Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature
Abstract
:1. Introduction
2. Results and Discussions
2.1. Sensor Characterization Methods
2.1.1. Atomic Force Microscopy (AFM)
2.1.2. Scanning Electron Microscopy (SEM)
2.1.3. X-ray Diffraction (XRD)
2.2. Gas Sensing Measurements
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langematz, U. Stratospheric ozone: Down and up through the anthropocene. ChemTexts 2019, 5, 8. [Google Scholar] [CrossRef]
- Jadoon, S.; Nawazish, S.; Majeed, Z.; Baig, A.; Bukhari, S.M.; Faiz, A.u.H.; Ghanim, A.A.J.; Irfan, M.; Rahman, S.; Ullah, F. Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan. Atmosphere 2022, 13, 2002. [Google Scholar] [CrossRef]
- Muñoz, A.; Borrás, E.; Vera, T.; Colmenar, I.; Ródenas, M.; Gimeno, C.; Fuentes, E.; Coscollá, C.; Calvete-Sogo, H. Atmospheric degradation of two pesticides mixed with volatile organic compounds emitted by citrus trees. Ozone and secondary organic aerosol production. Atmos. Environ. 2023, 295, 119541. [Google Scholar] [CrossRef]
- Al-Qassim, M.; Al-Salem, S.M. Ozone (O3) ambient levels as a secondary air borne precursor in Fahaheel urban area, the State of Kuwait. Atmos. Sci. Lett. 2020, 21, 983. [Google Scholar] [CrossRef]
- Gupta, P.; Payra, S.; Bhatla, R.; Verma, S. An evaluation of long-term gridded datasets of total columnar ozone retrieved from MERRA-2 and AIRS over the Indian region. Environ. Sci. Pollut. Res. 2023, 30, 43586–43603. [Google Scholar] [CrossRef]
- Available online: https://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/COMMITTEES/ENVI/DV/2021/01-14/Air_quality_in_Europe-2020_report_EN.pdf (accessed on 14 March 2023).
- Erickson, L.E.; Newmark, G.L.; Higgins, M.J.; Wang, Z. Nitrogen oxides and ozone in urban air: A review of 50 plus years of progress. Environ. Prog. Sustain. Energy 2020, 39, 13484. [Google Scholar] [CrossRef]
- Grigoraş, G.; Ştefan, S.; Rada, C.; Grigoraş, C. Assessing of surface-ozone concentration in Bucharest, Romania, using OML and satellite data. Atmos. Pollut. Res. 2016, 7, 567–576. [Google Scholar] [CrossRef]
- Park, B.; Kim, S.; Park, S.; Kim, M.; Kim, T.Y.; Park, H. Development of Multi-Item Air Quality Monitoring System Based on Real-Time Data. Appl. Sci. 2021, 11, 9747. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 24, 2271. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2022, 12604. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mahajan, A. Chapter 8—Potential applications of chemiresistive gas sensors. In Micro and Nano Technologies, Carbon Nanomaterials and Their Nanocomposite-Based Chemiresistive Gas Sensors; Dhall, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–245. ISBN 9780128228371. [Google Scholar] [CrossRef]
- Peterson, P.J.D.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef]
- Avansi, W.J.; Catto, A.C.; da Silva, L.F.; Fiorido, T.; Bernardini, S.; Mastelaro, V.R.; Aguir, K.; Arenal, R. One-Dimensional V2O5/TiO2 Heterostructures for Chemiresistive Ozone Sensors. ACS Appl. Nano Mater. 2019, 2, 4756–4764. [Google Scholar] [CrossRef]
- Paralikis, A.; Gagaoudakis, E.; Kampitakis, V.; Aperathitis, E.; Kiriakidis, G.; Binas, V. Study on the Ozone Gas Sensing Properties of RF-Sputtered Al-Doped NiO Films. Appl. Sci. 2021, 11, 3104. [Google Scholar] [CrossRef]
- Huang, C.-Y.; He, X.-R.; Jhang, J.-J.; Wu, J.-H.; Wu, T.-H.; Lin, T.-Y. A self-powered dual-functional hybrid Cu2O/SiNWs heterojunction with applications in broadband photodetectors and ozone gas sensors. Sens. Actuators A Phys. 2022, 347, 113992. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Spinelle, L.; Gerboles, M.; Aleixandre, M.; Bonavitacola, F. Evaluation of Metal Oxides Sensors for the Monitoring of O3 in Ambient Air at Ppb Level. Chem. Eng. Trans. 2016, 54, 319–324. [Google Scholar] [CrossRef]
- Wang, C.Y.; Becker, R.W.; Passow, T.; Pletschen, W.; Köhler, K.; Cimalla, V.; Ambacher, O. Photon Stimulated Sensor Based on Indium Oxide Nanoparticles I: Wide-Concentration-Range Ozone Monitoring in Air. Sens. Actuators B Chem. 2011, 152, 235–240. [Google Scholar] [CrossRef]
- Sá, J.P.; Chojer, H.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Two step calibration method for ozone low-cost sensor: Field experiences with the UrbanSense DCUs. J. Environ. Manag. 2023, 328, 116910. [Google Scholar] [CrossRef]
- Baloria, V.; Yadav, A.; Singh, P.; Gupta, G. Chapter 5—Semiconductor oxide based chemiresistive gas sensors. In Micro and Nano Technologies, Carbon Nanomaterials and Their Nanocomposite-Based Chemiresistive Gas Sensors; Dhall, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–167. [Google Scholar] [CrossRef]
- Aguir, K.; Lemire, C.; Lollman, D.B.B. Electrical Properties of Reactively Sputtered WO3 Thin Films as Ozone Gas Sensor. Sensors Actuators B Chem. 2002, 84, 1–5. [Google Scholar] [CrossRef]
- de Lima, B.S.; Komorizono, A.A.; Silva, W.A.S.; Ndiaye, A.L.; Brunet, J.; Bernardi, M.I.B.; Mastelaro, V.R. Ozone detection in the ppt-level with rGO-ZnO based sensor. Sens. Actuators B Chem. 2021, 338, 129779. [Google Scholar] [CrossRef]
- Boulmani, R.; Bendahan, M.; Lambert-Mauriat, C.; Gillet, M.; Aguir, K. Correlation between rf-sputtering parameters and WO3 sensor response towards ozone. Sens. Actuators B Chem. 2007, 125, 622–627. [Google Scholar] [CrossRef]
- Bendahan, M.; Boulmani, R.; Seguin, J.L.; Aguir, K. Characterization of ozone sensors based on WO3 reactively sputtered films: Influence of O2 concentration in the sputtering gas, and working temperature. Sens. Actuators B Chem. 2004, 100, 320–324. [Google Scholar] [CrossRef]
- Hasan, M.H.; Yu, H.; Ivey, C.; Pillarisetti, A.; Yuan, Z.; Do, K.; Li, Y. Unexpected Performance Improvements of Nitrogen Dioxide and Ozone Sensors by Including Carbon Monoxide Sensor Signal. ACS Omega 2023, 8, 5917–5924. [Google Scholar] [CrossRef] [PubMed]
- Klaus, D.; Klawinski, D.; Amrehn, S.; Tiemann, M.; Wagner, T. Light-activated resistive ozone sensing at room temperature utilizing nanoporous In2O3 particles: Influence of particle size. Sens. Actuators B Chem. 2015, 217, 181–185. [Google Scholar] [CrossRef]
- Kumar, U.; Li, Y.-N.; Deng, Z.-Y.; Chiang, P.-C.; Yadav, B.C.; Wu, C.-H. Nanoarchitectonics with lead sulfide quantum dots for room-temperature real-time ozone trace detection with different light exposure. J. Alloy. Compd. 2022, 926. [Google Scholar] [CrossRef]
- de Palma, J.V.N.; Catto, A.C.; de Oliveira, M.C.; Ribeiro, R.A.P.; Teodoro, M.D.; da Silva, L.F. Light-assisted ozone gas-sensing performance of SnO2 nanoparticles: Experimental and theoretical insights. Sens. Actuators Rep. 2022, 4, 100081. [Google Scholar] [CrossRef]
- Bernardini, S.; Benchekroun, M.H.; Fiorido, T.; Aguir, K.; Bendahan, M.; Dkhil, S.B.; Gaceur, M.; Ackermann, J.; Margeat, O.; Videlot-Ackermann, C. Ozone Sensors Working at Room Temperature Using Zinc Oxide Nanocrystals Annealed at Low Temperature. Proceedings 2017, 1, 423. [Google Scholar] [CrossRef]
- Roy, D.; Hossain, M.R.; Hossain, M.K.; Hossain, M.A.; Ahmed, F. Density functional theory study of the sensing of ozone gas molecules by using fullerene-like Group-III nitride nanostructures. Phys. B Condens. Matter 2023, 650, 414553. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, Z.; Zhang, R.; Klamchuen, A.; He, Y.; Horprathum, M.; Chang, J.; Mi, L.; Li, M.; Wang, S.; et al. Sensitive and selective ozone sensor based on CuCo2O4 synthesized by a facile solution combustion method. Sens. Actuators B Chem. 2023, 375, 132912. [Google Scholar] [CrossRef]
- Gómez-Suárez, J.; Arroyo, P.; Cerrato-Álvarez, M.; Hontañón, E.; Masa, S.; Menini, P.; Presmanes, L.; Alfonso, R.; Pinilla-Gil, E.; Lozano, J. Development and Field Validation of Low-Cost Metal Oxide Nanosensors for Tropospheric Ozone Monitoring in Rural Areas. Chemosensors 2022, 10, 478. [Google Scholar] [CrossRef]
- Christaki, E.; Vasilaki, E.; Gagaoudakis, E.; Binas, V.; Vamvakaki, M.; Klini, A. Room temperature optical detection of ultra-low ozone concentration using photoluminescent ZnO nanohybrids. Sens. Actuators B Chem. 2022, 359, 131614. [Google Scholar] [CrossRef]
- Al-Resheedi, A.S.; Alhokbany, N.S.; Mahfouz, R.M. Radiation Induced Synthesis of In2O3 Nanoparticles-Part II: Synthesis of In2O3 Nanoparticles by Thermal Decomposition of Un-Irradiated and γ-Irradiated Indium Acetylacetonate. Mater. Res. 2015, 18, 931–938. [Google Scholar] [CrossRef]
- Gallagher, D.; Scanlan, F.; Houriet, R.; Mathieu, H.J.; Ring, T.A. Indium-Tin Oxide Thin Films by Metal-Organic Decomposition. J. Mater. Res. 1993, 8, 3135–3144. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; Moreno, J.M.C.; Anastasescu, M.; Moldovan, C.; Firtat, B.; Brasoveanu, C.; Muscalu, G.; et al. Nanostructured SnO2-ZnO Composite Gas Sensors for Selective Detection of Carbon Monoxide. Beilstein J. Nanotechnol. 2016, 7, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Firtat, B.; Moldovan, C.; Brasoveanu, C.; Muscalu, G.; Gartner, M.; Zaharescu, M.; Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; et al. Miniaturised MOX Based Sensors for Pollutant and Explosive Gases Detection. Sens. Actuators B Chem. 2017, 249. [Google Scholar] [CrossRef]
- Available online: https://www.osha.gov/laws-regs/standardinterpretations/1988-02-11#:~:text=The%20current%20OSHA%20permissible%20exposure,over%20an%20eight%2Dhour%20workshift (accessed on 14 March 2023).
- Thorp, C.E. Bibliography of Ozone Technology, Volume II; Armour Research Foundation, Illinois Institute of Technology: Chicago, IL, USA, 1955; p. 40. [Google Scholar]
- dos Santos Silva, W.A.; de Lima, B.S.; Bernardi, M.I.B.; Mastelaro, V.R. Enhancement of the Ozone-Sensing Properties of ZnO through Chemical-Etched Surface Texturing. J. Nanoparticle Res. 2022, 24, 96. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C. MOX-Based Resistive Gas Sensors with Different Types of Sensitive Materials (Powders, Pellets, Films), Used in Environmental Chemistry. Chemosensors 2023, 2023 11, 95. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Bratan, V.; Munteanu, C.; Gartner, M.; Ionescu, N.I. Carbon Monoxide Sensing Properties of TiO2. Rev. Roum. Chim. 2015, 60, 227–232. [Google Scholar]
- Chesler, P.; Hornoiu, C.; Bratan, V.; Munteanu, C.; Postole, G.; Ionescu, N.I.; Juzsakova, T.; Redey, A.; Gartner, M. CO Sensing Properties of SnO2–CeO2 Mixed Oxides. React. Kinet. Mech. Catal. 2016, 117, 551–563. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Mihaiu, S.; Munteanu, C.; Gartner, M. Tin–Zinc Oxide Composite Ceramics for Selective CO Sensing. Ceram. Int. 2016, 42, 16677–16684. [Google Scholar] [CrossRef]
- Chelu, M.; Chesler, P.; Anastasescu, M.; Hornoiu, C.; Mitrea, D.; Atkinson, I.; Brasoveanu, C.; Moldovan, C.; Craciun, G.; Gheorghe, M.; et al. ZnO/NiO Heterostructure-Based Microsensors Used in Formaldehyde Detection at Room Temperature: Influence of the Sensor Operating Voltage. J. Mater. Sci. Mater. Electron. 2022, 33, 19998–20011. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Gong, Y.; Liu, Y.; Zhou, P.; Suo, X.; Zeng, D.; Li, H. Construction of WO3 coatings with mi-cro-nano hybrid structures by liquid pre-cursor flame spray for enhanced sensing performances to sub-ppm ozone. Mater. Lett. 2017, 205, 106–109. [Google Scholar] [CrossRef]
- Acuautla, M.; Bernardini, S.; Gallais, L.; Fiorido, T.; Patout, L.; Bendahan, M. Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles. Sens. Actuators B Chem. 2014, 203, 602–611. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Li, P.; Zhou, X. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B Chem. 2019, 301, 127081. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Jadhav, H.S.; Shimizu, F.M.; Suman, P.H.; M’Peko, J.C.; Orlandi, M.O.; Seo, J.G.; Mastelaro, V.R.; Oliveira, O.N., Jr. Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sens. Actuators B Chem. 2018, 257, 906–915. [Google Scholar] [CrossRef]
- Catto, A.C.; Fiorido, T.; Souza, É.L.S.; Avansi, W.; Andres, J.; Aguir, K.; Longo, E.; Cavalcante, L.S.; da Silva, L.S. Improving the ozone gas-sensing properties of CuWO4 nanoparticles. J. Alloy. Compd. 2018, 748, 411–417. [Google Scholar] [CrossRef]
- Catto, A.C.; Bernardini, S.; Aguir, K.; Longo, E.; da Silva, L.F. In-situ hydrothermal synthesis of oriented hematite nanorods for sub-ppm level detection of ozone gas. J. Alloy. Compd. 2023, 947, 169444. [Google Scholar] [CrossRef]
- Colmenares, Y.N.; Correr, W.; Lima, B.S.; Mastelaro, V.R. The effect of morphology on the ozone-gas sensing properties of zinc oxide sputtered films. Thin Solid Film. 2020, 703, 137975. [Google Scholar] [CrossRef]
- Souissi, R.; Bouguila, N.; Bendahan, M.; Aguir, K.; Fiorido, T.; Abderrabba, M.; Hali-dou, I.; Labidi, A. Ozone sensing study of sprayed β-In2S3 thin films. J. Alloy. Compd. 2022, 900, 2163513. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Mudryi, A.V.; Sergeev, O.V.; Borisenko, V.E.; Pivin, J.C.; Baran, A.S.; Stepanova, E.A.; Ratko, A.I.; McGilp, J.F. Erbium and Terbium Luminescence from Sol–Gel Derived In2O3 Films on Porous Silicon. Phys. Status Solidi 1998, 165, 131–134. [Google Scholar] [CrossRef]
Materials | Concentration | Operating Temperature (°C) | Sensor Response | LOD | Ref. |
---|---|---|---|---|---|
Al-doped NiO films | 4% O2 in plasma | 80 | 2.54 | 10 ppb | [16] |
WO3 | 0.5–2.0 ppm | 150 | 3.9–46.7 | - | [47] |
ZnO | 0.3–5 ppm | 200 | 10.7–26 | - | [48] |
In2O3/ZnO | 150 | 14.4 | 500 ppb | [49] | |
ZnCo2O4 | 80–890 ppb | 200 | 71 | 890 ppb | [50] |
CuWO4 nanoparticles | 15–50 ppb | 250 | 4.2 | 15 ppb | [51] |
α-Fe2O3 nanorods | 10–570 ppb | 150 | - | - | [52] |
ZnO sputtered films | 0.13 ppm | 300 | - | - | [53] |
In2S3 thin films | 40 ppm | 160 | - | - | [54] |
In2O3 nanostructured films | 0.8–1.0 ppm | RT | 1.3–2.2 | 0.08 ppm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelu, M.; Chesler, P.; Hornoiu, C.; Anastasescu, M.; Calderon-Moreno, J.M.; Mitrea, D.; Brasoveanu, C.; Moldovan, C.; Gartner, M. Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature. Gels 2023, 9, 355. https://doi.org/10.3390/gels9050355
Chelu M, Chesler P, Hornoiu C, Anastasescu M, Calderon-Moreno JM, Mitrea D, Brasoveanu C, Moldovan C, Gartner M. Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature. Gels. 2023; 9(5):355. https://doi.org/10.3390/gels9050355
Chicago/Turabian StyleChelu, Mariana, Paul Chesler, Cristian Hornoiu, Mihai Anastasescu, Jose Maria Calderon-Moreno, Daiana Mitrea, Costin Brasoveanu, Carmen Moldovan, and Mariuca Gartner. 2023. "Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature" Gels 9, no. 5: 355. https://doi.org/10.3390/gels9050355
APA StyleChelu, M., Chesler, P., Hornoiu, C., Anastasescu, M., Calderon-Moreno, J. M., Mitrea, D., Brasoveanu, C., Moldovan, C., & Gartner, M. (2023). Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature. Gels, 9(5), 355. https://doi.org/10.3390/gels9050355