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Transient Gel Electrophoresis of a Spherical Colloidal Particle
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Abstract: The general theory is developed for the time-dependent transient electrophoresis of a
weakly charged spherical colloidal particle with an electrical double layer of arbitrary thickness in an
uncharged or charged polymer gel medium. The Laplace transform of the transient electrophoretic
mobility of the particle with respect to time is derived by considering the long-range hydrodynamic
interaction between the particle and the polymer gel medium on the basis of the Brinkman–Debye–
Bueche model. According to the obtained Laplace transform of the particle’s transient electrophoretic
mobility, the transient gel electrophoretic mobility approaches the steady gel electrophoretic mobility
as time approaches infinity. The present theory of the transient gel electrophoresis also covers the
transient free-solution electrophoresis as its limiting case. It is shown that the relaxation time for the
transient gel electrophoretic mobility to reach its steady value is shorter than that of the transient free-
solution electrophoretic mobility and becomes shorter as the Brinkman screening length decreases.
Some limiting or approximate expressions are derived for the Laplace transform of the transient gel
electrophoretic mobility.

Keywords: transient gel electrophoresis; transient electrophoresis; gel electrophoresis

1. Introduction

When an external electric field is suddenly applied to a suspension of colloidal par-
ticles, the particle starts to move with a time-dependent transient electrophoretic mobil-
ity, which reaches steady electrophoretic mobility as time goes to infinity. While there
are many theoretical studies on transient free-solution electrokinetics [1–17], including
transient electrophoresis of spherical hard particles [1,4,6,7,9,13,14,17], cylindrical hard
particles [2,11,16] and soft particles (i.e., polyelectrolyte-coated particles) [12,15], and on
steady gel electrophoresis [18–39] including gel electrophoresis of spherical hard parti-
cles [18–25,28,30–32,34,35], soft particles [26,27,29,33,36–38] and liquid droplets [39], there
are only a few theoretical studies on the transient gel electrophoresis by Saad and Faltas [40],
Saad [41,42], and Sherief, et al., [43]. In the present paper, we further develop the theory
of Saad and Faltus [40] and present the general theory of transient gel electrophoresis of a
weakly charged, spherical solid colloidal particle with an electrical double layer of arbitrary
thickness. There are two types of interactions between the particle and the gel medium:
(i) the short-range steric interaction due to the particle-gel friction, and (ii) the long-range
hydrodynamic interaction. For dilute gels, where the particle size is much smaller than
the gel pore size, the long-range hydrodynamic interaction becomes dominant. In this
paper, we treat a dilute gel medium and consider the long-range hydrodynamic interaction
between the particle and the polymer gel medium on the basis of the Brinkman–Debye–
Bueche model [44,45] and derive an expression for the Laplace transform of the transient
electrophoretic mobility of a spherical solid colloidal particle. From the obtained Laplace
transform of the transient gel electrophoretic mobility, the transient gel electrophoretic
mobility can be derived numerically by using the inverse Laplace transformation.
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2. Theory
2.1. Fundamental Electrokinetic Equations

Consider a charged spherical colloidal particle of radius a and relative permittivity εp,
carrying zeta potential ζ in a charged polymer gel medium containing an electrolyte solu-
tion of viscosity η and relative permittivity εr. The Brinkman–Debye–Bueche continuum
medium [44,45] is employed, in which polymer segments are considered to be resistance
centers, exerting frictional forces on the liquid flowing through the gel medium. The gel
medium is regarded as a uniform continuum medium, which contains fixed charges of
density ρfix, free mobile electrolyte ions of density ρel(r) at position r, including added
electrolyte ions and gel counterions. Let the electrolyte be composed of N ionic species of
valence zi, bulk concentration (number density) n∞

i and drag coefficient Λi (i = 1, 2, . . . ,
N), and the gel counterions be of N + 1-th ionic species of valence zN+1, bulk concentration
(number density) n∞

N+1 and drag coefficient ΛN+1. The electroneutrality condition of the
system is given by

N+1

∑
i=1

zien∞
i + ρfix = 0 (1)

where e is the elementary electric charge.
We suppose that at time t = 0, a step electric field E(t) is suddenly applied to the

particle, viz.,

E(t) =
{

0, t = 0
Eo, t > 0

(2)

where Eo is a constant. The particle then starts to migrate with an electrophoretic velocity
U(t) (U(t)cosθ, −U(t)sinθ, 0) in the direction parallel to Eo, U(t) being the magnitude of U(t)
(Figure 1).
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applied electric field E(t) is so weak that the particle velocity U(t) is proportional to E(t), 
and terms involving the square of the liquid velocity in the Navier–Stokes equation can 
be neglected in our model; (iii) the slipping plane, at which the liquid velocity u(r, t) rela-
tive to the particle is zero, is located on the particle surface (at r = a); (iv) electrolyte ions 
cannot penetrate the particle surface [46]; and (v) in equilibrium (in the absence of E(t)), 

Figure 1. Spherical colloidal particle of radius a and zeta potential ζ moving with transient elec-
trophoretic velocity U(t) in a polymer gel medium under an applied step electric field E(t). U(∞) is
the magnitude of the static electrophoretic velocity at t = ∞.

Our model uses a frame of reference fixed at the center of the particle. The origin of
the coordinate system (r, θ, φ) is held fixed at the particle center, and the polar axis (θ = 0) is
set parallel to E (t). The transient electrophoretic mobility µ(t) of the particle is defined by
U(t) = µ(t)E(t) = µ(t)Eo. Our model treats the case in which the following conditions are
fulfilled: (i) the liquid in the gel medium can be considered to be incompressible; (ii) the
applied electric field E(t) is so weak that the particle velocity U(t) is proportional to E(t),
and terms involving the square of the liquid velocity in the Navier–Stokes equation can be
neglected in our model; (iii) the slipping plane, at which the liquid velocity u(r, t) relative
to the particle is zero, is located on the particle surface (at r = a); (iv) electrolyte ions cannot
penetrate the particle surface [46]; and (v) in equilibrium (in the absence of E(t)), the ion



Gels 2023, 9, 356 3 of 12

distribution is assumed to be given by the Boltzmann distribution and the electric potential
follows the Poisson–Boltzmann equation.

Under these conditions (i)–(v), the fundamental electrokinetic equations for the liquid
flow velocity u(r, t) (ur(r, t), uθ(r, t), 0) at position r(r, θ, φ) and time t and the velocity vi(r, t)
of i th ionic species are given by.

ρo
∂

∂t
{u(r, t) + U(t)}+ η∇×∇× u(r, t) +∇p(r, t) + ρel(r, t)∇ψ(r, t) + γ(u(r, t) + U(t)) = 0 (3)

∇·u(r, t) = 0 (4)

vi(r, t) = u(r, t)− 1
Λi
∇µi(r, t) (5)

∂ni(r, t)
∂t

+∇·{ni(r, t)vi(r, t)} = 0 (6)

with

ρel(r, t) =
N+1

∑
i=1

zini(r, t) (7)

µi(r, t) = µo
i + zieψ(r, t) + kTln[ni(r, t)] (8)

∆ψ(r, t) = −ρel(r, t)
εrεo

(9)

where k is the Boltzmann constant, T is the absolute temperature, εo is the permittivity of a
vacuum, p(r, t) is the pressure, ρel(r, t) is the charge density and ψ(r, t) is the electric potential.
Equation (3) is the Navier–Stokes equation, and Equation (4) is the equation of continuity
for an incompressible flow (condition (i)). The term involving U (t) in Equation (3) arises
from the fact that the particle has been chosen as the frame of reference for the coordinate
system. Equation (5) means that the flow vi(r, t) of the i th ionic species is caused by u(r, t),
and the gradient of the electrochemical potential µi(r, t), given by Equation (8), in which
µo

i is a constant term. Equation (6) is the continuity equation for the i th ionic species.
Equation (9) is the Poisson equation. Note that in the absence of the particle, there exists
a time-dependent transient electroosmotic flow, which is parallel to E(t). The transient
electroosmotic flow velocity uEOF(t) = (uEOF(t)cosθ, −uEOF(t)sinθ, 0) obeys

ρo
∂

∂t
uEOF(t) + ρfixE(t) + γuEOF(t) = 0 (10)

where uEOF(t) is the magnitude of uEOF(t).
The following initial condition and boundary conditions at the particle surface (at

r = a) and far from the particle (r→ ∞) must be satisfied:

u(r, t) = 0 at t = 0 (11)

u(r, t) = 0 at r = a (12)

u(r, t)→ −U(t) + uEOF(t) at as r → ∞ (13)

vi(r, t)·n̂ = 0 at r = a (14)

ψ(r, t)→ −E(t)·r as r → ∞ (15)
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where n̂ is the unit normal outward from the particle surface. Equation (12) is the no-slip
boundary condition at the particle surface (condition (iii)). Equation (14) is derived from
condition (iv). Equation (15) implies that ψ(r, t) tends to the potential of the applied electric
field E(t) as r→∞.

In addition, the particle velocity U(t) obeys the following equation of motion of the particle:

4πa3

3
ρp

dU(t)
dt

= FH(t) + FE(t) (16)

where FH(t) and FE(t) are, respectively, the hydrodynamic and electric forces acting on the
particle and are defined by

FH(t) =
∫ π

0

[(
−p + 2η

∂ur

∂r

)
cosθ − η

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
sinθ

]
r=a

2πa2sinθdθ
E(t)
Eo

(17)

FE(t) = εrεo

∫ π

0

[{
∂ψ

∂r

(
∂ψ

∂r
cosθ − 1

r
∂ψ

∂θ
sinθ

)}
− 1

2

{(
∂ψ

∂r

)2
+

(
1
r

∂ψ

∂θ

)2
}

cosθ

]
r=a

2πa2sinθdθ
E(t)
Eo

(18)

Equation (16) serves as a boundary condition for u(r, t).

2.2. Weak Electric Field Approximation

For a weak electric field E(t), the deviations of nj(r, t), ψ(r, t) and µj(r, t) from their
equilibrium values due to E(t) are all small so that we may write

ni(r, t) = n(0)
i (r) + δni(r, t) (19)

ψ(r, t) = ψ(0)(r) + δψ(r, t) (20)

µi(r, t) = µ
(0)
i + δµi(r, t) (21)

where the quantities with superscript (0) refer to the equilibrium values and µ
(0)
i is a

constant independent of r. The equilibrium concentration n(0)
i (r) is assumed to be given

by the Boltzmann distribution, and the equilibrium electric potential obeys the Poisson–
Boltzmann equation (condition (v)), viz.,

n(0)
i (r) = n∞

i exp

(
− zieψ(0)(r)

kT

)
(22)

∆ψ(0)(r) = −
ρ
(0)
el (r) + ρfix

εrεo
(23)

ρ
(0)
el (r) =

N+1

∑
i=1

zien(0)
i (r) =

N+1

∑
i=1

zien∞
i exp

(
− zieψ(0)(r)

kT

)
(24)

The boundary conditions for ψ(0)(r) are given by

ψ(0)(a) = ζ (25)

ψ(0)(r)→ 0 as r → ∞ (26)

By substituting Equations (19)–(21) into Equation (3) and neglecting the products of
the small quantities, we finally obtain
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ρo
∂

∂t
∇× u(r, t) + η∇×∇×∇× u(r, t) + γ∇× u(r, t) +

N+1

∑
i=1
∇n(0)

i (r)×∇δµi(r) = 0 (27)

and form Equation (6)

∂

∂t
δni(r, t) +∇·

{
n(0)

i (r)u(r, t)− 1
Λi

n(0)
i (r)∇δµi(r, t)

}
= 0 (28)

Further, from symmetry, we may write

u(r, t) =
(
−2

r
h(r, t)E(t)cosθ,

1
r

∂

∂r
(rh(r, t))E(t)sinθ, 0

)
(29)

δµi(r, t) = −zieφi(r, t)E(t)cosθ (30)

δψ(r, t) = −Y(r, t)E(t)cosθ (31)

where E(t) is the magnitude of E(t), and h(r, t), φi(r, t) and Y(r, t) are functions of r and t.
By substituting Equations (29)–(31) into Equations (27) and (28), we obtain the following
equations for h(r) and φi(r), and Y(r):

L
[

Lh(r, t)− λ2h(r, t)− 1
ν

∂h(r, t)
∂t

]
= G(r, t) (32)

Lφi(r, t)− Λi
kT

∂

∂t
{φi(r, t)−Y(r, t)} = dy(r)

dr

{
zi

∂φi(r, t)
∂r

− 2λi
e

h(r, t)
r

}
(33)

LY(r, t) =
e2

εrεokT

N+1

∑
i=1

z2
i n∞

i e−ziy(r){Y(r, t)− φi(r, t)} (34)

with

y(r) =
eψ(0)(r)

kT
(35)

λ =

(
γ

η

)1/2
(36)

where the scaled equilibrium electric potential y(r) is introduced, λ is the reciprocal of the
Brinkman screening length 1/λ,

L =
∂

∂r
1
r2

∂

∂r
r2 =

∂2

∂r2 +
2
r

∂

∂r
− 2

r2 (37)

is a differential operator, and G(r, t) is defined by

G(r, t) = − e
ηr

dy
dr

N

∑
i=1

z2
i n∞

i e−ziyφi(r, t) (38)

and
ν =

η

ρo
(39)

is the kinematic viscosity.
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2.3. General Expression for the Laplace Transform of the Transient Gel Electrophoretic Mobility

The transient electrophoretic mobility µ(t) can be obtained from Equation (13), viz.,

µ(t) =
U(t)
E(t)

=
U(t)

Eo
= 2 lim

r→∞

h(r, t)
r

+ u(t) (40)

Here h(r, t) is the solution to Equation (32), which can be most easily solved by using
the Laplace transformation with respect to time t. The Laplace transforms ĥ(r, s), ûEOF(s),
Ĝ(r, s) and µ̂(s) of h(r, t), uEOF(t), G(r, t) and µ(t), respectively, are defined by

ĥ(r, s) =
∫ ∞

0
h(r, t)e−stdt (41)

ûEOF(s) =
∫ ∞

0
uEOF(t)e−stdt (42)

Ŷ(r, s) =
∫ ∞

0
Y(r, t)e−stdt (43)

Ĝ(r, s) =
∫ ∞

0
G(r, t)e−stdt (44)

Thus, the Laplace transform of Equation (32) yields

L
[

Lĥ(r, s)− λ2ĥ(r, s)− s
ν

ĥ(r, s)
]
= Ĝ(r, s) (45)

which is solved to give

ĥ(r, s) = − 1
3β2

∫ r

∞

(
r− x3

r2

)
Ĝ(x, s)dx

− 1
β3

∫ r

∞

{(
x

βr2 −
1
βr

)
cosh[β(r− x)]−

(
x
r
− 1

β2r2

)
sinh[β(r− x)]

}
Ĝ(x, s)dx

−C1r
β2 −

C2

β2r2 + C3

(
β

r
+

1
r2

)
e−β(r−a) (46)

with

β =

√
λ2 +

s
ν

(47)

where C1–C3 are integration constants to be determined.
From the Laplace transform of Equation (10), we obtain

ûEOF(s) = −
ρfix

ηβ2s
Eo (48)

Equation (40) for the Laplace transform of the transient gel electrophoretic mobility
µ(t) thus becomes

µ̂(s) = 2 lim
r→∞

ĥ(r, s)
r
− ρfix

ηβ2s
(49)

By determining the integration constants C1–C3 in Equation (46) to satisfy the bound-
ary conditions (Equations (11)–(16)) and using Equation (40), we finally obtain the following
expression for the Laplace transform µ̂(s) of the transient gel electrophoretic mobility µ(t)
of a sphere:

µ̂(s) =
2

3β2Ω

∫ ∞

a

{
−
(

1 + βa +
β2a2

3

)
+ (1 + βr)e−β(r−a) +

β2r3

3a

}
Ĝ(r, s)dr
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− ρfix

ηβ2Ωs

{
1 + βa +

β2a2

3
− 2β2as

9
Ŷ(a, s)

}
(50)

with

Ω = 1 + βa +
β2a2

9
+

2ρp

9ρo

a2

ν
s (51)

3. Results and Discussion

Equation (50) is the required general expression for µ̂(s), which is applicable for arbitrary
values of the particle zeta potential ζ and κa. The transient electrophoretic mobility µ(t) can be
obtained numerically from Equation (50) by the inverse transform method.

Consider the following two limiting cases. In the limit of t → ∞, µ(t) tends to the
steady gel electrophoretic mobility µ(∞) = µs, which can be obtained from µ̂(s) by using
the following formula:

µs = µ(∞) = lim
s→0

[sµ̂(s)] (52)

The result is

µs =
2

3λ2Ωs

∫ ∞

a

{
−
(

1 + λa +
λ2a2

3

)
+ (1 + λr)e−λ(r−a) +

λ2r3

3a

}
G(r)dr− ρfix

ηλ2

[
1− 2λ2a2

9Ωs

{
Y(a)

a
− 1
}]

(53)

with

Ωs = 1 + λa +
λ2a2

9
(54)

Equation (53) agrees with the general expression for the steady electrophoretic mobility
m(t) of a sphere in a polymer gel medium [35]. Next, in the limit of ρfix = 0 and λ = 0, i.e.,
β =
√

s/ν), Equation (50) reduces to

µ̂(s) =
2ν

3sΩf

∫ ∞

a

{
−
(

1 + a
√

s
ν
+

a2s
3ν

)
+

(
1 +

√
s
ν

r
)

exp
[
−
√

s
ν
(r− a)

]
+

r3s
3aν

}
Ĝ(r, s)dr (55)

with

Ωf = 1 + a
√

s
ν
+

a2s
9ν

+
2ρp

9ρo

a2s
ν

(56)

which agrees with the general expression for the Laplace transform µ̂(s) of the transient
electrophoretic mobility µ(t) of a sphere in a free solution [14]. It is thus found that in the
above two limiting cases, Equation (50) reduces to the correct limiting forms.

Now consider the case where the particle ζ potential is low, and the relative permittiv-
ity of εp of the particle is much smaller than that of the electrolyte solution εr (εp « εr) so
that εp is practically equal to zero. In this case, Equations (33) and (34) give

φi(r, t) = Y(r, t) = r +
a3

2r2 (57)

and Equation (38) becomes

G(r, t) = − εrεoκ2

η

(
1 +

a3

2r3

)
dψ(0)(r)

dr
(58)

with

κ =

√√√√ e2

εrεokT

N+1

∑
i=1

z2
i n∞

i (59)
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where κ is the Debye–Hückel parameter (1/κ is the Debye length). The Laplace transform
Ĝ(r, s) of G(r, t) is thus given by

Ĝ(r, s) =
G(r, t)

s
= − εrεoκ2

ηs

(
1 +

a3

2r3

)
dψ(0)(r)

dr
(60)

where the equilibrium electric potential ψ(0)(r) for low ζ potential is given by

ψ(0)(r) = ζ
a
r

e−κ(r−a) (61)

which is obtained from the linearized Poisson–Boltzmann equation ∆ψ(0)(r) = κ2ψ(0)(r) (see
Equation (23)). By substituting Equation (58) into Equation (55), we obtain

µ̂(s) =
2εrεoκ2

3β2Ωηs

∫ ∞

a

{(
1 + βa +

β2a2

3

)
− (1 + βr)e−β(r−a) − β2r3

3a

}(
1 +

a3

2r3

)
dψ(0)(r)

dr
dr− ρfix

ηβ2Ωs
(1 + βa) (62)

Equation (62) can be rewritten in terms of exponential integrals as

µ̂(s) =
2εrεoζ

3ηΩs

[
1 +

κβa
κ + β

+
3κ2

2β2

(
1 + βa +

β2a2

3

)
eκaE5(κa)

− 3κ2

2β2 e(κ+β)a
{

E5((κ + β)a) + βaE4((κ + β)a) +
β2a2

3
E3((κ + β)a)

}]
− ρfix

ηβ2Ωs
(1 + βa) (63)

where En(κa) is the exponential integral of order n and is defined by

En(κa) = (κa)n−1
∫ ∞

κa

e−t

tn dt (64)

Equations (62) and (63) are the generalization of the result of Saad and Faltas [40] and
are applicable for low zeta potentials and arbitrary values of κa.

Equations (62) and (63) involve integration or exponential integrals, so they are not
very convenient for practical use. To avoid this inconvenience, we approximately replace r
in the factor (1 + a3/2r3) by r = a + δ/, viz.,

1 +
a3

2r3 ≈ 1 +
1

2
(

1 + δ
κa

)3 (65)

In the steady gel electrophoresis [35], we have found that the best approximation can
be achieved if δ is chosen to be δ = (2.33κ + 1.52λ)/(κ + λ), and the maximum relative error
becomes less than 1.6%. We use this choice of δ in the transient gel electrophoresis problem.
By using this approximation, the integration in Equation (62) can be carried out analytically
to give

µ̂(s) =
2εrεoζ

3ηΩs

(
1 +

κβa
κ + β

)1 +
1

2
{

1 + (2.33κ+1.52β)
(κ+β)κa

}3

− ρfix

ηλ2Ωs
(1 + βa) (66)

We next consider the following two limiting cases.
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(i) In the limit of κa→ ∞ (Smoluchowski limit), Equation (66) becomes

µ̂(s) =
εrεoζ(1 + βa)

ηΩs
− ρfix

ηβ2Ωs
(1 + βa) (67)

(ii) In the limit of κa→ 0 (Hückel limit), Equation (66) becomes

µ̂(s) =
2εrεoζ

3ηΩs
− ρfix

ηβ2Ωs
(1 + βa) (68)

Figure 2 shows some results of the calculation of the transient gel electrophoretic
mobility µ(t) of a sphere of radius a, zeta potential ζ and mass density ρp in an uncharged
gel medium (ρfix=0) of the Debye length 1/κ, mass density ρo and viscosity η. The ratio of
µ(t) at time t to its value µ(∞) at t = ∞, which is the steady gel electrophoretic mobility µs
(µ(∞) = µs), is plotted as a function of the scaled time νt/a2, ν being the kinematic viscosity
(ν = η/ρo) for κa = 10 and ρp/ρo = 2. The transient gel electrophoretic mobility can be
obtained numerically from µ̂(s) (Equation (63) or Equation (66) with negligible errors) via
the inverse Laplace transformation method.
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Figure 2. Transient gel electrophoretic mobility µ(t) of a sphere of radius a and mass density ρp, carrying
zeta potential ζ in an uncharged gel medium (ρfix = 0) of the Debye length 1/κ, mass density ρo and
viscosity η. The ratio of µ(t) at time t to its value µ(∞) at t = ∞, which is equal to the steady gel
electrophoretic mobility µs (µ(∞) = µs), is plotted as a function of the scaled time νt/a2, ν being the
kinematic viscosity (ν = η/ρo) for the case where κa = 10 and ρp/ρo = 2). The dotted curves (λa = 10,
and 100) are the result calculated in Equation (72) for the large λa approximate gel electrophoretic mobility.

Figure 2 shows that the relaxation time required for µ(t) to reach its steady value µs
becomes shorter as λa increases. An approximate expression for the relaxation time T for
large λa can be derived as follows. For large λa, β in Equation (60) can be approximately
replaced with λ and Equation (61) reduces to

µ̂(s) =
2εrεoκ2

3λ2Ωηs

∫ ∞

a

{(
1 + λa +

λ2a2

3

)
− (1 + λr)e−β(r−a) − λ2r3

3a

}(
1 +

a3

2r3

)
dψ(0)(r)

dr
dr− ρfix

ηλ2Ωs
(1 + λa) (69)

and we obtain
µ̂(s)
µs

=
Ωs

sΩ
=

Ωs

s
(

Ωs +
2ρp
9ρo

a2

ν s
) (70)
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From Equation (70), the transient gel electrophoretic mobility µ(t) can be derived, viz.,

µ(t)
µs

= 1− exp
(
−9ρoΩs

2ρp

νt
a2

)
(71)

which can be rewritten as
µ(t)
µs

= 1− e−t/T (72)

with

T =
2ρpa2

9ρoΩsν
(73)

Here T can be regarded as the relaxation time. The relaxation time Tf for the transient
free-solution electrophoresis is given by

Tf =
2ρpa2

9ρoν
(74)

so that
T
Tf

=
1

Ωs
=

1
1 + λa + λ2a2/9

(75)

which shows that the relaxation time T for the transient gel electrophoresis is shorter than
the relaxation time Tf for the transient free-solution electrophoresis by a factor Ωs and
becomes shorter as λa decreases. This is because the steady gel electrophoretic mobility
µs itself becomes smaller as λa increases [36], and the time required to reach the steady
value becomes smaller as λa increases. The dotted curves (λa = 10, and 100) are the results
calculated via Equation (72) for the large λa approximate gel electrophoretic mobility.

4. Conclusions

We have derived an approximate expression (Equation (63)) and its approximate form
with negligible errors (Equation (66)) for the Laplace transform µ̂(s) of the transient gel
electrophoretic mobility µ(t) of a sphere in a polymer gel medium. Equations (63) and (66)
are the generalization of the result of Saad and Faltas [40] and are applicable for low zeta
potentials and arbitrary values of κa. Equation (66), in particular, which does not involve
exponential integrals, is convenient for practical use. It is shown that the relaxation time T for
the transient gel electrophoretic mobility µ(t) to reach its steady value µs is shorter than that
for the transient free-solution electrophoretic mobility, and T becomes shorter as λa increases.
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