Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radiation Polymerization of DMAA-AMPSA
2.2. Effect of Radiation Dose on Equilibrium Swelling of Gels
2.3. Characterization of Hydrogel by FTIR Spectroscopy
2.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.5. X-ray Diffraction Analysis
2.6. Thermal Analysis
2.7. Surface Analysis by SEM-EDS
3. Conclusions
4. Experimental
4.1. Materials and Reagents
4.2. Apparatus and Instruments
4.3. Preparation and Extraction of DMAA–AMPSA Hydrogels
4.4. Measurement of Super-Absorbency at Equilibrium Swelling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharekhani, H.; Olad, A.; Mirmohseni, A.; Bybordi, A. Superabsorbent Hydrogel Made of NaAlg-g-Poly(AA-Co-AAm) and Rice Husk Ash: Synthesis, Characterization, and Swelling Kinetic Studies. Carbohydr. Polym. 2017, 168, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Călina, I.; Demeter, M.; Scărișoreanu, A.; Micutz, M. Development of Novel Superabsorbent Hybrid Hydrogels by E-beam Crosslinking. Gels 2021, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Zamanzadeh, S.M.; Amini, A.; Ghavidel-Syooki, M. Sequence Stratigraphic Controls on Early-Diagenetic Carbonate Cementation of Shallow Marine Clastic Sediments (the Devonian Zakeen Formation, Southern Zagros, Iran). Geosci. J. 2009, 13, 31–57. [Google Scholar] [CrossRef]
- Yoshida, R.; Okano, T. Biomedical Applications of Hydrogels Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 19–44. [Google Scholar] [CrossRef]
- Bhuyan, M.M.; Okabe, H.; Hidaka, Y.; Hara, K. Pectin-[(3-Acrylamidopropyl) Trimethylammonium Chloride-Co-Acrylic Acid] Hydrogel Prepared by Gamma Radiation and Selectively Silver (Ag) Metal Adsorption. J. Appl. Polym. Sci. 2018, 135, 45906. [Google Scholar] [CrossRef]
- Bhuyan, M.M.; Okabe, H.; Hidaka, Y.; Dafader, N.C.; Rahman, N.; Hara, K. Synthesis of Pectin-N, N-Dimethyl Acrylamide Hydrogel by Gamma Radiation and Application in Drug Delivery (in Vitro). J. Macromol. Sci. Part A Pure Appl. Chem. 2018, 55, 369–376. [Google Scholar] [CrossRef]
- Shah, S.S.; Ramos, B.; Teixeira, A.C.S.C. Adsorptive Removal of Methylene Blue Dye Using Biodegradable Superabsorbent Hydrogel Polymer Composite Incorporated with Activated Charcoal. Water 2022, 14, 3313. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Bhuyan, M.M.; Jeong, J.-H. Synthesis and Characterization of Gamma Radiation Induced Diallyldimethylammonium Chloride-Acrylic Acid-(3-Acrylamidopropyl) Trimethylammonium Chloride Superabsorbent Hydrogel. Gels 2023, 9, 159. [Google Scholar] [CrossRef]
- Boyaci, T.; Orakdogen, N. Poly(N,N-Dimethylaminoethyl Methacrylate-Co-2-Acrylamido-2-Methyl-Propanosulfonic Acid)/Laponite Nanocomposite Hydrogels and Cryogels with Improved Mechanical Strength and Rapid Dynamic Properties. Appl. Clay Sci. 2016, 121–122, 162–173. [Google Scholar] [CrossRef]
- Su, E.; Yurtsever, M.; Okay, O. A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules 2019, 52, 3257–3267. [Google Scholar] [CrossRef]
- Su, E.; Okay, O. Hybrid Cross-Linked Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Hydrogels with Tunable Viscoelastic, Mechanical and Self-Healing Properties. React. Funct. Polym. 2018, 123, 70–79. [Google Scholar] [CrossRef]
- Varaprasad, K.; Reddy, N.N.; Ravindra, S.; Vimala, K.; Raju, K.M. Synthesis and Characterizations of Macroporous Poly(Acrylamide-2- Acrylamido-2-Methyl-1-Propanesulfonic Acid) Hydrogels for in Vitro Drug Release of Ranitidine Hydrochloride. Int. J. Polym. Mater. Polym. Biomater. 2011, 60, 490–503. [Google Scholar] [CrossRef]
- Darwis, D. Role of Radiation Processing in Production of Hydrogels for Medical Applications. Atom Indones. 2010, 35, 85–104. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, T.; Pardo, J.; Soo, K.; Peppas, N.A. Characterization of PH-Responsive Hydrogels of Poly(Itaconic Acid-g-Ethylene Glycol) Prepared by UV-Initiated Free Radical Polymerization as Biomaterials for Oral Delivery of Bioactive Agents. J. Biomed. Mater. Res.-Part A 2010, 93, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.P.; Goodall, G.W.; Khutoryanskaya, O.V.; Khutoryanskiy, V.V. Microwave-Assisted Hydrogel Synthesis: A New Method for Crosslinking Polymers in Aqueous Solutions. Macromol. Rapid Commun. 2012, 33, 332–336. [Google Scholar] [CrossRef]
- Nasef, M.M.; Güven, O. Radiation-Grafted Copolymers for Separation and Purification Purposes: Status, Challenges and Future Directions. Prog. Polym. Sci. 2012, 37, 1597–1656. [Google Scholar] [CrossRef]
- Krishna Murthy, S.; Veerabhadraiah Basavaraj, B.; Srinivasan, B. Microwave Assisted Vanillin Crosslinked Chitosan/Polycarbophil Superporous Hydrogels for Biomedical Application: Optimization and Characterization. Mater. Today Proc. 2023, in press. [CrossRef]
- Villard, P. Sur la Réflexion et la Réfraction des Rayons Cathodiques et des Rayons Déviables du Radium. Comptes Rendus 1900, 130, 1010–1012. [Google Scholar]
- Bakr, W.F. Assessment of the Radiological Impact of Oil Refining Industry. J. Environ. Radioact. 2010, 101, 237–243. [Google Scholar] [CrossRef]
- Hazou, E.; Patchali, T.E. Assessment of Radiological Hazards in the Phosphate Mining Area of Kpogamé, Togo. Case Stud. Chem. Environ. Eng. 2021, 3, 100077. [Google Scholar] [CrossRef]
- Silva, D.; Rocha, R.; Silva, C.J.; Barroso, H.; Botelho, J.; Machado, V.; Mendes, J.J.; Oliveira, J.; Loureiro, M.V.; Marques, A.C.; et al. Gamma Radiation for Sterilization of Textile Based Materials for Personal Protective Equipment. Polym. Degrad. Stab. 2021, 194, 109750. [Google Scholar] [CrossRef]
- Chen, F.; Miao, C.; Duan, Q.; Jiang, S.; Liu, H.; Ma, L.; Li, Z.; Bao, X.; Lan, B.; Chen, L.; et al. Developing Slow Release Fertilizer through In-Situ Radiation-Synthesis of Urea-Embedded Starch-Based Hydrogels. Ind. Crops Prod. 2023, 191, 115971. [Google Scholar] [CrossRef]
- Kundakci, S.; Üzüm, Ö.B.; Karadaǧ, E. Swelling and Dye Sorption Studies of Acrylamide/2-Acrylamido-2-Methyl-1-Propanesulfonic Acid/Bentonite Highly Swollen Composite Hydrogels. React. Funct. Polym. 2008, 68, 458–473. [Google Scholar] [CrossRef]
- Hui, B.; Ye, L. Structure of Polyvinyl Alcohol-g-Acrylic Acid-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid Hydrogel and Adsorption Mechanism for Advanced Pb(II) Removal. J. Ind. Eng. Chem. 2016, 35, 309–317. [Google Scholar] [CrossRef]
- Bowes, J.H.; Moss, J.A. The Effect of Gamma Radiation on Collagen. Radiat. Res. 1962, 16, 211–223. [Google Scholar] [CrossRef]
- Rosiak, J.M.; Ulański, P. Synthesis of Hydrogels by Irradiation of Polymers in Aqueous Solution. Radiat. Phys. Chem. 1999, 55, 139–151. [Google Scholar] [CrossRef]
- Jabbari, E.; Nozari, S. Swelling Behavior of Acrylic Acid Hydrogels Prepared by γ-Radiation Crosslinking of Polyacrylic Acid in Aqueous Solution. Eur. Polym. J. 2000, 36, 2685–2692. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Soleyman, R.; Bardajee, G.R.; Seidi, F. γ-Irradiation Synthesis of a Smart Hydrogel: Optimization Using Taguchi Method and Investigation of Its Swelling Behavior. Sci. Iran. 2010, 17, 15–23. [Google Scholar]
- Erizal; Perkasa, D.P.; Abbas, B.; Sudirman; Sulistioso, G.S. Fast Swelling Superabsorbent Hydrogels Starch Based Prepared by Gamma Radiation Techniques. Indones. J. Chem. 2014, 14, 246–252. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Fabrication of Salecan/Poly(AMPS-Co-HMAA) Semi-IPN Hydrogels for Cell Adhesion. Carbohydr. Polym. 2017, 174, 171–181. [Google Scholar] [CrossRef]
- Karadaǧ, E.; Kundakci, S.; Üzüm, Ö.B. Water Sorption and Dye Uptake Studies of Highly Swollen Aam/AMPS Hydrogels and Semi-IPNs with PEG. Polym. -Plast. Technol. Eng. 2009, 48, 1217–1229. [Google Scholar] [CrossRef]
- Sekizkardes, B.; Su, E.; Okay, O. Mechanically Strong Superabsorbent Terpolymer Hydrogels Based on AMPS via Hydrogen-Bonding Interactions. ACS Appl. Polym. Mater. 2022, 5, 2043–2050. [Google Scholar] [CrossRef]
- Hocine, S.; Ghemati, D.; Aliouche, D. Synthesis, Characterization and Swelling Behavior of PH-Sensitive Polyvinylalcohol Grafted Poly(Acrylic Acid-Co-2-Acrylamido-2-Methylpropane Sulfonic Acid) Hydrogels for Protein Delivery. Polym. Bull. 2023, in press. [CrossRef]
- Yavari-Gohar, M.R.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Hashemi, S.A. Thermo-Hydrolytic Stability of Swelling Capacity of Superabsorbing Composite Hydrogels Based on AMPS and Acrylamide. J. Polym. Res. 2010, 17, 151–159. [Google Scholar] [CrossRef]
- Fei, J.; Tang, T.; Zhou, L.; He, H.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. High-Toughness and Biodegradable Superabsorbent Hydrogels Based on Dual Functional Crosslinkers. ACS Appl. Polym. Mater. 2023, 5, 3686–3697. [Google Scholar] [CrossRef]
- Ferri, D.; Bürgi, T.; Baiker, A. FTIR Study of Chiral Modifier–Reactant Interactions. The Cinchonidine–Alkenoic Acid System. J. Chem. Soc. Perkin Trans. 2002, 2, 437–441. [Google Scholar] [CrossRef]
- Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and Evaluation of Skin Wound Healing Chitosan-Based Hydrogel Membranes. AAPS PharmSciTech 2018, 19, 3199–3209. [Google Scholar] [CrossRef]
- Azmeera, V.; Adhikary, P.; Krishnamoorthi, S. Synthesis and Characterization of Graft Copolymer of Dextran and 2-Acrylamido-2-Methylpropane Sulphonic Acid. Int. J. Carbohydr. Chem. 2012, 2012, 209085. [Google Scholar] [CrossRef]
- Yanzhu, G.; Fangong, K. Generation and Use of Lignin-g-AMPS in Extended DLVO Theory for Evaluating the Flocculation of Colloidal Particles. ACS Omega 2020, 5, 21032–21041. [Google Scholar]
- Mahmoud, G.A. Adsorption of Copper(II), Lead(II), and Cadmium(II) Ions from Aqueous Solution by Using Hydrogel with Magnetic Properties. Mon. Fur Chem. 2013, 144, 1097–1106. [Google Scholar] [CrossRef]
- Yu, J.; Li, Y.; Lu, Q.; Zheng, J.; Yang, S.; Jin, F.; Wang, Q.; Yang, W. Synthesis, Characterization and Adsorption of Cationic Dyes by CS/P(AMPS-Co-AM) Hydrogel Initiated by Glow-Discharge-Electrolysis Plasma. Iran. Polym. J. 2016, 25, 423–435. [Google Scholar] [CrossRef]
- Elgueta, E.; Rivas, B.L.; Mancisidor, A.; Núñez, D.; Dahrouch, M. Hydrogels Derived from 2-Hydroxyethyl-Methacrylate and 2-Acrylamido-2-Methyl-1-Propanesulfonic Acid, with Ability to Remove Metal Cations from Wastewater. Polym. Bull. 2019, 76, 6503–6528. [Google Scholar] [CrossRef]
- Reguieg, F.; Ricci, L.; Bouyacoub, N.; Belbachir, M.; Bertoldo, M. Thermal Characterization by DSC and TGA Analyses of PVA Hydrogels with Organic and Sodium MMT. Polym. Bull. 2020, 77, 929–948. [Google Scholar] [CrossRef]
- Gola, A.; Sacharczuk, M.; Musiał, W. Synthesis of AMPSA Polymeric Derivatives Monitored by Electrical Conductivity and Evaluation of Thermosensitive Properties of Resulting Microspheres. Molecules 2019, 24, 1164. [Google Scholar] [CrossRef]
Hydrogel Name | Application | Maximum Swelling | Reference |
---|---|---|---|
Acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite | Dye sorption | 2282–12,603% | [26] |
Salecan/poly(AMPS-co-HMAA)semi-IPN | Cell adhesion | 5370% | [33] |
AAm/AMPS and Semi-IPNs with PEG. | Water sorption and dye uptake | 4850–22,560% | [34] |
Terpolymer Hydrogels Based on AMPSA | - | 2035 ± 255% | [35] |
Poly (acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) | Protein delivery | 4715.2% | [36] |
Superabsorbent composite hydrogels based on AMPS and acrylamide | - | 7000% | [37] |
Biodegradable Superabsorbent Hydrogels | - | 9160% | [38] |
Element | Weight % | Weight % Sigma |
---|---|---|
Carbon (C) | 53.42 | 0.58 |
Nitrogen (N) | 11.19 | 0.79 |
Oxygen (O) | 30.83 | 0.43 |
Sulfur | 4.56 | 0.08 |
Total: | 100.0 | - |
Radiation dose (kGy) | 2 | 5 | 10 | 20 | 30 |
---|---|---|---|---|---|
Dose rate (Gy/h) | 85 | 216 | 435 | 818 | 1302 |
Distance from the source (cm) | 46 | 27 | 17 | 11 | 7 |
Irradiation time (h) | 24 | 24 | 24 | 24 | 24 |
Gel product | Solid gel | Solid gel | Solid gel | Solid gel | Solid gel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuyan, M.M.; Jeong, J.-H. Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization. Gels 2023, 9, 426. https://doi.org/10.3390/gels9050426
Bhuyan MM, Jeong J-H. Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization. Gels. 2023; 9(5):426. https://doi.org/10.3390/gels9050426
Chicago/Turabian StyleBhuyan, Md Murshed, and Jae-Ho Jeong. 2023. "Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization" Gels 9, no. 5: 426. https://doi.org/10.3390/gels9050426
APA StyleBhuyan, M. M., & Jeong, J. -H. (2023). Gamma Radiation-Induced Advanced 2,3-Dimethylacrylic Acid-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Superabsorbent Hydrogel: Synthesis and Characterization. Gels, 9(5), 426. https://doi.org/10.3390/gels9050426