Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopy
2.2. Analysis of the Textural Properties of the Gel Samples
2.3. Analysis of the WHC of the Gel Samples
2.4. Analysis of the Whiteness of the Gel Samples
2.5. Analysis of the Chemical Interaction Forces of the Gel Samples
2.6. Analysis of the Microstructures of the Gel Samples
2.7. Analysis of the Sensory Evaluations of the Gel Samples
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Papain-Modified SPI
4.3. Preparation of Silver Carp Protein
4.4. Preparation of Cold-Induced Gels
4.5. FTIR (Fourier-Transform Infrared Spectroscopy)
4.6. TPA (Texture Profile Analysis)
4.7. Gel Whiteness
4.8. Gel WHC (Water-Holding Capacity)
4.9. Gel Sample Intermolecular Force Measurements
4.10. Gel Sample SEM (Scanning Electron Microscopy) Measurements
4.11. Sensory Evaluation
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dupont, J.; Fiebelkorn, F. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Qual. Prefer. 2020, 85, 103983. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Regenstein, J.M.; Zang, J.; Jiang, Q.; Xia, W.; Xu, Y. Inhibition of microbial spoilage of grass carp (Ctenopharyngodon idellus) fillets with a chitosan-based coating during refrigerated storage. Int. J. Food Microbiol. 2018, 285, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Zhang, H.; Jiang, Y.; Javed, M.; Xiong, S.; Liu, Y. Effect of lipoxygenase-catalyzed linoleic acid oxidation on structural and rheological properties of silver carp (Hypophthalmichthys molitrix) myofibrillar protein. LWT 2022, 161, 113388. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, H.; Pan, D.; Bu, G. Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate. Food Hydrocoll. 2008, 22, 1513–1519. [Google Scholar] [CrossRef]
- Liu, J.; Shen, S.; Xiao, N.; Jiang, Q.; Shi, W. Effect of glycation on physicochemical properties and volatile flavor characteristics of silver carp mince. Food Chem. 2022, 386, 132741. [Google Scholar] [CrossRef]
- He, X.; Lv, Y.; Li, X.; Yi, S.; Zhao, H.; Li, J.; Xu, Y. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating. Ultrason. Sonochem. 2022, 83, 105942. [Google Scholar] [CrossRef]
- Leng, L.; Zou, H.; Wang, Y.; Yu, C.; Qi, H. Seaweed Slurry Improved Gel Properties and Enhanced Protein Structure of Silver Carp (Hypophthalmichthys molitrix) Surimi. Foods 2022, 11, 3115. [Google Scholar] [CrossRef]
- Zhou, X.; Chong, Y.; Ding, Y.; Gu, S.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE–GC–MS, e-nose and sensory evaluation. Food Chem. 2016, 207, 205–213. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Bakry, A.M.; Xiong, S.; Yin, T.; Zhang, B.; Huang, J.; Liu, Z.; Huang, Q. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi. Food Hydrocoll. 2019, 88, 256–264. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Zhou, L.; Wang, Z. Soy protein isolates: A review of their composition, aggregation, and gelation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1940–1957. [Google Scholar] [CrossRef]
- Wang, T.; Xu, P.; Chen, Z.; Wang, R. Mechanism of structural interplay between rice proteins and soy protein isolates to design novel protein hydrocolloids. Food Hydrocoll. 2018, 84, 361–367. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Teng, F.; Li, Y. Tofu products: A review of their raw materials, processing conditions, and packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3683–3714. [Google Scholar] [CrossRef]
- Sha, L.; Liu, S.; Liu, D. Effects of soybean protein isolate on protein structure, batter rheology, and water migration in emulsified sausage. J. Food Process. Preserv. 2020, 44, e14711. [Google Scholar] [CrossRef]
- Niu, H.; Xia, X.; Wang, C.; Kong, B.; Liu, Q. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating. Food Chem. 2018, 242, 188–195. [Google Scholar] [CrossRef]
- Chin, K.B.; Go, M.Y.; Xiong, Y.L. Effect of soy protein substitution for sodium caseinate on the transglutaminate-induced cold and thermal gelation of myofibrillar protein. Food Res. Int. 2009, 42, 941–948. [Google Scholar] [CrossRef]
- Feng, J.; Xiong, Y.L. Interaction and Functionality of Mixed Myofibrillar and Enzyme-hydrolyzed Soy Proteins. J. Food Sci. 2003, 68, 803–809. [Google Scholar] [CrossRef]
- Ramirez-Suárez, J.; Xiong, Y.L. Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Sci. 2003, 65, 899–907. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 20, 458–500. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Mu, D.; Zhao, Y.; Luo, S.; Zhong, X.; Jiang, S.; Li, X.; Zheng, Z. Effect of Partial Hydrolysis with Papain on the Characteristics of Transglutaminase-Crosslinked Tofu Gel. J. Food Sci. 2018, 83, 3092–3098. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.; Yang, X.; Li, Y.; Shoemaker, C.F. Papain-induced Gelation of Soy Glycinin (11S). J. Food Sci. 2006, 71, E232–E237. [Google Scholar] [CrossRef]
- Boora, K.A.; Amarjeet, K.; Kumar, K.S.; Nitin, M. Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrason. Sonochem. 2018, 49, S1350417718312185. [Google Scholar]
- Zhao, X.; Chen, F.; Xue, W.; Lee, L. FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocoll. 2008, 22, 568–575. [Google Scholar] [CrossRef]
- Ong, L.; Pax, A.P.; Ong, A.; Vongsvivut, J.; Tobin, M.J.; Kentish, S.E.; Gras, S.L. The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties. Food Chem. 2020, 332, 127327. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, X. Changes of protein secondary structures of pollock surimi gels under high-temperature (100 °C and 120 °C) treatment. J. Food Eng. 2016, 171, 159–163. [Google Scholar] [CrossRef]
- Sow, L.C.; Yang, H. Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocoll. 2015, 45, 72–82. [Google Scholar] [CrossRef]
- Lin, L.; Shen, M.; Liu, S.; Tang, W.; Wang, Z.; Xie, M.; Xie, J. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. Int. J. Biol. Macromol. 2018, 107, 1591–1598. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Rosenthal, A. Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. J. Texture Stud. 2019, 50, 369–380. [Google Scholar] [CrossRef]
- Zheng, L.; Teng, F.; Wang, N.; Zhang, X.-N.; Regenstein, J.M.; Liu, J.-S.; Li, Y.; Wang, Z.-J. Addition of Salt Ions before Spraying Improves Heat- and Cold-Induced Gel Properties of Soy Protein Isolate (SPI). Appl. Sci. 2019, 9, 1076. [Google Scholar] [CrossRef]
- Pallares, I.; Vendrell, J.; Aviles, F.X.; Ventura, S. Amyloid Fibril Formation by a Partially Structured Intermediate State of α-Chymotrypsin. J. Mol. Biol. 2004, 342, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; McClements, D.J.; He, M.; Fan, Z.; Li, Y.; Teng, F. Preparation of okara cellulose hydrogels using ionic liquids: Structure, properties, and performance. J. Mol. Liq. 2021, 331, 115744. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Kong, Y.; Ma, Z.; Wu, C.; Regenstein, J.M.; Teng, F.; Li, Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocoll. 2020, 110, 106115. [Google Scholar] [CrossRef]
- Zheng, L.; He, M.; Zhang, X.; Regenstein, J.M.; Wang, Z.; Ma, Z.; Kong, Y.; Wu, C.; Teng, F.; Li, Y. Gel properties and structural characteristics of soy protein isolate treated with different salt ions before spray drying combined with dynamic high-pressure micro-fluidization. Food Bioprod. Process. 2021, 125, 68–78. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, L. A new style of fermented tofu by Lactobacillus casei combined with salt coagulant. 3 Biotech 2020, 10, 81. [Google Scholar] [CrossRef]
- Kao, F.-J.; Su, N.-W.; Lee, M.-H. Effect of Calcium Sulfate Concentration in Soymilk on the Microstructure of Firm Tofu and the Protein Constitutions in Tofu Whey. J. Agric. Food Chem. 2003, 51, 6211–6216. [Google Scholar] [CrossRef]
- Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.-U.; Huang, Q.; Liu, R. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll. 2019, 89, 512–522. [Google Scholar] [CrossRef]
- Saeed, S.; Fawthrop, A.S.; Howell, N.K. Electron spin resonance (ESR) study on free radical transfer in fish lipid-protein interaction. J. Sci. Food Agric. 1999, 79, 1809–1816. [Google Scholar] [CrossRef]
- Xia, W.; Ma, L.; Chen, X.; Li, X.; Zhang, Y. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocoll. 2018, 82, 135–143. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase. Meat Sci. 2013, 93, 469–476. [Google Scholar] [CrossRef]
- Wang, W.; Shen, M.; Liu, S.; Jiang, L.; Song, Q.; Xie, J. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydr. Polym. 2018, 192, 193–201. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem. 2015, 188, 111–118. [Google Scholar] [CrossRef]
- Visessanguan, S.; Ogawa, M.; Nakai, S.; An, H. Physiological changes and mechanism of heat induced gelation of arrowtooth flounder. J. Agric. Food Chem. 2000, 48, 1016–1023. [Google Scholar] [CrossRef]
- Puppo, M.C.; Añón, M.C. Structural Properties of Heat-Induced Soy Protein Gels As Affected by Ionic Strength and pH. J. Agric. Food Chem. 1998, 46, 3583–3589. [Google Scholar] [CrossRef]
- Yang, X.; Boyle, R.A. Sensory Evaluation of Oils/Fats and Oil/Fat–Based Foods. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Hu, M., Jacobsen, C., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 157–185. [Google Scholar]
- Duizer, L.; Walker, S. The Application of Sensory Science to the Evaluation of Grain-Based Foods. In Reference Module in Food Sciences; Trinetta, V., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Bryhni, E.; Byrne, D.; Rødbotten, M.; Claudi-Magnussen, C.; Agerhem, H.; Johansson, M.; Lea, P.; Martens, M. Consumer perceptions of pork in Denmark, Norway and Sweden. Food Qual. Prefer. 2002, 13, 257–266. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymatic hydrolysis of food proteins. Can. Med. Assoc. J. 1986, 172, 1783–1785. [Google Scholar]
- Mehdi, A.; Masoud, R.; Ali, J.; Ingrid, U. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018, 242, 568–578. [Google Scholar]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Valdez-Hurtado, S.; López-Bermúdez, L.; Higuera-Barraza, O.; Del Toro-Sanchez, C.; Ruiz-Cruz, S.; Suárez-Jiménez, M.; Marquez-Rios, E. Effect of ultrasonication time on the functional properties of giant squid (Dosidicus gigas) mantle protein concentrate. Food Biosci. 2019, 27, 1–5. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Li, L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. LWT 2020, 119, 10894. [Google Scholar] [CrossRef]
- Xu, X.; Cao, Y.; Zhang, H.; Yaqoob, S.; Zheng, M.; Wu, Y.; Zhao, C.; Liu, J. Effects of cornstarch on the gel properties of black bean protein isolate. J. Texture Stud. 2018, 49, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Ji, Y.; Guo, Z.; Zhu, J.; Xu, Y.; Li, X.; Li, J. Gel properties and flavor characteristics of blended anchovy (Engraulis japonicus) mince and silver carp (Hypophthalmichthys molitrix) surimi. RSC Adv. 2020, 10, 6563–6570. [Google Scholar] [CrossRef] [PubMed]
Gel Sample | α-Helix (%) | β-Sheet (%) | β-Turns (%) | Random Coil (%) |
---|---|---|---|---|
Control | 26.1 ± 0.2 e | 31 ± 1 c | 25.4 ± 0.4 a | 18 ± 1 a |
M-0 | 27.1 ± 0.3 bc | 31 ± 1 c | 24.3 ± 0.2 b | 17.6 ± 0.3 abc |
M-1 | 26.8 ± 0.4 bcd | 33 ± 1 bc | 24.1 ± 0.1 b | 17.8 ± 0.2 ab |
M-2 | 28.4 ± 0.2 a | 36 ± 2 a | 22.0 ± 0.1 d | 15.2 ± 0.1 e |
M-3 | 27.4 ± 0.1 b | 35 ± 1 ab | 22.2 ± 0.3 d | 16 ± 1 de |
M-4 | 26.4 ± 0.3 cd | 34 ± 1 ab | 23.4 ± 0.1 c | 16.9 ± 0.2 bcd |
M-5 | 27 ± 1 bcd | 32 ± 2 bc | 24.4 ± 0.4 b | 16.6 ± 0.4 cd |
Sensory Attribute | Definition and Description | Rating Scale |
---|---|---|
Elasticity | Whether the gel sample has good elasticity; press with your finger and observe whether it breaks. | 1–3 = If you press the sample with your finger, it breaks, which represents an inelastic state. 4–6 = When the sample is pressed with the fingers, it is less fractured and shows a slightly elastic state. 7–10 = The sample does not break when pressed with fingers; it shows good elasticity. |
Mouthfeel | Gel samples are refreshing, smooth, and delicate, or not, when coming into contact with your tongue. | 1–3 = Unpleasant, nonsmooth, and rough. 4–6 = Slightly refreshing and smooth, and slightly delicate. 7–10 = Refreshing, smooth, and delicate. |
Color | Whether or not the gel sample has the normal color (light white or light yellow), and whether or not the color of the sample is uniform. | 1–3 = The sample has an abnormal color. 4–6 = The sample has a normal color but the color is uneven. 7–10 = The sample has a normal, uniform color. |
Taste | Whether the gel sample is delicious and has enough flavor. | 1–3 = Not delicious, with an unpleasant smell. 4–6 = Delicious, slight flavor. 7–10 = Delicious, enough flavor. |
Apparent state | The gel sample has a uniform cut surface, with pores or not. | 1–3 = The surface of the cut is fluffy and uneven. 4–6 = Slightly uniform cutting surface with a few large pores. 7–10 = Smooth cut surface, no large pores. |
Acceptability | Whether or not the gel sample has a bitter taste, and what is the overall taste and acceptability? | 1–3 = The gel sample has a bitter taste and poor acceptability overall. 4–6 = The gel sample has a slight bitterness, and overall acceptability can be considered. 7–10 = The gel sample has no bitterness, and overall acceptability is good. |
Gel Sample | Elasticity | Mouthfeel | Color | Taste | Apparent State | Acceptability |
---|---|---|---|---|---|---|
Control | 3.4 ± 1.1 e | 2.1 ± 0.3 c | 6.1 ± 1.2 bc | 4.1 ± 0.4 c | 3.3 ± 0.2 d | 5.3 ± 0.4 e |
M-0 | 3.0 ± 1.0 e | 1.7 ± 0.2 c | 5.3 ± 0.4 c | 3.4 ± 0.4 c | 3.1 ± 0.4 d | 4.6 ± 0.4 e |
M-1 | 5.2 ± 1.2 cd | 6.3 ± 1.4 ab | 6.4 ± 0.4 abc | 6.1 ± 0.1 b | 7.0 ± 1.0 bc | 7.3 ± 0.2 bc |
M-2 | 8.3 ± 1.3 a | 7.6 ± 1.2 a | 7.6 ± 0.2 a | 8.4 ± 0.2 a | 8.7 ± 0.2 a | 8.8 ± 1.0 a |
M-3 | 7.1 ± 0.3 ab | 7.0 ± 1.1 a | 7.0 ± 1.0 ab | 7.2 ± 1.1 b | 8.1 ± 0.4 ab | 8.1 ± 0.2 ab |
M-4 | 6.2 ± 0.4 bc | 6.1 ± 0.4 ab | 6.7 ± 0.3 ab | 7.0 ± 1.2 b | 7.3 ± 1.3 bc | 6.6 ± 0.5 cd |
M-5 | 4.4 ± 0.4 de | 5.3 ± 0.1 b | 6.4 ± 0.2 abc | 6.2 ± 0.3 b | 6.4 ± 0.4 c | 5.5 ± 1.1 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Regenstein, J.M.; Zhou, L.; Mokhtar, S.M.; Wang, Z. Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein. Gels 2023, 9, 420. https://doi.org/10.3390/gels9050420
Zheng L, Regenstein JM, Zhou L, Mokhtar SM, Wang Z. Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein. Gels. 2023; 9(5):420. https://doi.org/10.3390/gels9050420
Chicago/Turabian StyleZheng, Li, Joe M. Regenstein, Linyi Zhou, Sayed Mohamed Mokhtar, and Zhongjiang Wang. 2023. "Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein" Gels 9, no. 5: 420. https://doi.org/10.3390/gels9050420
APA StyleZheng, L., Regenstein, J. M., Zhou, L., Mokhtar, S. M., & Wang, Z. (2023). Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein. Gels, 9(5), 420. https://doi.org/10.3390/gels9050420