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Abstract: Self-assembling peptides are a promising biomaterial with potential applications in medical
devices and drug delivery. In the right combination of conditions, self-assembling peptides can form
self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular
forces is critical for successful hydrogel formation. Electrostatic repulsion is tuned by altering the
peptide’s net charge, and intermolecular attractions are controlled through the degree of hydrogen
bonding between specific amino acid residues. We find that an overall net peptide charge of +/−2 is
optimal to facilitate the assembly of self-supporting hydrogels. If the net peptide charge is too low
then dense aggregates form, while a high molecular charge inhibits the formation of larger structures.
At a constant charge, altering the terminal amino acids from glutamine to serine decreases the degree
of hydrogen bonding within the assembling network. This tunes the viscoelastic properties of the
gel, reducing the elastic modulus by two to three orders of magnitude. Finally, hydrogels could
be formed from glutamine-rich, highly charged peptides by mixing the peptides in combinations
with a resultant net charge of +/−2. These results illustrate how understanding and controlling
self-assembly mechanisms through modulating intermolecular interactions can be exploited to derive
a range of structures with tuneable properties.

Keywords: β-sheet; self-assembly; peptides; hydrogels; rheology

1. Introduction

Hydrogels are a three-dimensional network of polymer chains swollen with wa-
ter [1–3]. Self-assembling peptides can be used to form versatile and tuneable hydrogels
with an intrinsic biocompatibility and a range of biomechanical and biophysical proper-
ties [4–7]. This makes them suitable for use in a range of applications such as early-stage
interventions for musculoskeletal disorders, drug delivery platforms or scaffolds for cell
therapies [8,9]. Some practical applications where hydrogels have been used are in the early-
stage repair of degenerated soft tissues such as cartilage and intervertebral disc [4,10]. In
order to fully utilise these biomaterials for practical applications, the design principles that
drive self-assembly and determine their material properties need to be better understood.

A number of design variables that affect self-assembly and material properties of
different families of peptides have been investigated previously. For example, for alpha-
peptides, it has been shown that tuning hydrophobic and π-π interactions through the
amino acid sequence was critical to determining whether a percolating gel phase could
form [11]. Changing the amino acid sequence has also been found to change the secondary
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structures formed, as the peptides self-assemble in the case of a short eight-residue peptide,
GV8, which causes transitions between α-helical and different β-sheet structures [12], and
results in differences in the rheological properties. For the RADA family of peptides that
self-assemble due to alternating hydrophobic and negatively charged peptides, the effect
of adding proline amino acids at both the C- and N- terminals was shown to increase the
peptide solubility, sol–gel transition ability, and the storage modulus through the effect of
proline–proline-type self-assembly. These examples illustrate how minor changes to the
peptide structure can influence the resulting properties on different scales [13].

Here, we investigate the family of P11 peptides that have been developed to self-
assemble spontaneously to form β-sheet 3D hierarchical structures. Figure 1 shows the
generic structure of this class of peptides, as well as the amino acid sequences, and net
charge of different P11 peptides [14].
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Figure 1. Peptide structures in the P11 series. (a) Generic design principles for P11 β-sheet forming
peptide structures. (b) Table of peptides investigated in this study with structures and charges
at physiological pH. (c) TEM image of P11-12 in 130 mM saline (~6 mM) at pH 7.4 showing a
self-assembled fibrous hydrogel network. Scale bar is 500 µm.

The P11 peptides are designed with a hydrophobic aromatic centre on one side and
a hydrophilic side to promote the formation of anti-parallel β-sheets, and then, through
a hierarchical self-assembly mechanism, form a fibrous multi-micron scale network. An
example TEM micrograph of a P11 peptide hydrogel (P11-12) illustrates the fibrous network
that forms during self-assembly (Figure 1c). Previous work has highlighted that charge is an
important factor when assessing the biocompatibility of positively charged self-assembling
hydrogels, including P11-8 [15].

This work builds on existing knowledge by focusing on self-assembly under physi-
ological buffer conditions (pH, ionic strength). We investigate the effects of altering two
different design variables on the relationship between molecular scale and macroscale
properties: (1) the overall peptide charge; (2) the hydrogen bonding interactions, achieved
through changing the terminal amino acids from glutamine (Q) to serine (S). The former
is a mechanism to tune repulsive interactions between peptides and the latter modulates
attractive intermolecular interactions. We demonstrate that controlling the balance between
these attractive and repulsive interactions is critical in controlling the self-assembly of P11
peptides and determining conditions under which peptide hydrogels can form.
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2. Results and Discussion

The results are presented to, firstly, show the effect of charge on intermolecular repul-
sion under physiological self-assembly of glutamine-containing peptides, then, the effect of
molecular attraction is explored through the degree of hydrogen bonding by comparing
three different serine-containing peptides to three glutamine-containing equivalent pep-
tides. Finally, based on these findings, we demonstrate the formation of a hybrid hydrogel
formed from a mixture of non-gelling P11 peptides. To aid the reader in correlating the
peptide number (N) in the P11 series with its charge, peripheral amino acid type, and net
charge, we use the nomenclature P11-N (a,b), where a are the peripheral amino acids (Q for
glutamine; S for serine) and b is the net charge of the peptide at the physiological pH.

2.1. Control of Intermolecular Repulsion Is Critical for the Self-Assembly of Peptide Hydrogels

Our series of glutamine-based peptides had overall charges (at pH 7.4) from −6 to
+4 (Figure 1). Each peptide varies in critical aggregation concentration (c*) as shown by
the self-assembly curves derived from the 1H NMR experiments (Figure 2). The c* for
each peptide is the minimum peptide concentration required for peptide self-assembly,
where favourable intermolecular interactions between peptides overcome the entropy of
mixing, which favours dispersion of the peptides in the monomer state. When above
this concentration, self-assembled aggregates will coexist in dynamic equilibrium with
a background critical concentration of peptide monomers in solution. The method of
calculating c* for each peptide is demonstrated in an example in Section 4.5.3. The neutrally
charged P11-2 (Q,0) peptide possessed the lowest c* (14 ± 3.2 µM), while the two peptides
with the extreme charges, P11-13 (Q,−6) and P11-14 (Q,+4), showed no self-assembly within
the concentration range investigated (~1 µM–100 mM). The peptides with +/− 2 overall
charge, P11-4 (Q,−2) and P11-8 (Q,+2), possessed similar c*: 310 ± 72 and 400 ± 100 µM,
respectively [14].

The secondary structures of these peptides under conditions of self-assembly, where
applicable, were characterised by FT-IR spectroscopy. Figure 2 shows example spectra
for a peptide that does not self-assemble (P11-13 (Q,−6); Figure 2c) and a peptide that has
undergone self-assembly (P11-8 (Q,+2); Figure 2d). In the case of the extremely charged
peptide systems (−6/+4), the peaks in the Amide I region typically associated with β-sheet
formation, 1613–1630 cm−1 and 1682–1690 cm−1, were not present in the FT-IR spectra.
Instead, the spectrum is predominantly random coil structure. For peptides that do self-
assemble (based on our NMR data), the IR spectra show characteristic peaks for β-sheet
content that increase in area as the proportion of β-sheet in the system increases.

The calculated β-sheet content for each glutamine-containing peptide along with the
macroscopic physical state of the sample are shown in the phase diagram in Figure 3. Here,
we see that the neutral P11-2 (Q,0), and +/− 2 charged P11-4 (Q,−2), and P11-8 (Q,+2)
form similar β-sheet compositions, ranging from 75–85%. The negatively charged P11-4
(Q,−2) showed the highest β-sheet proportion at 85%, while the positively charged P11-8
(Q,+2) showed the lowest proportion at 75%. The neutral P11-2 (Q,0) was intermediate
between these values at 78% β-sheet content. The charged peptides, P11-4 (Q,−2) and P11-8
(Q,+2), both form a self-supporting gel. However, despite the similar β-sheet content, P11-2
(Q,0) is observed to form a free-flowing fluid with visible flocculates present. Therefore,
β-sheet assembly of P11 peptides is not a sufficient criterion for formations of a percolating
gel structure. We interpret that long-range electrostatic repulsion in the self-assembled
filaments is required for a self-supporting gel network to form throughout the sample.
Without this repulsive contribution to the system, dense flocculates preferentially form.
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Figure 2. Characterisation of glutamine-containing P11 peptide self-assembly. (a,b) Self-assembly
curves from 1H NMR analysis. Self-assembly at a range of P11 peptide concentrations and overall
net charge are shown in order to determine c* of negative- (a) and positive- (b) charged peptide
systems. (c) Secondary structure analysis of the Amide I region in FT-IR spectra, where the various
components are illustrated for a peptide that does not self-assemble: P11-13 (Q,−6), [P11-13] ~5 mM.
(d) Secondary structure analysis of the Amide I region in FT-IR spectra, where the various components
are illustrated in a self-assembling peptide system: P11-8 (Q,+2), [P11-8] ~5 mM.
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2.2. Molecular Attraction Can Modulate Gel Self-Assembly and Mechanics

Having established that controlled long-range intermolecular repulsion is important
for the gelation of P11 peptides, we wished to improve our understanding of how the
strength of intermolecular attractions, essential to drive the self-assembly process, further
modulate P11 hydrogel properties. To this end, the role of uncharged polar amino acids
in symmetric positions X1, X2, X3, and X4 in the peptide sequence (see Figure 1) were
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explored. Specifically, the hydrogen bonding interactions between peptides were modu-
lated by swapping the strongly hydrogen-bonding glutamine side-chain for the weaker
hydrogen-bonding side-chain of serine. This difference in hydrogen bonding interactions
of polar amino acid residues is well-established and known as the “polar zipper” effect for
glutamines [16]. Three serine-based peptides were designed and characterised: P11-7 (S,0),
P11-9 (S,−2), and P11-12 (S,+2). These peptides are comparable to our three glutamine-based
peptides: P11-2 (Q,0), P11-4 (Q,−2), and P11-8 (Q,+2).

In the case of the two neutrally charged peptides, P11-2 (Q,0) and P11-7 (S,0), the lowest
c* values were observed (14 µM and 110 µM, respectively) (Figure 4). Notably, the reduction
in attractive hydrogen bonding interactions between serine residues increases the c* for
self-assembly. Despite the low c* values, neither system formed self-supporting hydrogels.
This is consistent with our interpretation that long-range charge repulsion is required for
the gelation of these peptides.

Figure 4. Comparison of the self-assembly of glutamine- and serine-containing P11 peptides.
(a–d) FT-IR spectra (concentration ~5 mM of each peptide) with secondary structure analysis of
Amide I region for: (a) glutamine-based P11-8, (b) serine-based P11-12, (c) glutamine-based P11-4 and
(d) serine-based P11-9, (e) 1H NMR analysis of self-assembly and determination of c*.

For self-supporting peptide hydrogels with an overall net charge of magnitude 2
(independent of the sign of the charge), glutamine-based peptides had the lowest c*. When
decreasing the extent of attractive hydrogen bonding interactions from glutamine- to
serine-based peptides, the c* increased. This is made clear from the c* for P11-12 (S,+2)
of 2300 µM compared to 400 µM for P11-8 (Q,+2), and the c* for P11-9 (S,−2) of 1160 µM
compared to 310 µM for P11-4 (Q,−2) (Figure 4). Only small non-significant differences
in average β-sheet content were observed between glutamine- and serine-based peptides,
P11-4 (84 ± 5%), P11-8 (75 ± 4%), P11-12 (74 ± 10%), and P11-9 (75 ± 10%).

Despite weaker hydrogen bonding attraction between peptides, the serine-based pep-
tides still form self-supporting hydrogels at concentrations above c*. This implies that
an overall charge of magnitude 2 is the more dominant factor in determining whether a
self-supporting, percolating gel network is formed [17]. These observations and conclu-
sions reinforce predictions from a previously reported theoretical model that attempted to
determine the self-assembly energetics of this system. This model predicted that the overall
charge of the system had a greater influence over the degree and strength of self-assembly
rather than the precise amino acid choice [18].

Even though the change in polar amino acid does not affect hydrogel formation,
these chemical changes in peptide structure can be used to tune the physical properties
of the hydrogel. In particular, the mechanical properties of the hydrogel are dependent
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on the cohesive energy between peptide molecules. The rheological properties of these
P11 peptide hydrogels are measured and compared in Figure 5. The elastic moduli (G′)
for the glutamine-based peptides (P11-4 (Q,−2) and P11-8 (Q,+2)) are higher than those
of the comparative serine-based peptides (P11-9 (S,−2) and P11-12 (S,+2)) by two or three
orders of magnitude, respectively. From simple tube inversion experiments, it can also be
seen that the serine-based hydrogels are weak enough to break and flow under gravity
(also demonstrated by the high phase angle of P11-12 (S,+2) gels). This is comparable
with glutamine-based peptide gels that do not flow under gravity. Taken together, this
demonstrates that the increased intermolecular hydrogen bonding in a glutamine-based
peptide generates a stiffer gel than a corresponding serine-based peptide gel under the
same conditions.
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Figure 5. Rheological characterisation of P11 hydrogels. (a) The shear moduli (elastic component,
G′, and viscous component, G′′) and the phase angles (green) for peptides with a ±2 charge and
polar uncharged amino acids glutamine (blue) or serine (red). Statistical significance is tested using
a one-way ANOVA with a post hoc Tukey comparison (** p < 0.01; *** p < 0.005; **** p < 0.001).
(b–e) Tube inversion studies of peptide hydrogels, qualitatively testing their resistance to flow under
gravity, (b) P11-8, (c) P11-12, (d) P11-4, and (e) P11-9.

2.3. Highly Charged Peptides can Form Gels When Mixed to Form Composites of Lower
Net Charge

While highly charged peptides were not observed to self-assemble under physiological
conditions, our finding that the overall magnitude of the charge is the dominant factor
for gelation suggested that these peptides might gel in a combination where the overall
net charge of the peptide assemblies was reduced to within the range required for gel
formation (~+/−2). To test this hypothesis, we combined the peptides P11-13 (Q,−6) and
P11-14 (Q,+4) in an equimolar ratio to see if this could induce self-assembly. Neither peptide
underwent self-assembly in isolation under physiological conditions at any concentration.

On combining P11-13 (Q,−6) and P11-14 (Q,+4), the composite system now has an
average net charge of −2 per peptide, within the range where hydrogels are formed in
single-component peptide systems, c.f. P11-4 (Q,−2). Indeed, this combination of highly
charged peptides led to the formation of a self-supporting hydrogel as shown in Figure 6.
The G′ and G′′ of the P11-13/14 (Q,−2) hydrogel was considerably lower than that of
P11-4 (Q,−2) by three orders of magnitude. The G′ of the composite P11-13/P11-14 (Q,−2)
system was ~32 Pa and G′′ ~12 Pa, compared to P11-4 (Q,−2) where G′ and G′′ were 12
and 4 kPa, respectively. The phase angles of both systems were not dissimilar, P11-13/14
(Q,−2) ~18◦ while P11-4 (Q,−2) is ~15◦. However, while the moduli of the composite



Gels 2023, 9, 441 7 of 12

system were greatly reduced, likely due to the high charge density in the hybrid hydrogel,
a self-supporting hydrogel that could resist flow under gravity formed upon combining
these non-gelling individual peptides.
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tation with photographic examples of P11-13 (Q,−6) and P11-14 (Q,+4) as single component and
combined systems. (b) The formation of a gel post-mixing is evident through the tube inversion test
(photographs). (c) Rheological characterisation further demonstrates the formation of a gel in the
hybrid mixture of P11-13 (Q,−6) and P11-14 (Q,+4) peptides.

3. Conclusions

In the design of self-assembling peptide systems, changes to the amino acid sequence
alter the non-covalent interactions that drive self-assembly [19]. For P11 peptides, two
fundamentally important interactions in their self-assembly into β-fibril hydrogels are
the hydrogen bonding between the peptide backbones and the hydrophobic interactions
between the side-chains of core amino acids in the sequence [20]. These attractive inter-
molecular interactions oppose the resisting influence from the entropy of the mixing of the
system, which favours disassembly [21].

However, additional non-covalent interactions can be controlled between these pep-
tides to further modulate their self-assembly and tune the properties of the composite
material. Here, we set out to investigate the roles of long-range electrostatic repulsion and
short-range attractive interactions through additional hydrogen bonding interactions in
the amino acid side groups [22]. The overall charge of the peptide sequence was altered
from neutral to extremes (+4 and −6) through the removal or addition of polar amino acids
(glutamic acid, ornithine, and arginine), while amino acid side-chain hydrogen bonding
was modulated at the four peripheral amino acid positions through the uncharged polar
amino acids serine and glutamine [23].

The overall magnitude of the peptide charge, independent of its sign, is the dominant
factor in driving self-assembly and hydrogel formation [24]. As the net charge of the
peptide decreases, the critical concentration for self-assembly (c*) also decreases with the
lowest c* being measured in the neutral P11-2 (Q,0) and P11-7 (S,0) systems.

Our work makes it clear that a low c* is not an indicator that a peptide system will
form a self-supporting hydrogel network. In order to form a self-supporting hydrogel
network, in this P11 class of peptides, an overall magnitude of molecular charge of ~2 is
required, which we hypothesise is due to the requirement of long-range repulsion between
β-fibrils favouring a well-hydrated open network of a self-supporting gel, as represented
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in Figure 7 [21,22]. Indeed, this conclusion is reinforced by the discovery that mixtures
of oppositely charged peptides with a net average charge of magnitude 2 could also self-
assemble into hydrogels, even though these peptides do not individually self-assemble or
form gels. When comparing between peptide systems with a +2 or −2 charge, those with
glutamine as the polar amino acid resulted in a lower c* and larger gel stiffness (G′ and G′′)
due to the additional hydrogen bonding interactions enhancing the cohesive energy of the
structures [25]. Similarly, the increased cohesive energy in the self-assembly of glutamine-
rich peptides decreases the c* for self-assembly, compared to serine-rich analogues [26].
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Figure 7. Schematic representation of our hypothesis for the (A) role of long-range electrostatic repul-
sion between peptide fibrils in the formation of open, extended hydrogel networks. (B) Conversely,
we propose that short-range attractions dominate between assembled uncharged peptide filaments,
leading to dense flocculates that are unable to percolate the solution and form a space-filling gel
network. (C) In the case of highly charged peptides, we propose that electrostatic repulsion exceeds a
critical limit, resulting in inhibition of self-assembly.

This work demonstrates strategies for the control of the self-assembly and mate-
rial properties of P11 peptide hydrogels, which will allow engineering of optimal hydro-
gel formulations for a range of applications from cell culture scaffolds to regenerative
medicine [27,28]. The ability to control the self-assembly and material properties of P11
peptide hydrogels also enables their use as injectable biomaterials with in situ self-assembly
for clinical applications to augment or repair degenerated soft tissues [29].

4. Materials and Methods
4.1. Materials

All the peptides were either supplied through CPC Scientific (Sunnyvale, CA, USA)
(P11-2, P11-3, P11-5, and P11-7), Polypeptide Laboratories (Strasbourg, France) (P11-13 and
P11-14), or CS Bio (Menlo Park, CA, USA) (P11-4, P11-8, P11-9 and P11-12). Sodium chloride,
HCl, NaOH, D2O, DCl, and NaOD were purchased from Sigma Aldrich (Gillingham,
UK). Phosphate buffered saline (PBS) was purchased from Oxoid, Thermofisher Scientific
(Waltham, MA, USA).
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4.2. Weighing

A Mettler AE240 balance was used to measure masses greater than ≈1 mg, while
masses less than ≈1 mg were weighed on a Sartorius SC2 balance.

4.3. Dissolution

Aqueous solvent was added to weighed peptide. Unless otherwise specified, the
solvent contained 130 mM NaCl (Fisher Scientific, Waltham, MA, USA) dissolved in pure
water (resistivity 18.2 MΩ cm during dispensation). After sealing sample vials with
Parafilm®, they were vortexed for ≈30 s using a Scientific Industries Vortex Genie 2 vortex
mixer, and placed in a Bandelin Sonorex RK52H sonicator for ≈30 min.

4.4. pH Measurement and Adjustment

Samples were adjusted to a pH or pD range 7.4 ± 0.3, unless otherwise specified.
Sample pH was determined using either a WPA CD720 m and a CMW711 semi-micro
single junction probe, or a Sartorius Docu-pH meter and a VWR symphony semi-micro
combination double junction probe (part 14231-178). Microlitre aliquots of typically 0.1 or
1.0 M HCl or NaOH were added to solutions to alter their pH (for deuterated solutions,
DCl or NaOD were used). After each addition of acid or base, the solution was briefly
vortexed, and then its pH or pD rechecked [30].

4.5. Proton Nuclear Magnetic Resonance Spectroscopy Measurement
4.5.1. Solution Preparation

Solutions were prepared as detailed in Section 4.3, but using 130 mM NaCl in D2O,
and with an internal reference of either 0.125 or 1.25 mM 3-(trimethylsilyl) propionic
acid-2,2,3,3-d4 (TMSP) (Cambridge Isotope Laboratories, Tewksbury, MA, USA).

4.5.2. Equipment Setup and Data Acquisition

Samples were transferred to NMR tubes (Norell XR-55-7 5 mm borosilicate). Proton
NMR spectra were acquired with a Bruker DPX 300 spectrometer(Billerica, MA, USA)
controlled by XwinNMR software. A presaturation program (Bruker zgpr program) was
used to minimise the water peak. A total of 1024 scans were recorded per spectrum.

4.5.3. Processing of Data

Data were analysed with MestreNova version 5.3.3-5204 (MestreNova Research SL),
running on the Ubuntu Linux distributions. The reference peak was assigned the chemical
shift of 0.00 parts per million (ppm). Integral values represent the area of the aromatic region
(6.9 to 7.8 ppm) relative to the TMSP reference peak; usually these integrals were linearly
corrected automatically. In order to determine the critical concentration, the estimated
monomer concentration was required. To determine the estimated monomer concentration,
the integral of the aromatic peak was divided by the slope of peptide concentration vs.
integral, for the monomer/linear regime. To determine the critical concentration, aromatic
integral vs. monomer concentration as a function of peptide concentration was plotted.
Two lines were fitted, one for monomers at low concentration and one for when aggregation
at high concentration occurs. The crossover point of these two lines equates to the c* value.
An example of this is shown in Figure 8.

The self-assembly curves were constructed by subtracting the estimated monomer
concentration (derived from the aromatic integral) from the total peptide concentration to
give the aggregate percentage.
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4.6. Transmission Infra-Red Spectroscopy Measurement
4.6.1. Solution Preparation

Solutions were prepared as in Section 4.3 in D2O, all containing NaCl, while some
additionally contained NMR reference compounds.

4.6.2. Equipment SETUP and Data Acquisition

A Thermo Nicolet 6700 FTIR spectrometer (Thermo Electron Corporation, Waltham,
MA, USA), controlled with OMNIC 7.3 SP1 (Thermo Scientific) software, was used to record
FTIR spectra. Liquid samples were held in a Thermo HT-32 demountable cell with CaF2
windows (Thermo Scientific, Waltham, MA, USA) and a copper or lead spacer between
the windows (usually a 0.025 mm copper spacer). A total of 40 µL of liquid sample was
injected into the cell. A background air spectrum, using an empty sample compartment
(no cell), was recorded just before a sample was analysed. The spectra consist of 32 scans
recorded at a resolution of 4 cm−1. Spectra were collected at room temperature, with
the cell temperature measured with a Thermo Scientific CAL 9500 thermostat (Waltham,
MA, USA).

4.6.3. Processing of Spectra

Peptide spectra were processed with OMNIC 7.3 SP1 software (Thermo Scientific). A
D2O spectrum recorded using the same path length spacer as was used for the sample, was
subtracted from the sample spectrum. Subtracted spectra were then baseline corrected with
a manually selected baseline, whose points were fixed to spectral values and interpolated
using a spline function. To fit the amide I band (in the 1720–1580 cm−1 range), baseline
corrected spectra were processed with the OMNIC Peak Analysis tool [31,32]. Gaussian–
Lorentzian peak functions were fitted and optimised. Once converged, these peaks were
recorded as the relative areas of each peak and associated to a specific secondary structure
or amino acid residue [4,33,34].

4.7. Rheological Measurements

All the rheological measurements were performed on a Malvern Kinexus Pro rheome-
ter (Malvern, Worcestershire, UK) with a cone–plate geometry (diameter 50 mm, cone angle
1◦, and gap height of 0.033 mm) with ~700 µL sample required per test. Temperature was
maintained at 25 ◦C and a solvent trap was used to minimise evaporation of the peptide
samples. Loaded samples were left for 15 min to equilibrate before testing.
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To measure the dynamic moduli of each hydrogel, the linear viscoelastic region (LVER)
was first identified through amplitude sweeps over the shear strain range of 0.01 to 100%
at frequencies of 1 Hz and 20 Hz, respectively. At these frequencies, shear strains ranging
from 0.1–0.5% were found to consistently lie within the LVER for each specific peptide
where the elastic modulus (G′) and viscous modulus (G′ ′) remained constant. These settings
were away from the sensitivity limits of the instrument where noise is observed in the
measurements. Artefacts were avoided by checking for no drops in the elastic modulus or
peaks in the viscous modulus indicative of sample slippage.

The dynamic moduli of the hydrogels were then measured as a function of frequency
between 1 and 20 Hz using the identified strain of 0.1%.
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