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Abstract: The effects of alkali type and pH on the physical properties of carrageenan have been
extensively studied. However, their effects on certain characteristics of solid-state properties of
carrageenan have not been identified. This research aimed to investigate the effect of alkaline
solvent type and pH on the solid physical properties of carrageenan isolated from Eucheuma cottonii.
Carrageenan was extracted from the algae using NaOH, KOH, and Ca(OH)2 at pHs of 9, 11, and
13. Based on the results of preliminary characterization, including yield, ash content, pH, sulphate
content, viscosity, and gel strength, it was found that all samples followed Food and Agriculture
Organization (FAO) specifications. The swelling capacity of carrageenan based on the type of
alkali was KOH > NaOH > Ca(OH)2. The FTIR spectra of all samples were in agreement with
that of standard carrageenan. The molecular weight (MW) of carrageenan using KOH as the alkali
followed the order pH 13 > pH 9 > pH 11, while using NaOH, the order was pH 9 > pH 13 > pH 11,
and while using Ca(OH)2, the order was pH 13 > pH 9 > pH 11. The results of the solid-state
physical characterization of carrageenan with the highest MW in each type of alkali showed that
the morphology of carrageenan using Ca(OH)2 has a cubic shape and is more crystal-like. The
order of crystallinity of carrageenan using different types of alkali was Ca(OH)2 (14.44%) > NaOH
(9.80%) > KOH (7.91%), while the order of density was Ca(OH)2 > KOH > NaOH. The order of solid
fraction (SF) of the carrageenan was KOH > Ca(OH)2 > NaOH, while the tensile strength when using
KOH was 1.17, when using NaOH it was 0.08, and while using Ca(OH)2, it was 0.05. The bonding
index (BI) of carrageenan using KOH = 0.04, NaOH = 0.02, and Ca(OH)2 = 0.02. The brittle fracture
index (BFI) of the carrageenan was KOH = 0.67, NaOH = 0.26, and Ca(OH)2 = 0.04. The order of
carrageenan solubility in water was NaOH > KOH > Ca(OH)2. These data can be used as the basis
for the development of carrageenan for excipients in solid dosage forms.

Keywords: carrageenan; Eucheuma cottonii; physical properties; solid state

1. Introduction

Carrageenan is a group of linear polysaccharides composed of galactic molecules with
galactose as the main unit and is found in the cell walls of algae species (Rhodophyceae),
such as Eucheuma, Chondrus and Gargantia [1,2]. This substance is part of a hydrophilic
linear sulphated galactan, which is often used in various fields, such as κ-carrageenan,
ι-carrageenan, and λ-carrageenan [3,4]. The main differences in carrageenan type are based
on the source of algae species, the number and position of the sulphate ester group, and
the 3.6-AG content [4,5].
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Carrageenan extraction using alkaline solvents is widely used because it can improve
the mechanical properties of the resulting carrageenan [3]. The type, concentration, and
pH of alkaline solutions significantly affect the physicochemical characteristics of car-
rageenan [6–10]. Alkaline solvents include NaOH, KOH, and Ca(OH)2 [11–13]. Several
studies have revealed that Na+, K+, and Ca+ ions affect the rheological properties, gel for-
mation microstructures, molecular weights, gel strength, and morphology of carrageenan
kappa [6,14,15]. Carrageenan, with low molecular weight, produces tensile strength, gel
strength, and resistance to dynamic mechanical and thermal analysis [16]. The physicochem-
ical characteristics of carrageenan determine its function as an excipient in pharmaceutical
preparations, e.g., as a gelling agent, suspending agent, emulsifier, tablet matrix, binder,
and disintegrating tablets or granules [17–22]. Carrageenan has the characteristics of being
able to form gels, increase viscosity, absorb water, and expand [23–27].

Many studies have been carried out on carrageenan extracted using alkaline solvents,
such as NaOH, KOH, and Ca(OH)2, with characterization that refers to the Food and
Agriculture Organization (FAO) standards and applications to pharmaceutical dosage
forms [3,10–13,28–33]. However, there has been no research on the comparison of the effect
of alkaline solution concentration based on pH on the physical characteristics and solid-
state properties. These characteristics are fundamental in determining the potential use of
carrageenan as an excipient for tablets or other solid preparations [34]. The carrageenan
used in this study was extracted from Eucheuma cottonii. Carrageenan from this type of
algae has the best functional properties, especially in gel formation, compared to other
types of carrageenan [35–37]. This research aimed to study the effect of alkaline solvent
types and pH variations on the solid physical characteristics of carrageenan.

2. Results and Discussion

The carrageenan produced in this study was an odourless white to yellowish-white
powder.

2.1. Physical Characteristics
2.1.1. Yields, pH, and Ash Content

Based on Table 1, there is a pattern in the carrageenan yield extracted using variations
in pH and types of alkaline solvent. Higher pH values of the alkaline solution used in
extraction resulted in higher yield values due to the ability of alkaline solutions to increase
the penetration of solvents into algae tissue cells. This result is in agreement with a previous
study that stated that the higher the concentration of the alkaline solution used, the higher
the amount of carrageenan extracted [29]. Alkalis can also accelerate the transformation of
α-1.3 and β-1.4-glycosidic to 3.6-anhydrogalactose [7].

Table 1 shows that the resulting carrageenan pH meets the value required by the FAO,
which is below 10 [38]. The measured pH did not have a specific pattern related to the
use of variations in solvents or the alkaline pH used. The pressing process influences the
pH of carrageenan in removing the alkaline solution from the gel structure. Based on
Table 1, a high alkaline solvent pH resulted in greater ash content. This can be explained by
the phenomenon that alkaline solutions contain K+, Na+, and Ca2+, which are inorganic
substances and were not lost during the heating process. The value of the total ash content
met the specification standards of the FAO, namely less than 15% and not more than 40%,
which is calculated for dry carrageenan [38].
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Table 1. Yield, pH, and ash content of carrageenan extracted using various types of alkaline solvents
and pH.

Alkaline
Solvents pH Solution Yields (%) Carrageenan pH Total Ash

Content (%)

KOH

9 25.69 ± 0.12 8.40 ± 0.03 26.82 ± 0.98

11 27.72 ± 0.16 8.30 ± 0.05 33.17 ± 0.11

13 30.65 ± 0.09 8.57 ± 0.08 36.41 ± 0.49

NaOH

9 23.37 ± 0.19 8.32 ± 0.06 22.51 ± 0.67

11 29.73 ± 0.26 8.47 ± 0.02 24.37 ± 0.21

13 34.51 ± 0.18 8.52 ± 0.06 36.28 ± 0.46

Ca(OH)2

9 26.62 ± 0.19 8.40 ± 0.03 33.05 ± 0.14

11 28.56 ± 0.33 8.17 ± 0.04 36.34 ± 0.40

13 32.87 ± 0.35 9.20 ± 0.10 37.64 ± 0.30

2.1.2. Sulphate Content, Gel Strength, Viscosity, and Molecular Weight of Carrageenan

Carrageenan sulphate content (Table 2) had no specific pattern. This is because, at the
end of the carrageenan extraction process, the sulphation process used potassium sulphate
of the same concentration in each treatment, causing the sulphate content in carrageenan to
be homogeneous. The carrageenan sulphate content (Table 2) met the specifications of the
carrageenan standards from the FAO, which are less than 15% and not more than 40% [38].

Table 2. Gel strength, viscosity, and molecular weight values of carrageenan extracted using variations
in alkaline solvent type and pH.

Alkaline
Solvents pH Solution Sulphate

Content (%)
Viscosity

(cP)
Gel Strength

(g/cm2)
Molecular

Weights (KDa)

KOH

9 18.24 ± 0.50 4.333 ± 94 137.93 ±13.44 165.07 ± 0.20

11 19.11 ± 0.50 1.133 ± 94 53.34 ± 8.87 45.54 ± 0.00

13 20.64 ± 0.30 5.933 ± 94 82.39 ± 5.97 289.80 ± 0.10

NaOH

9 23.43 ± 0.50 2.433 ± 47 44.92 ± 1.15 170.58 ± 0.30

11 23.26 ± 1.10 1.167 ± 47 12.78 ± 0.02 37.29 ± 0.00

13 21.63 ± 1.10 1.700 ± 82 52.37 ± 2.95 105.58 ± 0.70

Ca(OH)2

9 19.74 ± 1.60 350 ±41 38.51 ± 5.18 11.02 ± 0.00

11 16.54 ± 1.10 1.067 ± 94 29.08 ± 2.39 7.59 ± 0.00

13 21.72 ± 1.10 2.550 ± 41 56.26 ± 4.91 71.79 ± 0.30

The research by Astuti et al. (2017) found that the viscosity of carrageenan was also
influenced by sulphate levels and was directly proportional to the content of sulphate. A
higher sulphate content resulted in a higher viscosity [29], which is due to the ability of
the sulphate group in carrageenan to exert a repulsion force between negative charges
along the polymer chain. As a result, the molecular chain stiffens so that the viscosity
increases [22,39]. This finding supports the viscosity data in Table 2, where KOH pH 13,
NaOH pH 9, and Ca(OH)2 pH 13 revealed the highest sulphate levels among other pHs of
the same type of alkali. Molecular weight (MW) also plays a role in increasing viscosity.
The MW of polymers shows the average chain length of the molecule. The high MW of
carrageenan causes a homogeneous distribution of sulphate groups on the polymer chain,
resulting in a more repulsive force and thus increased viscosity [40,41]. The gel strength of
carrageenan cannot be separated from the influence of sulphate content and the type of
ions contained in the alkaline solvent used. Table 2 shows that KOH generally had higher
gel strength values than NaOH and Ca(OH)2. Theoretically, this is due to the ability of K+
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cations, which are stronger than Na+ and Ca2+ cations in intermolecular binding. K+ from
KOH can increase gel strength due to its ability to increase ionic strength in carrageenan
polymer chains, such that the dissolved intermolecular forces are even more remarkable
in forming helical aggregation [3]. The atomic weight of potassium is greater than that
of sodium. The number of charges of monovalent cations with large atomic weights can
form double helical gels, while cations with low atomic weights are less capable of forming
helical gels. Ca2+ has a greater atomic weight than K+, but calcium has a divalent charge,
which causes the carrageenan gel formed from Ca2+ to be brittle [3,42].

Based on Table 2, KOH pH 13 has the largest MW compared to NaOH and Ca(OH)2.
In addition to being affected by species and alkaline pH, carrageenan MW is also affected
by sulphate content. NaOH showed the largest MW in NaOH pH 9, and Ca(OH)2 showed
the largest MW in extracting Ca(OH)2 pH 13. When viewed from the sulphate content,
KOH pH 13, NaOH pH 9, and Ca(OH)2 pH 13 have the highest sulphate contents compared
to the others.

2.1.3. Swelling Capacity of Carrageenan Extracted Using Various Types of Alkaline
Solvents and pH

The carrageenan swelling is due to the electrostatic repulsion of the sulphate group
contained in its chain. The negative charge of the sulphate group on different chains
induces electrostatic repulsion. This causes the distance between the chains to increase
so that the tissue space becomes more extensive and more permeable to larger molecules.
Thus, water can penetrate the tissue such that there is an increase in the volume and weight
of the carrageenan structure [27].

Figure 1 shows the difference in swelling capacity between carrageenan extracted
using alkaline solvents at various pHs. Swelling capacity increases using KOH in the order
pH 13 > pH 11 > pH 9, while for NaOH, the order was pH 11 > pH 13 > pH 9, and for
Ca(OH)2, the order was pH 13 > pH 9 > pH 11. The difference in swelling levels is related
to the sulphate levels, as listed in Table 2.

Sulphate levels were shown successively as pH 13 > pH 11 > pH 9 when KOH was
used, pH 13 > pH 9 > pH 11 for Ca(OH)2, and pH 9 > pH 11 > pH 13 when NaOH was used.
Na+ is a monovalent cation, which is weaker than K+ and forms smaller helical bonds than
KOH. In contrast, KOH has the most significant swelling ability compared to NaOH and
Ca(OH)2 since K+ is an ion that can draw water into helical bonds so that the weight and
volume of carrageenan become more remarkable than that of Na+ [21,43]. Meanwhile, the
carrageenan extracted using Ca(OH)2 had the smallest swelling capacity because the Ca2+

ion formed a divalent bond with the sulphate group, resulting in a more compact and less
flexible structure. As a result, this carrageenan tends to be less able to absorb water [39,44].
This is the reason for the slow increase in the swelling capacity of carrageenan extracted by
Ca(OH)2. The type of cation and the concentration of sulphate groups in each carrageenan
cause the difference in swelling levels, as can be seen in Figure 1 [21,39,43,44].

2.1.4. FTIR Spectra of Carrageenan

Carrageenan has a group of α(1.3)-D-galactose-4-sulphate and β(1.4)-3.6-anhydrous-D-
galactose, sulphate group bond, and a cyclic carbon bond. Carrageenan contains sulphate
groups, cyclic carbon, and an arrangement of α(1.3)-D-galactose-4-sulphate and β(1.4)-3.6-
anhydro-D-galactose.

Based on Figure 2, the carrageenan FTIR spectra showed a peak at wavenumbers
1220–1260 cm−1, i.e., the functional group S = O. The functional group S = O peaks
were seen successively for KOH pH 9, 11 and 13, at 1218.63 cm−1, 1222.85 cm−1, and
1223.45 cm−1, for NaOH pH 9, 11 and 13 at 1218.47 cm−1, 1219.78 cm−1, and 1222.61 cm−1,
and for Ca(OH)2 pH 9, 11, and 13 at 1220.38 cm−1, 1220.34 cm−1, and 1219.87 cm−1.
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Figure 1. Swelling capacity of carrageenan: (a) KOH, (b) NaOH, and (c) Ca(OH)2, at pH 9, 11, and 13.

The peaks of the spectrum showing cyclic carbon bonds were seen successively for
KOH pH 9, 11, and 13, at wavenumbers 1032.69 cm−1, 1032.78 cm−1, and 1032.64 cm−1,
for NaOH pH 9, 11, and 13 at 1032.01 cm−1, 1032.25 cm−1, and 1033.78 cm−1, and
Ca(OH)2 pH 9, 11, and 13 at 1032.91 cm−1, 1032.64 cm−1, and 1032.35 cm−1. The 3.6-
anhydrous-D-galactose carrageenan functional group was observed in the wavenumber
range 915–928 cm−1. Peaks showing such functional groups were seen successively for
KOH pH 9, 11, and 13 at 919.74 cm−1, 919.95 cm−1, and 919.32 cm−1, for NaOH pH 9, 11,
and 13 at 919.76 cm−1, 919.27 cm−1, and 919.80 cm−1, and for Ca(OH)2 pH 9, 11, and 13 at
920.02 cm−1, 919.73 cm−1, and 919.24 cm−1.

The FTIR spectra for carrageenan at 835–850 cm−1 indicated the functional group
D-galactose-4-sulphate. In Figure 2, it can be seen that for KOH pH 9, 11, and 13, the
wavenumbers were successively 841.75 cm−1, 840.75 cm−1, and 840.28 cm−1, for NaOH
pH 9, 11, and 13 at 840.32 cm−1, 840.51 cm−1, and 839.93 cm−1, and for Ca(OH)2 pH 9,
11, and 13 at 840.07 cm−1, 840.79 cm−1, and 840.11 cm−1. All carrageenan revealed FTIR
spectra that corresponded to the carrageenan standard.
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The most optimal carrageenan based on molecular weight and standard characteristics
defined by the FAO were selected for further characterization, i.e., those from KOH pH 13,
NaOH pH 9, and Ca(OH)2 pH 13.
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Figure 2. FTIR spectra of carrageenan extracted using various types of alkaline solvents: (a) KOH,
(b) NaOH, and (c) Ca(OH)2 at various pHs (9, 11, and 13) compared to standard carrageenan.

2.2. Evaluation of Solid Physical Characteristics
2.2.1. Morphology

Figure 3 shows the difference in surface shape between standard carrageenan and car-
rageenan extracted using various alkali types. The morphology of the standard carrageenan
surface was smoother than that of extracted carrageenans. The surface morphology of
KOH at pH 13 was spherical and irregular. The morphologies of NaOH pH 9 and Ca(OH)2
pH 13 tend to be crystal-like cubes. The role of cation types in carrageenan formation had a
real impact due to the ability of cations to interact with sulphate groups in the carrageenan
polymer chain and form various types of bonds depending on the type of cation [45]. K+

ions form strong helical bonds with carrageenan kappa compared to Na+ and Ca2+, thus
affecting the morphology of carrageenan. Meanwhile, Na+ ions produce three different
crystalline forms in several sulphate groups in various polymers. Ion Ca2+, a divalent
cation, can change the helical bond more rigidly [44]. The use of different alkaline solvent
types provides differences in the morphology of the carrageenan surfaces. The surface



Gels 2023, 9, 397 7 of 14

morphology of each carrageenan sample may indicate differences in physical properties,
such as the percentage of amorphous and crystalline forms, density, and solid fraction.
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Figure 3. Morphological analysis of carrageenan: (a) Standard, (b) KOH pH 13, (c) NaOH pH 9, and
(d) Ca(OH)2 pH 13 found using a scanning electron microscope.

2.2.2. XRD Diffractogram of Carrageenan

Figure 4 shows a diffractogram of standard carrageenan and the samples. The diffrac-
tograms of carrageenan samples using Ca(OH)2, NaOH, and KOH as alkaline solvents
showed the presence of sharp peaks, which were not present in the diffractograms of the
standard. In the results of the XRD chart analysis, produced using Match!3 software, the
degree of crystallinity (DOC) of the produced carrageenan was highest for Ca(OH)2 pH 13
at 14.44% and its amorphous form at 85.56%, followed by NaOH pH 9, with a degree
of crystallinity of 9.8% and an amorphous form of 90.16%, and KOH, with a degree of
crystallinity of 7.91% and an amorphous form of 92.09%. Standard carrageenan does not
indicate a peak in crystallinity and was predominantly in the amorphous form. The diffrac-
togram supported the morphological observations shown in Figure 3, where the surface
of carrageenan extracted by Ca(OH)2 pH 13 was a more crystal-shaped cube than that
of NaOH, KOH, and of standard carrageenans. A relationship between monovalent and
divalent cations is thought to play a role in forming helical bonds and other characteristics
such as gel formation, rheology, depolymerization, swelling, and microstructure formation
in the resulting carrageenan [43–48].
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2.2.3. Solid-State Physical Properties

• Density

Table 3 indicates that carrageenan extracted by Ca(OH)2 pH 13 had the most excellent
density compared to that using KOH or NaOH. This can be explained by the higher
molecular weight of Ca2+ in Ca(OH)2 compared to that of K+ and Na+.

Table 3. Solid-state physical properties and solubility of carrageenan.

Solid Physical Properties KOH pH 13 NaOH pH 9 Ca(OH)2 pH 13

Density (g/mL) 1.94 ± 0.01 1.94 ± 0.03 2.02 ± 0.07
Solid Fraction 0.42 ± 0.03 0.70 ± 0.01 0.71± 0.01
Tensile Strength (MPa) 1.17 ± 0.02 0.08 ± 0.00 0.05 ± 0.00
Bond Index 0.04 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
Brittle Fracture Index 0.67 ± 0.03 0.26 ± 0.01 0.04 ± 0.00
Solubility (%) 68.60 ± 1.80 86.30 ± 2.30 34.70 ± 2.90

• Solid Fraction (SF)

The solid fraction is the main factor that determines the binding strength of tablets
that are from a material that is both brittle and elastic [49]. The value of the solid fraction
can describe the compressibility of a material [50]. Generally, the SF value of material
ranges between 0.6–0.8, with a target value ranging between 0.8–0.9 for commercial tablet
manufacturing [51]. Small SF values represent the small proportion of the solid phase in a
material. Conversely, the greater the solid fraction value, the greater the proportion of the
deep solid phase. [52]. SF values outside that range indicate that the compressibility of the
material is not good enough and is, therefore, not suitable for dominant use in a mixture,
especially in a tablet or capsule dosage form. Based on Table 3, carrageenan extracted
using KOH had the smallest value of solid fraction compared to that in Ca(OH)2 or NaOH.
Ca(OH)2, as an alkaline solvent for carrageenan, gave the most considerable solid fraction
and density values, which also revealed a more significant proportion of crystalline shape
than other solvents used for carrageenan, as seen in Figure 4.

• Tensile strength (TS)

The tensile strength describes the tablet’s compactness of powdered material [49].
Materials with high tensile strength values make excellent binding materials [46–48]. Table 3
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shows that carrageenan extracted using KOH has an enormous TS value compared to that
of NaOH or Ca(OH)2. TS is inversely proportional to the solid fraction value of a material.

• Bonding index (BI)

The bond index is defined as the ability of a material to retain a fraction of the bond
created during compression [49]. Generally, the bonding index ranges between 0.001–
0.06 [40,49,53]. Table 3 indicates that carrageenan extracted using KOH had a BI value
greater than that extracted using NaOH or Ca(OH)2. The value was influenced by the
material’s morphological shape, surface area, and linearity with the value of TS.

• Brittle Fracture Index (BFI)

The brittle fracture index is used to measure the plasticity of a material [50]. Table 3
shows that carrageenan extracted using KOH had the largest BFI compared to that extracted
using NaOH or Ca(OH)2. The value is directly proportional to the value of TS.

• Solubility

Based on Table 3, carrageenan extracted using NaOH had higher solubility than that
extracted using KOH or Ca(OH)2. This phenomenon could be due to the carrageenan
gelation containing Na+ ions being weaker than that containing K+ and Ca2+, resulting in a
higher solubility in water [47].

3. Conclusions

The type of alkaline solvent and the pHs used in the extraction process affect the solid
physical properties of carrageenan. The total ash content of all extracted carrageenans met
the specification standards of the FAO (15–40%). Carrageenan extracted using KOH had
the most significant swelling ability compared to that extracted using NaOH or Ca(OH)2.
Carrageenan extracted using KOH pH 13, NaOH pH 9, and Ca(OH)2 pH 13 showed the
highest MWs (289.80, 170.58, and 71.79 KDa, respectively) and the highest sulphate content
compared to the others (20.64, 23.43 and 21.72%, respectively). These carrageenans were
selected for further solid-state characterization.

The surface morphology of each selected carrageenan indicated the differences in
physical properties, such as the percentage of amorphous and crystalline forms, density,
and solid fraction. Carrageenan extracted using Ca(OH)2 at pH 13 showed the highest
degree of crystallinity (14.44%) compared to those extracted using NaOH pH 9 (9.8%) and
KOH pH 13 (7.91%). The diffractogram supported the morphological observations where
the surface of carrageenan extracted using Ca(OH)2 pH 13 was more of a crystalline-shaped
cube than that extracted using NaOH pH 9 or KOH pH 13. Carrageenan extracted using
Ca(OH)2 pH 13 had the highest density (2.02 g/mL) compared to that extracted using KOH
pH 13 (1.94 g/mL) or NaOH pH 9 (1.94 g/mL). Carrageenan extracted using KOH pH
13 as the alkaline solvent had the smallest value solid fraction (0.42) compared to those
extracted using Ca(OH)2 pH 13 (0.71) and NaOH pH 9 (0.70). KOH at pH 13 produced a
carrageenan with a tensile strength of 1.17 MPa, using NaOH at pH 9, the TS was 0.08 MPa,
and using Ca(OH)2 at pH 13, the TS was 0.05 MPa. Carrageenan using KOH pH 13 as an
alkaline solvent had a bonding index and brittle fracture index value greater than that of
NaOH pH 9 or Ca(OH)2 pH 13. The solubility of carrageenan using NaOH pH 9 was the
highest (86.30%), which was greater than those using KOH pH 13 (68.60%) and Ca(OH)2
pH 13 (34.70%). These data can be used as the basis for the development of carrageenan as
an excipient for solid dosage forms.

4. Materials and Methods
4.1. Materials

Eucheuma cottonii algae were obtained from Banggai Beach (South Sulawesi, Indonesia).
Materials such as kappa-carrageenan (Tokyo Chemical Industry, Tokyo, Japan), sodium
hydroxide (Merck, Jakarta, Indonesia), potassium hydroxide (Merck-Indonesia), calcium
hydroxide (Merck, Jakarta, Indonesia), hydrogen peroxide (Merck, Jakarta, Indonesia),
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potassium chloride (Merck, Jakarta, Indonesia), potassium sulphate (Smartlab, Jawa Barat,
Indonesia), barium chloride (Smartlab, Jawa Barat, Indonesia), acetic acid (Smartlab, Jawa
Barat, Indonesia), hydrochloric acid (Smartlab, Jawa Barat, Indonesia), ethanol (Indoaci-
datama, Jakarta, Indonesia), and distilled water were used as received.

4.2. Methods
4.2.1. Extraction

Fifty g of dried algae was soaked in 1500 mL of a mixture of 1% H2O2 solution and
acetic acid pH 3.5 for 12 h, was then rinsed using running water, drained, and coarsely
chopped. The algae were extracted using 1500 mL of alkaline solution at 80 ◦C and stirred
at 150 rpm for 3 h. The alkaline solvents used in this study were NaOH, KOH, and Ca(OH)2
solutions with various pHs of 9, 11, and 13 [23]. Into 100 mL of extract, 7.5% K2SO4 solution
was added and then stirred for 30 min. The extract was filtered when it was hot. The filtrate
was cooled for 8 h at room temperature until the jelly form was obtained. The jelly was
pressed using a hydraulic press to form sheets and then dried at 50 ◦C for 15–20 h. Dry
carrageenan sheets were powdered and sieved using an 80-mesh sieve.

4.2.2. Characterization of Carrageenan

The characterization was divided into two stages. The first stage was a general
evaluation and characterization, referring to the FAO, including yield, pH, total ash content,
sulphate content, gel strength, viscosity, molecular weight, swelling capacity, and functional
group determination using FTIR.

The second stage involved further testing of the solid-state and physicochemical
characteristics of three selected samples from each type of alkaline solvent, which were
selected by their optimum results in the first evaluations. The second-stage tests included
observing morphology, crystallinity, characteristics of the solid physical properties (density,
solid fraction, tensile strength, bonding index, and brittle fracture index), and solubility.

4.2.3. First Stage: General Characterization

• Yields

Yield measurements were conducted in accordance with the Association of Official
Analytical Chemists (AOAC) procedures year 2005 [54].

• pH measurement

The pH measurements were conducted by following FAO procedures for 2014 [38],
using a Mettler Toledo Model S220 SevenCompact pH meter.

• Total ash content

The ash content measurements were conducted by following procedures from the
Association of Official Analytical Chemists (AOAC) [54].

• Sulphate content

The measurement of carrageenan sulphate levels was conducted by following Dis-
tantina et al.’s research procedures [55].

• Gel strength

Carrageenan gel strength testing was carried out by adopting a procedure performed
in the Distantina et al. study [56].

• Viscosity

Viscosity testing was conducted by following Astuti et al.’s research procedures [29].

• Swelling capacity

The swelling ratio was determined using the method described by Rahmi et al. [54]
with minor modifications. Carrageenan of known precise weight (Wo) was put into a nylon
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filter bag (Wn), immersed in a Petri dish containing aquadest, and every 10 min, the nylon
bag was lifted and weighed (Wt). This test was carried out for 2 h at room temperature.
The surface water on the carrageenan was wiped using a nylon filter and weighed. The
swelling ratio (g/g) of carrageenan was then calculated using Equation (1) [57]:

Swelling ratio
(

g
g

)
=

(Wt − Wo − Wn)
Wo

(1)

• Molecular weight

Molecular weight measurements, were conducted by using the intrinsic viscosity
measurement method [58].

• Study of functional groups with FTIR

The FTIR analysis was performed according to the method described by
Al-Nahdi et al. [12] using an FTIR spectrometer Thermo Nicolet Is5 ID 3 ATR, equipped
with a ZeSn ATR cell.

4.2.4. Solid-State Physical Characterizations

• Morphological observations

Carrageenan samples were analysed using a scanning electron microscope (SEM)
JEOL 6510.

• Crystallinity

The crystallinity of carrageenan samples was analysed using an X-ray Difractogram
PAN analytical X’Pert Pro PW3030/X0.

• Density

The density of the carrageenan samples was determined by using the fluid displace-
ment method:

ρ = W/[(a + w) − b] SG (2)

where ρ = sample density in grams per cubic centimetre; W = sample weight in grams;
SG = liquid paraffin specific gravity = 0.802; a = pycnometer + liquid paraffin weight in
grams; and b = pycnometer + liquid paraffin + granule weight in grams [53].

• Solid Fraction (SF)

The solid fraction or the relative density of carrageenan samples was calculated from
the compact carrageenan true density and apparent density. The apparent density was
determined from the dimensions and weight of the sample and the true density [59].

ρr =
Apparent density

True density
(3)

• Tensile strength (TS)

Breaking force (F) or crushing strength was the load measured at the point at which
the tablet breaks under diametrical compression between two flat plates. Tensile strength is
a fundamental measurement of the resistance to fracture. Breaking force can be converted
into a tensile strength value,

Tensile strength (σ) =
2F
πdh

(4)

where d is the diameter of the tablet, and h is the tablet thickness [50].

• Bonding index (BI).
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The BI was determined by dividing the average tensile strength (σ) by the average
hardness (P) [60]:

Bonding index (BI) =
σ

P
(5)

• Brittle fracture index (BFI)

BFI was measured by comparing the tensile strength (To) of a tablet with a centre hole
with the tensile strength (T) of a similar tablet without a centre hole. The centre hole was a
built-in model defect, which simulated the actual voids formed in the tablets (due to air
entrapment) during manufacture. BFI was calculated using Equation (6) [61]:

BFI = 0.5 [(T/To) − 1] (6)

• Solubility

The testing of the carrageenan sample solubility was performed by dissolving the
sample by up to 1.5% using a beaker, referring to the method developed by Gontard and
Guilbert with a slight modification. The sample was stirred with a magnetic stirrer for 15
min until uniformly mixed. The sample was then filtered with Whatman filter paper. The
supernatant was removed, and the residue was dried at 105 ◦C for 24 h or 1 day [62].

Solubility =
a − (c − b)

a
× 100 (7)

where a = sample weight (g), b = Whatman filter paper weight (g), and c = dry sample
weight (g).
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