as an initiator. The as-prepared FCMCS hydrogels
were soaked in TA solutions at 60 ◦C under acidic conditions (pH 1.2) for 12 h. During this
process, the functional groups that existed in the FCMCS (-COOH, -NH2, -OH) and PAM
networks (-CO-NH2) easily interacted with the phenolic -OH groups of TA via H-bonding
interactions, thereby improving their physicochemical and biological properties (Scheme 1).
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Scheme 1. Schematic representation of formation of TA-FCMCS hydrogel.

The formation of the FCMCS and TA-FCMCS hydrogels was characterized using FTIR
spectroscopy. The FTIR spectra of the pure FCMCS powder displayed distinctive peaks at
3408 cm−1, which were attributed to –OH and NH2 stretching vibrations, and at 1588 and
1408 cm−1, which were ascribed to COO− asymmetric and symmetric stretching vibrations.
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Additionally, peaks at 1064 and 1411 cm−1 were observed, representing C-O and C-OH
functional groups, respectively. In the FTIR spectrum of the FCMCS hydrogel, peaks at
1650 cm−1 and 1605 cm−1 were assigned to C=O stretching and N-H deformations, while
a peak at 1412 cm−1 represented C-N stretching vibrations. The TA sample exhibited a
prominent peak at 1718 cm−1, corresponding to catechol stretching vibrations. Other peaks
observed at 1613, 1533, and 1448 cm−1 were attributed to benzyl stretching vibrations.
In the TA-FCMCS hydrogel, the peak intensity of catechol’s stretching vibration was
decreased, and similar peaks belonging to PAM and FCMCS were observed. Increasing
the concentration of TA in the FCMCS hydrogels caused all the peaks to shift to lower
stretching frequencies, suggesting H-bonding interactions between TA (-OH) and the
functional groups present in the FCMCS and PAM network structures [22–24]. The XRD
patterns of the hydrogels are displayed in Figure 1b. The XRD patterns of the FCMCS
powder and TA samples showed peaks at 2theta of 22◦ and 25◦, indicating their semi-
crystalline nature. The XRD patterns of the FCMCS hydrogel showed a peak at 2theta of
20◦, suggesting its amorphous nature. The addition of TA also showed a similar amorphous
peak, indicating molecularly dispersed interactions of TA within the hydrogel structure [24].
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Figure 1. (a) FTIR spectra and (b) XRD patterns of hydrogels.

SEM images are a valuable tool for analyzing the structures and properties of hydrogel
materials. Figure 2 shows SEM images of the TA-FCMCS hydrogels with varying amounts
of TA. The resulting images reveal that the lyophilized FCMCS hydrogel exhibited a
three-dimensional network structure with interconnected regular pores and FCMCS fiber
structures with smooth surfaces [13]. In contrast, the lyophilized TA-FCMCS hydrogel had
a similar porous structure with a nanofibrous surface topology. It is worth noting that the
fibrous structure of FCMCS was destroyed in the TA-FCMCS hydrogel due to the formation
of hydrogen-bonding interactions between TA and FCMCS during the soaking of the
hydrogel in the TA solutions. Interestingly, a nanofibrous surface topology was observed
for all the TA-FCMCS hydrogel samples, with the nanofibrous topology becoming more
apparent with increasing amounts of TA due to the hydrogen-bonding interactions between
TA and FCMCS [20]. The appearance of clear pores and a nanofibrous surface topology is
beneficial for retaining wound moisture for longer periods and removing wound extrudate
after the removal of the dressing at the wound site [25]. Furthermore, these structures
would be beneficial for cell growth for new ECM modeling.
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2.2. Swelling Study

Figure 3 displays the equilibrium-swelling properties of the FCMCS and TA-FCMCS
hydrogels. The FCMCS hydrogel exhibited good swelling capacity (1595.92 ± 48.54%)
under physiological conditions (pH 7.4). In comparison to the FCMCS hydrogel, 1.0TA-
FCMCS had the highest swelling capacity (2346.32 ± 32.65%) under similar conditions,
which could be attributed to the presence of TA in the hydrogel. The %ESR increased
significantly with an increase in the TA content in the hydrogel networks. The greater water
retention in the TA-FCMCS hydrogel’s architecture is due to the presence of hydrophilic
groups of hydroxyl-rich TA and hydrophilic groups of FCMCS and PAM networks (–
OH, –CO-NH2, and –COOH). Therefore, this hydrogel is suitable for wound-dressing
applications.
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Figure 3. % equilibrium-swelling ratio (%ESR) of hydrogels.

2.3. Cytocompatibility Analysis

Skin fibroblasts are model cells for wound healing because they play a critical role
in the process [26]. Fibroblasts are responsible for producing ECM components such as
collagen, elastin, and fibronectin, which form the structural framework of tissues. They
are also involved in wound contraction, a process that reduces the size of a wound and
promotes healing. Additionally, fibroblasts secrete growth factors and cytokines that
promote cell proliferation and migration, which are essential for tissue repair. As a result,
skin fibroblasts are widely used in in vitro wound healing models to study the mechanisms
of wound healing and evaluate the efficacy of therapeutic interventions. Therefore, we
used skin fibroblast cells as model cells to assess the cytocompatibility of the hydrogels.
The cytocompatibility of the hydrogels was evaluated using the Prestoblue assay, and
the outcomes are shown in Figure 4. The FCMCS and TA-FCMCS hydrogels containing
different amounts of TA exhibited 100% cell activity, indicating their biocompatibility.
FCMCS and TA are biocompatible materials that promote cell proliferation and migration,
which may explain their excellent cell activity. The live/dead staining outcomes were
consistent with the quantitative results (Figure 5), demonstrating that the majority of the
cells on both the FCMCS and TA-FCMCS hydrogels displayed a normal, spindle-like
morphology after a 72 h incubation period, with only a few dead cells (similar to the
control). The results suggest that the TA-FCMCS hydrogels are a promising material for
wound dressing, showing excellent cytocompatibility.
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2.4. Antibacterial Activity

TA has been shown to exhibit antibacterial activity against both Gram-positive and
Gram-negative bacteria. Some studies have found that TA is more effective against Gram-
positive bacteria, while others have found it to be more effective against Gram-negative
bacteria. However, the exact effectiveness of TA against specific bacterial strains can vary
depending on factors such as concentration, exposure time, and the method of testing.
Recent studies have proven that FCMCS exhibits good antibacterial activity [27–30]. Thus,
the antibacterial activities of the FCMCS and TA-FCMCS hydrogels were evaluated using
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the CFU method. Figure 6 illustrates that the growth inhibition values of the FCMCS
hydrogels toward Escherichia coli and Staphylococcus aureus were about 65% and 52%, respec-
tively, indicating that even FCMCS alone possesses an antibacterial effect. The antibacterial
rates of the TA-FCMCS hydrogels against Escherichia coli (96%) and Staphylococcus aureus
(89%) were significantly higher than those of FCMCS. Moreover, increasing the amount
of TA improved the antibacterial properties of the TA-FCMCS hydrogels, indicating that
the observed antibacterial performance was mainly due to both FCMCS and TA. Our
findings suggest that the addition of TA to hydrogels can enhance their capacity to kill
Gram-positive and Gram-negative bacteria [27–30]. The viability of the bacteria (Escherichia
coli and Staphylococcus aureus) exposed to TA-FCMCS hydrogel was substantially reduced
compared to that of the FCMCS hydrogel, indicating the critical role of TA in improving
bactericidal properties. TA has been shown to have different mechanisms of action against
these different types of bacteria. Gram-positive bacteria have a thick peptidoglycan layer
in their cell walls, while Gram-negative bacteria have a thinner peptidoglycan layer and
an outer membrane composed of lipopolysaccharides (LPSs). In Gram-positive bacteria,
TA can disrupt the cell wall, leading to lysis and cell death. In Gram-negative bacteria, TA
can disrupt the outer membrane and cause leakage of the intracellular contents, leading
to bacterial death [27–30]. Overall, the incorporation of TA and FCMCS in the hydrogels
is a promising approach for wound dressing, potentially improving wound-healing out-
comes and reducing the risk of infection and inflammation. However, further research is
needed to optimize the formulation and assess the safety and efficacy of these hydrogels in
clinical settings.
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2.5. Antioxidant Activity

In general, CMCS shows good antioxidant properties due to the availability of car-
boxymethyl groups on its structure. In this study, the FCMCS hydrogel also shows good
antioxidant properties because of the existence of the FCMCS polymer in the hydrogel
system. FCMCS can act as an electron donor, which can help to neutralize free radicals
and prevent oxidative damage. Additionally, CMCS has been found to increase the ac-
tivity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase, which
can further protect cells from oxidative stress [31]. Furthermore, the incorporation of TA
into the FCMCS hydrogel enhanced its antioxidant properties. To determine free-radical-
scavenging activity, we used DPPH as a radical and found that the incorporation of TA
into the FCMCS hydrogels significantly improved the radical-scavenging activity of the
final product (Figure 7). Additionally, the clearance ratio of the radical of the TA-FCMCS
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hydrogels increased with the increase in TA content. The abundant hydroxyl groups in TA,
which include catechol and pyrogallol, contribute to the high radical-scavenging activity
of the TA-FCMCS hydrogels (96.2% for 1.0TA-FCMCS). Previous studies have reported
that the antioxidant activity of polyphenols is associated with the hydroxyl groups in their
structures [32]. Therefore, the radical-scavenging activity of the TA-FCMCS hydrogels is
mainly attributed to the abundant hydroxyl groups in TA.
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2.6. Tissue-Adhesive Properties

As wound repair materials, the ability to adhere to tissues is a crucial characteristic
of hydrogels, and various hydrogel adhesives designed for wound closure have been
documented [33]. To evaluate the tissue adhesion ability of the TA-FCMCS hydrogels,
tensile tests were performed on porcine skin, which functioned as a model tissue (Figure 8).
The FCMCS hydrogel exhibited an average adhesive strength of 13.9 ± 2.8 kPa. In contrast,
the amount of TA incorporated into the FCMCS hydrogels was significantly higher than
that of the FCMCS hydrogels. The adhesion strength values of the 0.3TA-FCMCS, 0.5TA-
FCMCS, 0.7TA-FCMCS, and 1.0TA-FCMCS hydrogels were 19.8± 1.2, 29.8± 1.9, 32.6± 1.5,
and 39.8 ± 1.2 kPa respectively. The results confirmed that the adhesion strength of the
TA-FCMCS hydrogel significantly improved when increasing the concentration of TA.
This improvement could be attributed to the increased presence of phenol groups in the
hydrogel network, which facilitated dynamic Schiff-base-binding reactions with amino
groups in the skin tissue, thus enhancing interfacial adhesion. These findings suggest that
the TA-FCMCS hydrogels exhibit diverse interfacial adhesion properties, indicating their
potential for use as reliable medical adhesives for wound dressing.
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3. Conclusions

We developed a multifunctional hydrogel using the free-radical polymerization method
with TA and FCMCS incorporated in a PAM network. The hydrogels demonstrated a highly
interconnected porous structure with nanoporous features and good swelling capacity.
The antibacterial capacities of the 1.0TA-FCMCS hydrogels against Escherichia coli (96%)
and Staphylococcus aureus (89%) were significantly higher than those of the FCMCS hydro-
gel. Additionally, the hydrogels exhibited antioxidant activity, particularly 1.0TA-FCMCS
(96.2%). The FCMCS and TA-FCMCS hydrogels, containing different amounts of TA, exhib-
ited 100% cell activity, indicating their biocompatibility, and demonstrated tissue-adhesive
properties, with 1.0TA-FCMCS presenting an adhesion strength of 39.8 ± 1.2 kPa with
respect to porcine skin. Overall, the physicochemical and biological properties of the hydro-
gels were greatly influenced by the concentration of TA. Based on its multifunctionality, the
developed hydrogel has the potential to be used as a wound dressing for infected wounds.
To produce better wound dressings, in vivo studies must be undertaken in future work.

4. Materials and Methods
4.1. Materials

The FCMCS (degree of deacetylation ≥80%) used in this study was obtained from the
Endovision Company, Daegu, Republic of Korea. It was derived from Agaricus Bisporous
Mushroom, with a molecular weight ranging from 200 KDa to 2000 KDa, a polydispersity
of 7.1, and a viscosity between 20 and 1000 cps. Its deacetylation level was in the range
of 80–98%. TA, APS, BIS, and N,N,N′,N′-Tetramethylethylenediamine (TEMED) were
procured from Sigma-Aldrich, while AM was purchased from Dae-Jung chemical metal
Co., Ltd., Gyeonggi-Do, Republic of Korea.

4.2. Preparation of TA-FCMCS Hydrogels

To prepare the multifunctional hydrogels, 2 wt% FCMCS solution was prepared in
DDW. A total of 12.5 mL of FCMCS solution was mixed with 2.0 g of AM and stirred until it
reached a homogeneous solution. Next, we sequentially added BIS (5 mg), APS (50 mg), and
TEMED (10 µL) to the reaction system and filled molds. After 30 min, the hydrogels were
formed; then, they were immersed in water to remove unreacted monomers, crosslinker,
and initiator. Finally, the resulting FCMCS hydrogels were separately soaked in 50 mL of
TA solution (0.3, 0.5, 0.7, and 1.0 wt% prepared and maintained at pH 1.2 via adding 0.1 M
HCl solution) at 60 ◦C for 12 h. Finally, the hydrogels were removed, repeatedly washed
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with DDW, and freeze-dried for further analysis. The hydrogel formulations were prepared
with respect to varying TA concentrations, namely, 0, 0.3, 0.5, 0.7, and 1.0 wt%, and labeled
FCMCS, 0.3TA-FCMCS, 0.5TA-FCMCS, 0.7TAFCMCS, and 1.0TAFCMCS, respectively.

4.3. Characterization

The Fourier transform infrared spectra (FTIR) of FCMCS, TA, and TA-FCMCS hy-
drogels with different amounts of TA were obtained using a Perkin Elmer spectrometer,
for which measurements were taken across a wavenumber range of 4000 to 500 cm−1. To
prepare the TA-FCMCS hydrogel samples for imaging, they were freeze-dried and attached
to a metal stage before being coated with a layer of platinum using a sputter coater. The
microstructures of the hydrogels were then visualized using a Hitachi S-4800 scanning
electron microscope (SEM), and the pore diameters were determined using ImageJ software.
Specifically, the XRD patterns of TA-FCMCS hydrogels were recorded using a Bruker AXS
D8 advance diffractometer in Bragg–Brentano geometry, which involves a sample mounted
on a rotating stage and the use of an X-ray source. The X-ray radiation used was Cu Kα

line radiation, which has a wavelength of approximately 1.54 Ao.

4.4. Equilibrium-Swelling Studies

To determine the percentages of the equilibrium-swelling ratios (%ESR) of the TA-
FCMCS hydrogel samples, dried hydrogels were first weighed and then immersed in PBS
at 37 ◦C for 72 h. After each immersion period, the TA-FCMCS hydrogels were removed,
the excess surface liquid was gently blotted, and the weights of the swollen hydrogels were
recorded. The %ESR was calculated using the following formula:

%ESR =
(Ws −Wi)

Wi
× 100

where Wi represents the initial weight of the hydrogel and Ws represents the weight of
the hydrogel after immersion in PBS for 72 h of incubation. Each group of samples was
analyzed a minimum of three times to ensure accuracy and reproducibility. The results
were presented as mean values with corresponding standard deviations.

4.5. Biocompatibility Analysis

Prestoblue assay was performed to evaluate the biocompatibility of hydrogels. To
evaluate the biocompatibility of TA-FCMCS hydrogels, skin fibroblast cells (CCD-986sk)
were utilized. The hydrogel samples were first sterilized in ethanol, washed with phosphate-
buffered saline (PBS), and then fixed in 24-well plates with DMEM medium. In each well,
5 × 104 cells were seeded and incubated for 72 h. After removing the media, Prestoblue
solution (100 µL from a 1:10 dilution) was added and incubated for 2 h. The optical density
(OD) of the samples was measured at 570 and 600 nm using a microplate reader to calculate
cell viability. Viability values were calculated by normalizing the average OD treated
hydrogels to the control groups. To further assess cell biocompatibility, cells were stained
with 50 µL of calcein AM/ethidium homodimer-1 double-staining kit and incubated for 30
min at room temperature. The stained cells were visualized using an inverted fluorescence
microscope (Nikon Eclipse Ti, Genova, Italy).

4.6. Antibacterial Activity

The antibacterial efficacy of the freeze-dried TA-FCMCS hydrogels was assessed by
incubating 50 mg of sterilized hydrogels with 1 mL of Staphylococcus aureus or Escherichia coli
suspensions (with a concentration of 1 × 106 CFU/mL) in a 24-well plate. Following 24 h
of incubation at 37 ◦C, the bacterial suspensions were diluted with PBS to a concentration
of 100 CFU/mL. Subsequently, 100 µL of the diluted bacterial medium was spread on a
plate count agar and incubated for another 24 h at 37 ◦C to enumerate bacterial colonies.
Each sample group was analyzed at least three times, and the results were presented as the
mean and standard deviation.
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4.7. Antioxidant Activity

In order to evaluate the antioxidant activity of the TA-FCMCS hydrogels, the DPPH
free-radical-scavenging assay was conducted. A 100 µM solution of DPPH was prepared by
dissolving DPPH in ethanol. The hydrogel samples were ground into a paste and dispersed
in ethanol to produce a hydrogel dispersion with a concentration of 100 mg/mL. Subse-
quently, equal volumes (2 mL) of the DPPH ethanol solution and the hydrogel dispersion
were mixed in the dark and left to incubate for 1 h. The absorbance of the resulting mixture
was measured at 517 nm using a UV–vis spectrophotometer. The percentage of DPPH
scavenging was then calculated using the formula provided below:

DPPH assay =
(Absorbance of control−Absorbance of hydrogel)

Absorbance of control
× 100

Each group of samples was analyzed a minimum of three times to ensure accuracy
and reproducibility. The results were presented as mean values with corresponding stan-
dard deviations.

4.8. Tissue-Adhesive Properties

To evaluate the adhesive performance of the TA-FCMCS hydrogels, they were applied
onto porcine skin surfaces [34]. The adhesive strength of the hydrogels was evaluated
using an adhesive strength test. Two pieces of porcine skin were then overlapped, and the
hydrogel was applied onto the overlapping area (25 × 20 mm bonding area). Adhesive
stress was measured using MCT 2150 tensile tester (A&D Co., Ltd., Tokyo, Japan) with a
stretching speed of 10 mm/min. Each group of samples was analyzed a minimum of three
times to ensure accuracy and reproducibility. The results were presented as mean values
with corresponding standard deviations.
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