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Abstract: Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions
of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis signifi-
cantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment
and to facilitate proper healing in the most complicated cases, one of the most promising methods is to
deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis,
where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote
new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of
therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the
field of regenerative medicine. In this review article, we propose five important aspects of therapeutic
growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors
from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF
release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects
of therapeutic growth factors and carriers/scaffolds.

Keywords: therapeutic growth factor delivery; osteoarthritis; osteoporosis; controlled delivery;
osteoimmunology; biomaterials

1. Introduction

Osteoporosis (OP) and osteoarthritis (OA) are two major health concerns affecting
millions of people worldwide, causing significant medical and financial burden [1,2]. In the
United States, over 50 million individuals display low bone mass, with 10 million suffering
from osteoporosis, which leads to fragility fractures that impose a yearly economic burden
of USD 17–20 billion on healthcare [3,4]. Cartilage degeneration in osteoarthritis afflicts
15% of the adult population, with a lifetime risk of 40% and a societal cost estimated to be
as high as 2.5% of the gross domestic product annually [5–7]. Therefore, there is a great
and growing unmet need for novel types of regenerative medicine that could address
these issues.

There exist two main approaches to treating OP, namely, inhibiting further bone
resorption and promoting new bone formation. Bisphosphonates, the monoclonal antibody
denosumab, and selective estrogen receptor modulators are among the current medications
used to inhibit bone resorption by blocking osteoclast activity [8]. Alternatively, promoting
new bone formation is achieved using parathyroid hormone (PTH) and romosozumab, a
sclerostin inhibitor that reduces osteoblastic bone formation by inhibiting canonical Wnt/β-
catenin signaling. Although these treatments are promising, several challenges remain.
For instance, the anabolic effects of PTH are not sustained after therapy discontinuation,
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and hypercalcemia is among the side effects reported, possibly due to the off-target effects
of PTH [9]. Thus, developing a continuous releasing system with a biomaterial may help
improve the treatment.

The primary approach to managing OA revolves around mitigating pain by means
of oral or injected analgesics or anti-inflammatory agents. In conjunction with these
pharmacological interventions, physical therapy is employed to fortify the musculature
surrounding the affected joint, thereby diminishing discomfort. In extreme cases, the
utilization of orthopedic prostheses for joint or bone replacement is considered as a last
resort; nevertheless, the invasive nature of these surgical procedures precludes their use in
certain patients [10,11].

Targeted delivery of therapeutic growth factors (GF) using hydrogel scaffolds presents
a promising avenue for addressing the current limitations of treatments for OP and OA.
Examples for such therapeutic GFs for bone and cartilage regeneration include, but are not
limited to basic fibroblast growth factor (bFGF), bone morphogenetic proteins (BMPs), and
platelet-derived growth factor (PDGF), and their mechanism of action is well-summarized
in [12]. The potential of GFs to regenerate articular cartilage makes them a promising cure
for OA, while their targeted delivery allows for increased specificity and reduced side
effects compared to small molecules, such as PTH [13,14]. Moreover, therapeutic GFs may
receive faster approval from the FDA than small-molecule drugs, making them an attractive
option for the pharmaceutical industry [15]. With all these advantages, GF therapy is a
very powerful tool to regenerate weakened bone and lost cartilage.

However, GFs also possess some disadvantages, such as instability, acting on untar-
geted tissue, difficulty in controlling release kinetics, and unknown immunomodulatory
effects. To overcome these obstacles, numerous studies have been conducted to improve GF
therapy. In this review, we investigate five important considerations for the development
of therapeutic protein delivery systems with the aid of hydrogels for bone and cartilage
regeneration, including (1) protein protection, (2) target delivery, (3) controlled release,
(4) long-term stability of regenerated tissues, and (5) osteoimmunology.

2. Protection from Physical and Enzymatic Degradation

GFs are potent, yet sensitive therapeutic compounds. They reach their best potential
when maintained in an environment where the temperature, pH, and osmolarity suit the
protein. For example, BMP-2, one of the most potent GFs to induce bone, promotes 1.7 times
higher mineralization in vivo if implanted with an acidic scaffold (pH 4.8) compared to a
neutral scaffold (pH 6.2) [16]. Inappropriate environments lead to hydrolysis, oxidation,
isomerization, reduction, deamidation, photodegradation, and disulfide scrambling, all
of which result in misfolded proteins with decreased functional activity [17]. Therefore,
these physical/chemical parameters are crucial to consider when delivering proteins of
interest. Besides the physical/chemical factors, it is important to be mindful of enzymatic
factors that affect protein degradation. Examples include trypsin, pepsin, chymotrypsin,
carboxypeptidase, and elastase [18]. In addition to considering these environmental fac-
tors, designing a scaffold/carrier for GF or engineering GF itself to reduce enzymatic
degradation are essential aspects in protein delivery.

2.1. Usage of Carriers to Protect Growth Factors

One method to prevent therapeutic GFs from physical/enzymatic degradation is to
use carriers/hydrogels to encapsulate the GFs. Liposomes, such as glycosylated liposomes,
prevent GFs from enzymatic degradation [19,20] because glycosylation stabilizes lipid
vesicles against further destabilization. In fact, the stability of insulin was well preserved
in a glycosylated liposome even under extreme stress conditions [20]. Another example
is PODS™ (polyhedrin delivery system). This product is highly durable and crystalline,
allowing it to encase therapeutic GFs within a polyhedrin protein frame to protect them
from degradation. A study showed significantly improved bone formation with BMP-2 en-
capsulated in PODS in a rat calvarial bone defect model [21]. Another study demonstrated
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that heparinized chitosan hydrogel as a scaffold successfully stabilized the bioactivity of
BMP-2 and protected it from proteolysis [22]. In addition to its protective role of GFs,
chitosan also promotes the differentiation of human mesenchymal stem cells (MSCs), show-
ing higher mineral deposition and calcium content together with genes associated with
calcium-binding and mineralization [23], serving as an attractive carrier for delivering GFs
for bone/cartilage regeneration.

2.2. Engineering Proteins to Increase Stability of GFs

Another method to improve the protection of GFs is to engineer the GFs themselves
for enhanced stability. The examples include (1) modifying the ubiquitination site and the
addition of (2) a heparin-mimicking domain, (3) T4 lysozyme, and (4) elastin-like protein
(EPL) domains. Modifying the amino acid at the site of ubiquitination is one common
technique to engineer GFs for increased stability. For example, degradation of BMP-2 occurs
through a ubiquitin-mediated mechanism; thus, Khattar et al. mutated individual lysine
residues within BMP-2, where ubiquitination mainly occurred. This study showed that
substitutions of four lysine residues within the pro-BMP-2 region and three in the mature
region increased BMP-2 stability and extracellular secretion [24]. Increasing the stability
of GFs by adding a stabilizing domain can also be a solution. Nguyen et al. conjugated
basic fibroblast growth factor (bFGF) covalently with a heparin-mimicking polymer, a
copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing PEG
side chains. Their results showed that bFGF retained bioactivity after the synthesis and
was stable under various environmentally and therapeutically relevant stressors, such as
heat, mild and harsh acidic conditions, storage, and proteolytic degradation, unlike native
bFGF [25]. A recent study fused BMP-2 with T4 lysozyme, a small (164 amino acids) and
highly soluble protein, to increase the solubility of BMP-2 and successfully extended its half-
life threefold [26]. Elastin-like proteins (ELP) can also prolong the half-life time of GFs. By
tuning the ELP transition temperature, GF–ELP fusions can be designed to aggregate and
form a micelle structure that protects therapeutic GFs [27]. These methods can dramatically
increase the lifetime of therapeutic proteins, contributing to the advancement of therapeutic
protein delivery. The strategies used to protect GFs from degradation are summarized in
Figure 1.
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sulfonation, functionalizing with T4 lysozyme, and fusing with elastin-like protein. Figure created
with Biorender.com.

3. Targeted Delivery of Growth Factors

The second critical aspect to consider while developing GF therapies is the delivery
of the GF to a desired location. One of the most significant clinical problems in using
BMP-2 is ectopic bone formation, i.e., mineralization in undesired tissue regions. Ectopic
bone formation results from delivery of BMP-2 not restricted to the target location or weak
retention of the BMP-2 to the scaffold when administered locally. In order to prevent GFs
from traveling to undesired locations, two strategies can be applied: conjugating GFs with
a bone/cartilage targeting motif to actively deliver them to skeletal tissues or immobilizing
GFs to a scaffold/biomaterial. In this context, the term “targeted delivery” refers to the
active delivery of GFs to a specific location (localized delivery).

Biorender.com
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3.1. Active Delivery with Bone/Cartilage Targeting Motifs

This section introduces common targeting motifs to deliver therapeutic GFs to bone/cartilage
actively. We will review the use of small molecule, short peptide sequences, aptamers, and
antibody fragments as targeting motifs.

To deliver therapeutic GFs to bone and cartilage, targeting motifs can be conjugated
with GFs, such as bisphosphonates (BPs), which inhibit bone digestion by inducing apopto-
sis of osteoclasts and have a high affinity for bone minerals [28]. Gitten et al. demonstrated
that BP-conjugated model proteins bind more strongly to hydroxyapatite than model
proteins without BP [29]. Other therapeutic protein or peptides, including osteoprote-
gerin (OPG), salmon calcitonin, and superoxide dismutase (SOD), can also be conjugated
with BP for targeted delivery [30–32]. OPG inhibits excessive osteoclastogenesis, which
preserves bone mass and helps bone regeneration. Doschak et al. conjugated BPs with
OPG and achieved a four-fold higher bone targeting ability compared to the OPG-only
control in vivo [30]. Salmon calcitonin is known as a therapeutic polypeptide used for
OP. A four-fold increase in targeting to bone mineral components was observed by BP
conjugation of calcitonin in vitro [32]. SOD inhibits tumor growth and metastasis [33], and
Katsumi et al. conjugated it with polyethylene glycol (PEG) and nitrogen-containing BPs or
alendronate (ALN) to achieve targeted delivery. Although systemically administered SOD
was not delivered to the bone, ALN–PEG–SOD achieved a 36% delivery rate in vivo [31].
Tetracycline is another small molecule with a high affinity for bone, and it has been shown
to have potential applications in bone targeting beyond its use as an antibiotic against
bacterial infections [34]. Xie et al. conjugated tetracycline with simvastatin encapsulated
in PLGA micelles to achieve targeted delivery of simvastatin to bone [35]. Simvastatin
is a small molecule known to stimulate bone formation, increase cartilage thickness, and
reduce inflammation at surgical sites.

In addition to small molecules, short peptide sequences are also capable of exhibiting
a strong affinity for bone, cartilage, and tendon, making them useful as targeting motifs.
One example is the “CAR” peptide sequence, starting from cysteine, alanine, and arginine,
which possesses a heparin-binding motif that accumulates in skin and tendon. While
Järvinen et al. demonstrated the accumulation of a CAR peptide (CARSKNKDC) in
skin and tendon, indicating its potential as a targeting therapy of tendon regeneration,
the specificity of the binding of CAR peptide is not high, as it also targets endothelial
cells [36,37]. On the other hand, seven aspartic acid repetitions (DDDDDDDC) were
found to bind to hydroxyapatite and mineralized matrix, making them effective bone
targeting peptides [38]. Using this targeting motif, Sun et al. conjugated the aspartic acid
repetitions with P24 (BMP-2 related proteins) to achieve targeted delivery [39]. To achieve
cell-specific targeting, phage display methods have been employed in recent studies, such as
identifying the “SDSSD” peptide that selectively binds to osteoblasts and the “EPLQLKM”
(E7) sequence that specifically binds to MSCs [40,41]. These targeting motifs have been
utilized to deliver various therapeutic agents, such as kartogenin for chondrogenic and
chondroprotective effects and mi-RNA 140 for its protective role in chondrocytes [41–43].
As an application, these targeting sequences can be fused with exosome-enriched proteins
so that the sequence would be incorporated in the exosome to create chondrocyte targeting
exosomes. Liang et al. utilized chondrocyte targeting exosomes to deliver mi-RNA 140,
indicating the potential use of exosomes as a vehicle with an active targeting motif [44].
Newman et al. have summarized several other peptide–nanoparticle conjugations for bone
targeting [45].

Aptamers have also been applied as targeting motifs for bone and cartilage. Ap-
tamers are short, single-stranded DNA or RNA, which is developed with high affinity
and specificity to interact with selected biological targets [46]. Liang et al. designed an
osteoblast-specific aptamer-decorated liposome to deliver siRNA to bone and promote
osteoblast function [47]. Aptamers targeting MSCs [48,49], osteoprogenitor cells [50], and
type 1 collagen [51] have also been designed and can be used as a targeting motif for
protein delivery.
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The incorporation of a cell membrane containing bone/cartilage targeting motifs
can facilitate active targeting towards the desired tissue, as demonstrated in a study by
Park et al., in which genetically modified myeloid cells expressing very late antigen–4
(VLA-4) were used to target inflamed endothelial cells and improve drug delivery efficacy
in vivo [52]. They decorated a dexamethasone-encapsulated PLGA with this cell membrane
to enable targeted drug delivery, improving the delivery of dexamethasone to inflamed
lungs and demonstrating significant therapeutic efficacy in vivo. Cell membrane coating
also has the advantage of modulating osteoimmunology favorable for regeneration. A
mesenchymal stem cell coating on a bio-scaffold promoted macrophage polarization toward
a regenerative phenotype, induced CD8+ T cell apoptosis, and enhanced regulatory T-cell
differentiation, ultimately promoting bone regeneration [53].

The utilization of the collagen-binding domain (CBD) represents another effective
strategy for achieving targeted delivery of growth factors (GFs). In the past few decades, the
CBDs of various collagenases or adhesins have been extensively studied, and fusing these
CBDs with therapeutic GFs has proven to enhance bone regeneration. For instance, the CBD
of Clostridium histolyticum collagenase was fused to bFGF, resulting in improved bone min-
eral density and callus volume in a mouse fracture model [54]. Additionally, BMPs, TGFb,
PDGF, and PTH have been conjugated to CBD, demonstrating enhanced osteoconductivity
in several studies that were comprehensively summarized by Addi et al. [55].

The emerging trend in the development of targeting motifs involves the use of single-
chain human antibody fragments (scFv) to precisely guide therapeutic agents to a specific
location. Lui et al. employed yeast display technology to create an scFv that targets
matrilin-3, an extracellular matrix protein that is specifically expressed in cartilage tissue,
and conjugated it with insulin-like growth factor 1 (IGF-1). Their findings indicated a
reduced off-target effect on non-targeted tissues, such as the kidney, and a significant
increase in growth plate height compared to IGF-1 delivery alone [56]. In a similar study,
Ferrari et al. developed a bispecific antibody consisting of scFv-anti-TNFα (adalimumab)
and (scFv)-A7 antibodies, which bind strongly to human arthritic synovium, resulting in
adalimumab localization to xenografted human synovium in SCID mice, demonstrating the
potential of bispecific antibody therapy for rheumatoid arthritis [57]. The bone/cartilage
targeting motif with therapeutic GF conjugation mentioned in this section is summarized
in the Table 1.

3.2. Enhancing Growth Factor Retention in Delivery Scaffolds

Another method to improve GF delivery is to increase the interaction between the GFs
and the scaffold/hydrogel so that the GFs do not travel far from the targeted location. In
addition to facilitating targeted delivery, this strategy also prevents GFs from acting on non-
specific sites and causing unexpected side effects. One common strategy is to functionalize
the high affinity between heparin and GFs [58]. Heparin is a sulfated glycosaminogly-
can and has an electrostatic affinity to various kinds of GFs, including bFGF [59] and
BMP-2 [60]. In addition, heparin stabilizes GFs, allowing simultaneous immobilization,
in vivo localization, and half-life prolongation without chemical crosslinking [61]. For
example, Hettiaratchi et al. immobilized heparin to a collagen scaffold to achieve spatial
localization of BMP-2, successfully reducing the heterotopic bone formation in a rat femoral
defect model [60]. Kim et al. immobilized PDGF-BB and BMP-2 on a heparin-coated
PCL scaffold to retain GFs at the scaffold [62]. Another affinity-based retention was con-
ducted by polymerized dopamine. Polymerized dopamine tightly binds to scaffolds via
covalent and non-covalent interactions, forming an intermediate layer for biomolecules
onto the scaffold surface. Zhou et al. conjugated polymerized dopamine with nano-
hydroxyapatite/recombinant human-like collagen/poly(lactic acid) (nHA/RHLC/PLA)
to obtain a high affinity for P24 (BMP-2 like protein), resulting in a slower release/higher
retention [63].
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Table 1. Bone/cartilage targeting moiety bound to a therapeutic protein.

Bone/Cartilage
Targeting Motif Structure/Sequence Target Tissue Conjugated

Protein/Nanoparticles Result Ref.

Bisphosphonates(BPs)
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The covalent conjugation of GFs to a scaffold is another technique to immobilize GFs.
Covalent immobilization offers several advantages, such as protecting GFs from degrada-
tion, slowing the release kinetics, and lowering the required dosage to achieve biological
activities [64]. Karfeld-Sulzer et al. covalently conjugated a BMP-2/BMP-7 heterodimer to
fibrin hydrogel to achieve a slower localized release of the BMP heterodimer [65]. Fan et al.
covalently immobilized TGFb3 to the scaffold to retain TGFb3, improving cartilage regen-
eration [66]. The release kinetics of covalently attached GFs follows the degradation of
biomaterials, often by enzymatic or hydrolytic cleavage of the chemical bond, thus achiev-
ing persistent local delivery of GFs [67]. Briquez et al. developed the dual affinity bridge
protein to connect a collagen scaffold and BMP-2 to locally retain protein. The result showed
that 80% surface coverage was achieved with as little as 50 ng of BMP-2 with the bridge,
indicating a potential application for a clinical trial [68]. Ansari et al. utilized a unique
method to retain/capture endogenous BMP-2 by immobilizing anti-BMP-2 monoclonal
antibodies (mAbs) on a scaffold. This work did not supply exogenous BMP-2, but suc-
cessfully entrapped endogenous BMP-2 by immobilizing mAbs to a scaffold. Their results
showed improved bone formation in the rat calvarial defect model compared to the iso-
control [69]. Though GF itself is not covalently linked to a scaffold in this example, this
work demonstrated the importance of GF retention to the scaffold to achieve local deliv-
ery. Other than the techniques mentioned here, there are many other strategies, including
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biotin–streptavidin interactions [70] and peptide amphiphiles to enhance the retaining of
GFs to a scaffold summarized elsewhere [71,72]. While immobilization of GFs enhances
their stability, it is important to note that this process may also alter the functional activity
of GFs. All the works introduced in this section are summarized in Table 2.

Table 2. Method to retain the proteins at the scaffold.

Protein Scaffold Method Result Ref.

BMP2 Collagen

Affinity

Heparin was immobilized to collagen scaffold to
achieve the spatial localization of BMP2, successfully

reducing the heterotopic bone formation.
[60]

PDGF-BB BMP2 PCL

GFs were immobilized on heparin coated PCL
scaffold. Continuous release of initial loading

amount after 5 weeks without an initial burst were
observed, leading to better tendon regeneration.

[62]

P24 nHA/RHLC/PLA
Polydopamin was coated on nHA/RHLC/PLA to

have an affinity to P24, resulting slower
release/high retention.

[63]

BMP2 BMP7 Fibrin

Covalent

Covalent conjugation allowed slower release kinetics
in vitro. Enhanced bone regeneration was observed

in critical size calvarial defects model with rat.
[65]

TGFβ3 PLGA-GCH Prolonged release of TGFβ and improved cartilage
regeneration were observed. [66]

BMP2

Collagen Engineered
bridge

Dual affinity bridge protein connected collagen
scaffold and BMP2. Lower BMP2 dosage was

required to induce bone formation in vivo.
[68]

Collagen/alginate/Titanium Antibody
BMP2 mAbs was immobilized to scaffold to capture
endogenous BMP-2 for bone regeneration, improving

bone formation in rat calvarial defects model.
[69]

BMP2 FGF2 Gelatin Biotin-avidin
Biotinylated BMP2 and FGF2 were bound to avidin
functionalized nanofiber, showing controlled release

of BMP2 and FGF2.
[70]

In this section, we have delineated various approaches for delivering therapeutic pro-
tein to specific sites within the bone and cartilage microenvironment, with the overarching
goal of mitigating potential side effects and optimizing protein delivery efficacy (as depicted
in Figure 2). Given that the bone and cartilage regenerative niche encompasses a diverse
array of cell types, including skeletal stem cells, osteoblasts, chondrocytes, adipocytes, and
immune cells, the impact of therapeutic growth factors extends beyond just the skeletal
cells, and can also impact other cell populations. For example, BMP-2 has been shown to
promote osteoclast differentiation of mouse bone marrow-derived macrophages, as well
as the survival of osteoclasts, and also stimulates adipogenic differentiation of MSCs [73].
With increasingly sophisticated technology enabling the characterization of therapeutic
protein effects on multiple cell types, it has become increasingly imperative to achieve
targeted delivery of a therapeutic protein in order to maximize its impact on specific cell
populations while minimizing unwanted side effects on untargeted cell types [74].
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4. Controlling GF Release Kinetics

The modulation of growth factor (GF) release kinetics via the implementation of
hydrogels/nanocarriers is a pivotal factor in augmenting bone regeneration. The premature
and excessive delivery of GFs from hydrogels featuring burst release kinetics can prove
deleterious to the regenerative process by conferring a supraphysiological quantity of
GFs onto the target cells. Conversely, the optimization of GF dosing for regeneration
can be accomplished via the control of release kinetics to minimize off-target delivery.
In this section, we will provide a succinct overview of the hydrogels/carriers frequently
employed in bone/cartilage regeneration, subsequently delineating the most suitable
materials/strategies for short-term or long-term GF release. Lastly, we will explore the
strategies for the temporal and spatial control of multiple GFs.

4.1. Short-Term Release

If a short-term release of GFs is required, natural biomaterials/carriers, such as al-
ginate [75,76], gelatin [77], liposome [78], and chitosan [79], are adequate choices for a
carrier/scaffold. The release kinetics of the therapeutic GFs in these materials ranges from 3
to 14 days and sufficient bone/cartilage regeneration was observed. Synthetic hydrogel can
be used to release GFs in the short-term. Olthof et al. encapsulated BMP-2 in a PEG-based
hydrogel and controlled its release kinetics for the most optimal bone formation, and found
that a scaffold with an initial burst release of BMP-2 induced larger bone formation in a
rat subcutaneous implantation model [80]. They implanted 4 µg of BMP-2 in a 24 mm2

scaffold, and 75% of the BMP-2 was initially released in 3 days to induce bone formation.
Thus, 3 µg of locally administered BMP-2 might be needed to induce bone regeneration
effectively. Though this study demonstrates the importance of a local concentration of
BMP-2 to trigger bone formation, we also need to consider the side effect of a burst release
of BMP-2 that is often seen with the clinical use of INFUSE (clinical BMP-2 product). Olthof
et al. did not investigate the BMP-2 effect on the surrounding tissues. A burst release
imposes supraphysiological dosing of BMP-2, possibly causing an inflammatory reaction

Biorender.com
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of non-skeletal cells. To avoid such a side effect, skeletal cell type-specific targeted release
of BMP-2 might be ideal.

4.2. Long-Term Release

While achieving continuous release of growth factors (GFs) for bone and cartilage
regeneration is beneficial, it can be challenging to achieve with a longer-term steady release.
Synthetic biomaterials are a great choice for a carrier/scaffold to achieve extended long-
term release of therapeutic proteins due to their slow biodegradable property. The release
kinetics can be prolonged by controlling the polymer’s degradation property, adding
a functional group, or coating the carriers. For example, incorporating hydrolytically
degradable structures into PEG-based polymers can enable a sustained GF release for over
two months [81]. Heparin functionalization can also help achieve long-term release kinetics
due to its strong affinity to GFs. Sun et al. conjugated heparin to small intestinal submucosa
(SIS) loaded with P28 (BMP-2-like protein), showing 40-days release kinetics and better
bone formation in a critical-sized OVX calvarial defect model [82].

Coating carriers with soybean lecithin or dopamine can also prolong GF release,
with the former improving the encapsulation efficiency and activity of the GFs [83] and
the latter controlling the release kinetics by the thickness of the coating [84]. Another
strategy is to encapsulate the target GFs into a nanoparticle and further trap them in a
second layer of polymer/hydrogel to prolong the release kinetics. For example, Suliman
et al. demonstrated a sophisticated approach by incorporating BMP-2 within PLGA micro-
spheres, which were further encapsulated within a poly(LLA-co-CL) scaffold, leading to an
extended release profile of up to 70 days and superior bone formation in a rat critical-size
calvarial model, when compared to physiologically adsorbed BMP-2 [85]. Similarly, com-
bining multiple biomaterials to create a multi-layered structure or applying a coating to the
carriers can achieve more precise control of the release kinetics [86–88].

The successful regeneration of bone and cartilage tissues hinges on the therapeutic
growth factors (GFs) and their precise control of the release kinetics. Achieving optimal
release kinetics of therapeutic GFs can be accomplished through the selection of appropriate
biomaterials, such as natural polymer-based hydrogels for short-term release and synthetic
polymer-based hydrogels for long-term release. To further extend the release kinetics,
the current approaches involve creating multi-layered structures or applying coatings to
carriers to slow down the release. All the studies reviewed in this section are summarized
in Table 3.

Table 3. Time-controlled release strategies for bone/cartilage regeneration.

Materials Modification Protein Target Release
Duration Result Ref.

Natural

Alginate
sulfate

Sulfation

bFGF Vascular 5 days

Slower release with
sulfate-conjugated alginate. Sulfated
alginate released 50% of bFGF by day
5 while control alginate released 50%

of bFGF at day 0.

[75]

TGFb Cartilage 7 days

The sulfate group exhibited an
affinity for TGFb, resulting in a
slower release rate compared to

non-sulfated alginate.

[76]

Gelatin-PCL

N/A BMP2 Bone

10–45 days

Gelatin/heparin gel enhanced cells
viability and PCL enhanced

mechanical property. Release kinetics
was controllable by combining

gelatin and PCL.

[77]

Liposome 100 h Achieved steady release of rh-BMP2
for 100 h in vitro. [78]
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Table 3. Cont.

Materials Modification Protein Target Release
Duration Result Ref.

Chitosan Thiolation BMP2 Bone 14 days

The thiolate modification contributed
to the upregulation of ALP activity

and better bone regeneration by
prolonging the release of BMP2.

[79]

Synthetic

PEG-based
hydrogel

PLGA
microparticle BMP2 Bone 3 days

BMP-2 was encapsulated within
PLGA microparticles, which were

further enclosed within a PEG-based
hydrogel. Initially, 75% of the BMP-2

was released within 3 days.

[80]

N/A bFGF Cartilage
60 days (BSA)

35 days
(FGF)

Hydrolytically degradable structures
increased the hydrogel swelling ratio

and mesh size, enabling sustained
protein release over 2 months.

[81]

P34HB
nanoparticles

Soybean
coating BMP7 Bone 20 days

Soybean coating on nanoparticle
significantly slowed down BMP7

release kinetics.
[83]

Mesoporous
silica in

Hydrogel

Dopamine
coating TGFb3 Cartilage 75 days

TGFb3 was loaded in mesoporous
silica coated with DOPA. Thicker
DOPA coating achieved slower

release and achieved 75 days release
duration in vitro.

[84]

PLGA particle
in poly(LLA-

co-CL)

N/A

BMP2 Bone 70 days

BMP2 was incorporated in PLGA
microsphere, which were further
encapsulated in scaffold. Result

showed better bone formation in rat
calvarial model.

[85]

Mesoporous
silica in PLGA BMP2 Bone 40 days

BMP2 was incorporated in
Mesoporous silica, then mixed with
PLGA to create microsphere. In vitro
functional assay showed improved

bone formation.

[86]

MBG/SIS
scaffold Heparin P28 Bone 40 days

BMP2 was incorporated in MBG,
which were further encapsulated in

SIS. Enhanced bone regeneration was
observed in rat calvarial

defect model.

[87]

Hybrid

hyaluronate/type
I

collagen/fibrin
composite

containing PVA
nanofibers

enriched with
liposomes

N/A bFGF
Insulin Cartilage 19 days

Achieved steady release of both bFGF
and insulin for 19 days in vitro.
Nanofiber provided mechanical

stiffness and elasticity closer to native
cartilage. In vivo mini-pig
experiment demonstrated

cartilage regeneration.

[88]

4.3. Synergistic Delivery of Multiple GFs

The delivery of multiple GFs has significant implications for regeneration by activating
synergistic pathways. For instance, Li et al.’s research demonstrates that the simultaneous
delivery of BMP-2 and BMP-7 enhances the osteogenic ability in MC3T3 osteoblastic cells
and improves in vivo bone regeneration [89]. Additionally, co-delivery of BMP-7 and
TGFb3 results in enhanced chondrogenesis in vitro [90].
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Murphy et al. utilized a different approach by using BMP-2 to amplify skeletal stem
cells (SSCs) while reducing VEGF activity through the VEGF receptor (VEGFR) to redirect
the fate of SSCs toward chondrocyte/cartilage lineage. By blocking the VEGF signal with
VEGFR, endochondral ossification and hypertrophy can be suppressed and the frequency
of resting chondrocytes increases, making this a promising strategy to induce cartilage
formation [91].

The co-delivery of GFs and small molecules also synergistically enhances regeneration
ability, with melatonin known to modulate bone formation and resorption by promoting the
differentiation of osteoblast precursors towards osteoblasts, while inhibiting differentiation
of osteoclasts [92,93]. Jarrar et al.’s study delivered BMP-2 and melatonin to enhance the
osteogenic activity of pre-osteoblastic cells, which was confirmed by in vitro alizarin red
and ALP–von Kossa staining, demonstrating enhanced osteogenic activity [94].

4.4. Sequential Delivery

The healing of bone and cartilage is a multifaceted process that involves the coor-
dination of various proteins, temporal molecular signaling, and cellular activities across
different phases. For instance, BMP-2 is primarily expressed during the early and middle
phases of healing, while IGF-1 exhibits peak expression during the early healing phase
and weaker expression in the subsequent phases [95]. Proper regulation of the immune
response timing is also critical. TNFα, a pro-inflammatory cytokine, plays a complex role
during bone healing, with biphasic peaks at 72 h and three weeks after injury [96]. To mimic
these natural healing processes, hydrogels/scaffolds are utilized to control the release order
of multiple GFs.

Different materials are used to achieve sequential delivery of GFs in bone regeneration
therapy. For example, BMP-2 was encapsulated with chitosan particles and dexamethasone
in nanofibers to achieve sequential delivery, resulting in the efficient repair of rat calvar-
ial defects [97]. Another study achieved sequential delivery of BMP-2 and alendronate
(ALN) by encapsulating ALN in a PLGA microsphere, which was further incorporated
in collagen hydroxyapatite. Alendronate is a small molecule used for the treatment of
postmenopausal OP due to its strong capacity of promoting osteoblast differentiation and
bone formation [98]. The results by Lee et al. showed that sequential delivery improved
bone formation in a rat calvarial defect model [99]. Raiche et al. used a layered structure
to achieve sequential delivery of BMP-2 and IGF-1, resulting in the largest and earliest
elevation of ALP activity and mineralized matrix formation [100]. Similar studies utilizing
multiple materials to control the order of release are summarized in Table 4 [101–104].

4.5. Spatial Control

Bone and cartilage are layered structures; therefore, spatial control of releasing the
therapeutic GFs becomes very important for proper skeletal healing. Re’em et al. used the
high affinity between alginate-sulfate and GFs to control the spatial distribution of bFGF and
BMP-4, and the bFGF layer induced chondrogenic differentiation of endogenous cells, while
the BMP-4 layer induced endochondral ossification [105]. More recent work has focused on
generating gradients of bone and cartilage layers to closely mimic natural bone/cartilage
healing. BMP-2 was adsorbed on a PLGA scaffold and TGFb was incorporated in the
hyaluronic acid hydrogel; a gradient was created by these two layers. Cartilaginous regions
were marked by increased glycosaminoglycan production by the implanted MSCs, and
osteogenesis was observed throughout the graft [106].
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Table 4. Multiple protein release strategies for bone/cartilage regeneration.

System Protein Target Mechanism Release Kinetics/Spatial
Release Strategy Result Ref.

Synergistic

BMP7 & BMP2 Bone
BMP7 and BMP2 were

loaded in PELA
microparticle.

BMP7 and BMP2 showed
steady release for 42 days

in vitro.

In vivo rat femoral defect
model demonstrated

improved bone regeneration.
[89]

BMP7 & TGFb3 Cartilage BMP7 and TGFb were loaded
in PLGA microsphere.

BMP7 and TGFb showed
steady release for 30 days

in vitro.

Synergistic effect of
chondrogenic promotion

in vitro.
[90]

BMP2 & VEGFR Cartilage
BMP2 and VEGFR were

loaded in PEG
based hydrogel.

BMP2 promoted osteogenic
differentiation of SSCs, which

was further directed to
chondrocyte with VEGFR.

Implantation of hydrogel
containing BMP2 and VEGFR

at femoral defect promoted
cartilage formation.

[91]

BMP2 &
Melatonin Bone

BMP2 and Melatonin were
loaded in PLGA

microparticle, which is
further encapsulated in
Chitosan-Hap scaffold.

BMP2 and melatonin showed
steady release for 20 days

in vitro.

Improved osteogenic ability
was confirmed by alizarin red
and ALP-von Kossa staining

using MC3T3-E1 cells.

[94]

Sequential delivery

BMP2 & Dex Bone

BMP2 is encapsulated in
chitosan particle, which is

further incorporated in PCE
nanofiber with DEX.

Dex exhibited a burst release
during the first 5 days,

whereas BMP2 displayed a
consistent release over

35 days.

Dual delivery demonstrated
a better bone regeneration in

rat calvarial bone defect.
[97]

BMP2 & ALN Bone

ALN is encapsulated in
PLGA microsphere, which is

further incorporated in
collagen hydroxyapatite.

The release profile of BMP2
exhibited a burst kinetics for

the first 5 days, whereas ALN
demonstrated a delayed

release between 2 to 6 weeks.

Dual delivery demonstrated
a better bone regeneration in

rat calvarial bone defect.
[98]

BMP2 & IGF Bone

BMP2 was encapsulated in
the 1st gelatin layer and

BMP2 and IGF were loaded
in the 2nd gelatin layer.

BMP2 in 1st layer was
released in 2 days and 2nd

layer in 6 days.

Increased AP activity and
matrix calcium content
compared to control.

[100]

SDF1 & BMP2 Bone

BMP2 is encapsulated in silk
fibroin particle, which is

further incorporated in Hap
scaffold with SDF1.

SDF1 demonstrated a burst
release for first 5 days while
BMP2 showed steady release

for 35 days.

Dual delivery showed a
better bone regeneration in

rat calvarial bone defect.
[101]

TGFb & BMP2 Cartilage

TGFb is encapsulated in
gelatin microparticle and
BMP2 in mineral-coated

hydroxyapatite microparticles.

TGFb displayed an initial
burst release for 10 days and
sustained BMP2 release for

60 days.

Dual delivery resulted in an
enhanced GAG and Col2

expression, as demonstrated
by immunostaining.

[102]

IGF1& TGFb1 Cartilage

IGF1 is incorporated in
gelatin microparticle, which

is encapsulated in OPF
with TGFb.

An initial burst release of
TGFb was observed,

followed by a slower release
of IGF1.

The release kinetics were able
to be adjusted by modifying

the crosslinking amount.
[103]

IL-8 & BMP2 Bone

BMP2 is incorporated in
mesoporous bioactive glass
(MBG) which is coated by

PEG with IL-8.

Initial burst release of IL-8 for
1 day and steady release of

BMP2 for 7 days.

The recruitment of stem cells
by IL-8 and the promotion of

osteogenesis by BMP2
resulted in enhanced bone

regeneration.

[104]

Spatial control

bFGF & BMP4 Bone&
Cartilage

Use high affinity between
sulfate and proteins to

control spatial distribution.

Two layered alginate-sulfate:
One layer with bFGF, another

one with BMP.

bFGF induced chondrogenic
differentiation. BMP4
induced endochondral

ossification of
endogenous cells.

[105]

BMP2 & TGFb Bone&
Cartilage

hyaluronic acid hydrogel was
filled in porous
PLGA scaffold.

BMP2 adsorbed to PLGA
scaffold and TGFb

incorporated in the hydrogel.
Gradient was created by

these 2 layers.

Cartilaginous regions were
marked by increased GAG

production, and osteogenesis
was seen in the graft.

[106]

The 3D printer is another strong tool to spatially control the release of GFs, and its
method and examples are well-summarized elsewhere [107]. The advancement of multiple
GFs therapy in skeletal regeneration will rely on 3D printer technology. Bone and cartilage
are layered 3D structures, making the 3D printer an attractive technology to manufacture
implantable constructs. However, not all the materials/GFs reviewed in this section are
suitable for 3D-printing due to their chemical and mechanical properties. Some efforts
have been made to invent a printable/injectable gel with a controlled release profile. One
example is to use a methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer
(MC-N3). Since MC-N3 exhibits the solution to gelation transition at body temperatures, a
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subcutaneous injection of the MC-N3 solution into a body results in the rapid formation
of a hydrogel depot. The MC-N3 polymer also allows covalent immobilization of BMP-2;
thus, injected BMP-2-MC-N3 showed a prolonged release of BMP-2 for 21 days, unlike
common injectable hydrogels [108]. The ideal features of biomaterials for bioprinting are
bioprintability, high mechanical integrity, insolubility in a medium, biodegradability at a
rate appropriate to the regenerating tissue, nontoxicity, non-immunogenicity, and the ability
to promote cell adhesion [109]. Development of a bio-printable and GF-laden scaffold will
enable the creation of spatially organized structures to regenerate bone and cartilage more
precisely. All the studies reviewed in this section are summarized in Table 4.

5. Promoting the Long-Term Stability of Regenerated Tissues

The long-term stability of implanted scaffolds for maintaining bone/cartilage tissue is
another critical factor to consider, particularly in cartilage regeneration, where it is chal-
lenging to sustain articular cartilage regenerated by a graft with cells/growth factors (GFs)
that are prone to undergo hypertrophy and endochondral ossification in vivo. For instance,
while TGFb is a potent cartilage inducer, it can lead to a hypertrophic phenotype of MSCs,
as observed in a hydrogel containing MSCs and TGFb3 after 8 weeks of subcutaneous
implantation in mice, where calcification was also observed [110,111]. BMP signaling has
also been found to promote hypertrophy of chondrocytes [112]. To prevent endochondral
ossification, several approaches have been proposed, including inhibiting the Wnt pathway.
A study has shown that inhibitors of Wnt signaling pathways are enriched in slow-cycling
chondrocytes, which maintain the chondrocyte phenotype without differentiation [113].
Therapeutically, inhibiting β-catenin-mediated canonical Wnt signaling can stimulate chon-
drocyte hypertrophy, whereas preventing the canonical Wnt pathway can be crucial in
maintaining regenerated articular cartilage [114]. A study has also demonstrated that
sclerostin, a potent Wnt inhibitor, can restore the chondrogenic phenotype and inhibit
endochondral ossification under an IL-1β-induced OA-like environment [115]. The Indian
hedgehog (Ihh) pathway is another crucial pathway to consider. In the growth plate, a
feedback loop between the Ihh and parathyroid hormone-related protein (PTHrP) plays
a significant role in maintaining homeostasis. Chondrocytes produce PTHrP at the end
of long bones, which stimulates the proliferation of chondrocytes, preventing them from
differentiating further into hypertrophic chondrocytes. However, as cells migrate away
from the distal end, PTHrP can no longer reach those cells, and hypertrophic chondrocytes
begin synthesizing Ihh. The Ihh signal increases proliferation and accelerates differenti-
ation into prehypertrophic chondrocytes. It also promotes the formation of osteoblasts
from adjacent perichondrial cells and completes the feedback loop by promoting PTHrP
production at the articular end [116]. Interestingly, in pathological conditions, Ihh expres-
sion is upregulated in human OA cartilage, and this upregulation is correlated with OA
progression and changes in chondrocyte morphology [117]. Furthermore, Ihh promotes
chondrocyte hypertrophy through Wnt/β-catenin activation and bone morphogenetic
proteins [118]. Based on these findings, therapeutic delivery of an Ihh antagonist or the
addition of PTHrP could be potential solutions to prevent chondrocytes from undergoing
hypertrophy [119,120]. In fact, co-delivery of PTHrP with TGFb3 in alginate microspheres
results in reduced calcification of long-term cultured MSCs [121].

In addition to targeting the Wnt or Ihh pathway, cartilage regeneration can also be
achieved by suppressing osteogenesis with an anti-osteogenic reagent, such as fulvestrant
(estrogen receptor antagonist). Hsiao et al. implanted vascularized periosteum together
with fulvestrant in critical-size cartilage defects in rabbits to suppress bone formation [121].
While it successfully suppressed the endochondral ossification rate, it also reduced the car-
tilage regeneration rate. Liu et al. proposed using Matrilin-3 (MATN3), a non-collagenous,
cartilage-specific ECM protein, to inhibit endochondral ossification [122]. Regenerated
cartilage surrounded by an environment similar to its native setting is likely to maintain its
properties. In fact, the subcutaneous implantation of chondrogenic cell/scaffold constructs
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in a nude mouse model showed that pretreatment with MATN3 was able to maintain
chondrogenesis and prevent hypertrophy and endochondral ossification in vivo.

6. Osteoimmunomodulatory (OIM) Effects

When developing GF-based regenerative therapy, it is essential to consider osteoim-
munology, which focuses on the crosstalk between immune and skeletal cells to create a
favorable environment for bone/cartilage regeneration. The modulation of osteoimmunol-
ogy by both the therapeutic protein and its carrier (biomaterials/hydrogels) is crucial. For
example, BMP-2 and TGFb have been found to act on macrophages, leading to diminished
expression of M1 phenotypic markers and indicating a positive immunoregulatory role of
these growth factors [123,124]. Similarly, IGF-1 and IGF-2 can induce RANKL-independent
osteoclastogenesis, contributing to the homeostasis of bone remodeling [125]. Thus, it is
evident that therapeutic GFs affect not only osteogenic lineage cells, but also immune cells,
making it important to consider their effect on the skeletal cell niche in the development of
GF-mediated bone/cartilage regeneration.

Ideally, biomaterials and hydrogels should be designed to synergistically stimulate
both immune and skeletal cells towards successful bone regeneration, while avoiding
detrimental inflammatory pathways that may lead to bone resorption. Fasolino et al.
demonstrated that chitosan-based scaffolds inhibited the production of pro-inflammatory
cytokines (IL-1 and IL-6) when osteoblasts and J774A.1 macrophages were co-cultured
with LPS stimulation to mimic an inflamed bone environment, indicating their potential to
promote bone regeneration under inflammatory conditions [126]. In addition, mesoporous
silica rods with cone-shaped pores displayed osteoimmunomodulatory capabilities and
reduced the macrophage inflammatory response, potentially creating a microenvironment
that favors bone regeneration [127]. Recent research has found that blood clots can also
serve as a biomaterial to modulate the OIM environment, attracting M1 pro-inflammatory
macrophages during early repair stages, and M2 anti-inflammatory macrophages during
later stages of bone remodeling [128]. The surface topology, wettability, and charge of
biomaterials also affect osteoimmunology, as detailed elsewhere [129]. The effects of
biomaterials on monocyte and T cells are not negligible. Bordoni et al. used graphene oxide
with CaP to activate monocytes, resulting in the up-regulation of osteoinductive factor that
stimulates bone formation in mice [130]. T cells are also stimulated by biomaterials. For
example, titanium dioxide nanorods with a high aspect ratio stimulate T cells, leading to a
significant release of FGF-2 and promoting the proliferation of bone marrow-derived stem
cells [131].

A thorough understanding of the mechanism underlying the OIM behavior between
skeletal cells and immune cells is still a matter of active research. Although the current
literature largely supports the idea that M2 macrophages enhance osteogenic differenti-
ation, recent studies have shown conflicting results, likely due to the heterogeneity of
the evaluated cells [132]. Various approaches and criteria for isolating, detecting, and
evaluating the functional activity of bone progenitors or MSCs have been used, leading
to a masking of the true regenerative biology [133]. Therefore, it is crucial to evaluate
the OIM effects of scaffolds, hydrogels, and GFs on bone progenitors using well-defined
populations. The development of technology allowing for the isolation of a more pure
stem cell population, such as bonified skeletal stem cells (SSC) in both mouse [134] and
human [135], and the mapping of their lineage commitment towards specific cartilagenic
and osteogenic progenitors is a significant step forward. With the aid of single-cell isolation
techniques, subpopulations within the prospectively isolated SSC can be further elucidated,
leading to the potential to establish a hierarchy tree similar to that of the haemopoietic stem
cell. Ultimately, better characterization of the SSC hierarchy will enable a more precise
understanding of the effect of various proteins on each cellular sub-population and vice
versa, leading to more finely-tuned tissue engineering [136].
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7. Conclusions and Remarks for Future Research

The previous reviews on therapeutic GFs for bone and cartilage regeneration focused
on the functions of each of the GFs or engineering the releasing system for controlled
delivery [137,138]. In addition to these important topics, our review addresses indispens-
able aspects of delivering therapeutic GFs, such as the long-term stability of regenerated
tissue and osteoimmunology. Our comprehensive review highlights five critical aspects of
delivering therapeutic GFs for effective bone and cartilage regeneration, emphasizing the
need for protection from physical and enzymatic degradation, targeted delivery, controlled
release kinetics, long-term stability of regenerated tissue, and the creation of a favorable
osteoimmunomodulatory environment (Figure 3). As our understanding advances, new
opportunities are revealed for optimizing skeletal regeneration through the targeted and se-
lective application of therapeutic GFs. Increasingly, progress has been made in developing
new platforms using combinations of biomaterials/hydrogels to achieve controlled release
of multiple GFs, and this strategy will no doubt be crucial for advancing therapeutic GF
delivery in the future.

Figure 3. Five important considerations in developing growth factor therapies for bone and cartilage
regeneration. For bone and cartilage regenerative therapy, (1) protection from physical and enzymatic
degradation, (2) targeted delivery, (3) controlled release kinetics, (4) long-term stability of regenerated
tissue, and (5) the creation of a favorable osteoimmunomodulatory environment are indispensable
aspects to consider. Figure created with Biorender.com.

As the field of bone/cartilage regeneration continues to progress, one emerging chal-
lenge is to address the effects of aging. Multiple studies have demonstrated that the ability
of older individuals to heal fractures is not as robust as younger individuals [139,140]. To
overcome this challenge, we believe that combinatorial GF therapy may offer a potential
solution. For instance, a recent study has shown that combining BMP-2 with a colony-
stimulating factor 1 (CSF1) antagonist can restore the regenerative capacity of aged mice to
that of their youthful counterparts [141]. In order to further optimize these therapies, it will
be essential to gain a deeper understanding of the genomic and proteomic underpinnings
of skeletal regeneration and aging. By doing so, we can identify and refine combinatorial
GF therapies that have the potential to rejuvenate the skeletal system. These therapies can
be further improved through the use of controlled release technologies, as discussed in
this review.

Biorender.com
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