Aloe vera-Based Polymeric Network: A Promising Approach for Sustained Drug Delivery, Development, Characterization, and In Vitro Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Swelling Behavior of Aloe vera–AAm Polymeric Networks
2.2. Effect of Varying Polymer Concentration on the Aloe vera–AAm Polymeric Network
2.3. Effect of Varying the Monomer Concentration on the Aloe vera–AAm Polymeric Network
2.4. Effect of Varying Crosslinker Concentration on the Aloe vera–AAm Polymeric Network
2.5. Gel Content
2.6. Porosity
2.7. Mechanical Strength
2.8. Loading of Drug
2.9. Fourier Transform Infrared Spectroscopy
2.10. Scanning Electron Microscopy
2.11. Thermogravimetric Analysis (TGA) and Differential Calorimeter (DSC)
2.12. X-ray Diffraction Analysis
2.13. Method Validation
2.14. In Vitro Release Profile of the Aloe vera–AAm Polymeric Network Formulations
2.15. Drug Release Kinetics
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction of Aloe vera Mucilage
4.2.2. Preparation of the Aloe vera–AAm Polymeric Network
4.3. Swelling Studies
4.4. Percentage Gel Content Determination
4.5. Porosity Measurement
4.6. Mechanical Strength Determination
4.7. Drug Loading
4.8. Characterization of the Polymeric Networks
4.8.1. Fourier Transform Infrared (FTIR) Analysis
4.8.2. Scanning Electron Microscopy (SEM) Analysis
4.8.3. Thermal Analysis (TGA and DSC)
4.8.4. X-ray Diffraction Analysis (XRD)
4.9. Method Validation
4.9.1. Calibration Curve of Thiocolchicoside
4.9.2. Linearity and Range
4.9.3. Detection and Quantification Limits
4.9.4. Accuracy
4.9.5. Precision
4.9.6. Robustness
4.10. In Vitro Drug Release Measurement and Drug Release Kinetics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumbhar, D.M.; Havaldar, V.D.; Mali, K.K.; Dias, R.J.; Ghorpade, V.S.; Londhe, R.B. Formulation and Evaluation of Sustained Release Tablets of Venlafaxine Hydrochloride for the treatment of Depressive disorders. Asian J. Pharm. Res. 2017, 7, 8–14. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, P.K.; Malviya, R. Release behavior of drugs from various natural gums and polymers. Polim. W Med. 2011, 41, 73–80. [Google Scholar]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym. 2013, 92, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S.; Sahu, U.K.; Sahu, D.; Sahu, G.; Roy, A. Review on natural gums and mucilage and their application as excipient. J. Appl. Pharm. Res. 2017, 5, 13–21. [Google Scholar]
- Ni, Y.; Turner, D.; Yates, K.á.; Tizard, I. Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int. Immunopharmacol. 2004, 4, 1745–1755. [Google Scholar] [CrossRef]
- Mangaiyarkarasi, S.; Manigandan, T.; Elumalai, M.; Cholan, P.K.; Kaur, R.P. Benefits of Aloe vera in dentistry. J. Pharm. Bioallied Sci. 2015, 7, S255. [Google Scholar] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Hamman, H.; Steenekamp, J.; Hamman, J. Use of natural gums and mucilages as pharmaceutical excipients. Curr. Pharm. Des. 2015, 21, 4775–4797. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Mudassir, J.; Ranjha, N.M. Dynamic and equilibrium swelling studies: Crosslinked pH sensitive methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels. J. Polym. Res. 2008, 15, 195–203. [Google Scholar] [CrossRef]
- Ulijn, R.V.; Bibi, N.; Jayawarna, V.; Thornton, P.D.; Todd, S.J.; Mart, R.J.; Smith, A.M.; Gough, J.E. Bioresponsive hydrogels. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Ranjha, N.M.; Ayub, G.; Naseem, S.; Ansari, M.T. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J. Mater. Sci. Mater. Med. 2010, 21, 2805–2816. [Google Scholar] [CrossRef] [PubMed]
- Hazer, O.; Soykan, C.; Kartal, Ş. Synthesis and swelling behavior analysis of poly (acrylamidoxime-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 45, 45–51. [Google Scholar] [CrossRef]
- Martinez-Ruvalcaba, A.; Sanchez-Diaz, J.; Becerra, F.; Cruz-Barba, L.; Gonzalez-Alvarez, A. Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym. Lett. 2009, 3, 25–32. [Google Scholar] [CrossRef]
- Norouzi, H.R.; Azizpour, H.; Sharafoddinzadeh, S.; Barati, A. Equilibrium swelling study of cationic acrylamide-based hydrogels: Effect of synthesis parameters, and phase transition in polyelectrolyte solutions. J. Chem. Pet. Eng. 2011, 45, 13–25. [Google Scholar]
- Ilić-Stojanović, S.; Nikolić, L.B.; Nikolić, V.; Stanković, M.; Stamenković, J.; Mladenović-Ranisavljević, I.; Petrović, S. Influence of monomer and crosslinker molar ratio on the swelling behaviour of thermosensitive hydrogels. Chem. Ind. Chem. Eng. Q. 2012, 18, 1–9. [Google Scholar] [CrossRef]
- Minhas, M.U.; Ahmad, M.; Anwar, J.; Khan, S. Synthesis and characterization of biodegradable hydrogels for oral delivery of 5-fluorouracil targeted to colon: Screening with preliminary in vivo studies. Adv. Polym. Technol. 2018, 37, 221–229. [Google Scholar] [CrossRef]
- Tulain, U.R.; Ahmad, M.; Rashid, A. Development, in vitro and in vivo evaluation of hydrogel based system of carboxymethyl arabinoxylan for controlled delivery of rabeprazole sodium. Polym. Plast. Technol. Eng. 2018, 57, 1771–1783. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Wang, H.; Qi, W.; Yue, L.; Ye, Q. Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydr. Polym. 2014, 101, 798–803. [Google Scholar] [CrossRef]
- Azam, F.; Ijaz, H.; Qureshi, J. Functionalized crosslinked interpenetrating polymeric network for pH responsive colonic drug delivery. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 646–655. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Shang, Q. Development and evaluation of a novel polymeric hydrogel of sucrose acrylate-co-polymethylacrylic acid for oral curcumin delivery. J. Biomater. Sci. Polym. Ed. 2017, 28, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, G.A.; Hegazy, D.E.; Kamal, H. In-vitro release of ketoprofen behavior loaded in polyvinyl alcohol/acrylamide hydrogels prepared by gamma irradiation. Arab. J. Nucl. Sci. Appl. 2014, 47, 28–40. [Google Scholar]
- Prabhakar, R.; Kumar, D. Investigation on Poly (acrylate-co-acrylamide)/polyanilineConducting Hydrogel. Am. J. Polym. Sci. Eng. 2015, 3, 201400534. [Google Scholar]
- Chen, J.; Liu, M.; Liu, H.; Ma, L. Synthesis, swelling and drug release behavior of poly (N, N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater. Sci. Eng. C 2009, 29, 2116–2123. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani, F.S.; Vasheghani, F.E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Yildiz, B.; Işik, B.; Kiş, M. Thermoresponsive poly (N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) hydrogels. React. Funct. Polym. 2002, 52, 3–10. [Google Scholar] [CrossRef]
- Mina, M.; Alam, M. Swelling behavior of acrylamide hydrogel in different solvents and pHs. Chin. J. Polym. Sci. 2005, 23, 269–274. [Google Scholar] [CrossRef]
- Sindhu, S.; Gowda, D.; Vishnu Datta, S. Formulation and evaluation of injectable in-situ gelling matrix system for controlled drug release. Indian J. Adv. Chem. Sci. 2014, 2, 89–92. [Google Scholar]
- Kalaithong, W.; Molloy, R.; Nalampang, K.; Somsunan, R. Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials. Eur. Polym. J. 2021, 143, 110186. [Google Scholar] [CrossRef]
- Ajji, Z.; Othman, I.; Rosiak, J. Production of hydrogel wound dressings using gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2005, 229, 375–380. [Google Scholar] [CrossRef]
- Ajaz, N.; Khan, I.U.; Irfan, M.; Khalid, S.H.; Asghar, S.; Mehmood, Y.; Asif, M.; Usra; Hussain, G.; Shahzad, Y. In vitro and biological characterization of dexamethasone sodium phosphate laden pH-sensitive and mucoadhesive hydroxy propyl β-cyclodextrin-g-poly (Acrylic Acid)/gelatin semi-interpenetrating networks. Gels 2022, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, N.M.; Madni, A.; Bakar, A.A.; Talib, N.; Ahmad, S.; Ahmad, H. Preparation and characterization of isosorbide mononitrate hydrogels obtained by free-radical polymerization for site-specific delivery. Trop. J. Pharm. Res. 2014, 13, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Yiamsawas, D.; Kangwansupamonkon, W.; Chailapakul, O.; Kiatkamjornwong, S. Synthesis and swelling properties of poly [acrylamide-co-(crotonic acid)] superabsorbents. React. Funct. Polym. 2007, 67, 865–882. [Google Scholar] [CrossRef]
- Ranjha, N.M.; Qureshi, U.F. Preparation and characterization of crosslinked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int. J. Pharm. Pharm. Sci. 2014, 6, 400–410. [Google Scholar]
- Swami Hulle, N.R.; Patruni, K.; Rao, P.S. Rheological Properties of Aloe vera (Aloe barbadensis Miller) Juice Concentrates. J. Food Process Eng. 2014, 37, 375–386. [Google Scholar] [CrossRef]
- Dey, A.; Bera, R.; Chakrabarty, D. Influence of Aloe vera on the properties of N-vinylpyrrolidone-Acrylamide copolymer hydrogel. Mater. Chem. Phys. 2015, 168, 168–179. [Google Scholar] [CrossRef]
- Giri, T.K.; Pure, S.; Tripathi, D.K. Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: Swelling behavior, flocculation characteristics and acute toxicity study. Polímeros 2015, 25, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Gowda, D. Enteric delivery of diclofenac sodium through functionally modified poly (acrylamide-grafted-ghatti gum)-based pH-sensitive hydrogel beads: Development, formulation and evaluation. J. Young Pharm. 2017, 9, 525. [Google Scholar]
- Akshay, P.K.; Govind, R.S.; Raju, S.; Dev, J.A. A Study on Fixed Dose Combination Tablets of Cytokine Inhibitor and Thiocolchicoside. Int. J. Res. Pharm. Sci. 2013, 3, 42–58. [Google Scholar]
- Prashar, D.; Prakash, V. Gum tragacanth: A natural polymeric backbone. Asian J. Pharm. Technol. 2021, 11, 72–75. [Google Scholar] [CrossRef]
- Prajapati, V.; Desai, S.; Gandhi, S.; Roy, S. Pharmaceutical Applications of Various Natural Gums and Mucilages. In Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–34. [Google Scholar]
- Bigucci, F.; Abruzzo, A.; Saladini, B.; Gallucci, M.C.; Cerchiara, T.; Luppi, B. Development and characterization of chitosan/hyaluronan film for transdermal delivery of thiocolchicoside. Carbohydr. Polym. 2015, 130, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Nanda, R.K.; Patil, S.S.; Navathar, D.A. Chiotsan nanoparticles loaded with thiocolchicoside. Der Pharma Chem. 2012, 4, 1619–1625. [Google Scholar]
- Sohail, K.; Khan, I.U.; Shahzad, Y.; Hussain, T.; Ranjha, N.M. pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Impact of material parameters on swelling and drug release. Braz. J. Pharm. Sci. 2014, 50, 173–184. [Google Scholar] [CrossRef]
- Sarfraz, R.M.; Ahmad, M.; Mahmood, A.; Ijaz, H. Development, in vitro and in vivo evaluation of pH responsive β-CD-comethacrylic acid-crosslinked polymeric microparticulate system for solubility enhancement of rosuvastatin calcium. Polym. Plast. Technol. Eng. 2018, 57, 1175–1187. [Google Scholar] [CrossRef]
- Omidian, H.; Park, K. Swelling agents and devices in oral drug delivery. J. Drug Deliv. Sci. Technol. 2008, 18, 83–93. [Google Scholar] [CrossRef]
- Muhammad, G.; Hussain, M.A.; Ashraf, M.U.; Haseeb, M.T.; Hussain, S.Z.; Hussain, I. Polysaccharide based superabsorbent hydrogel from Mimosa pudica: Swelling–deswelling and drug release. RSC Adv. 2016, 6, 23310–23317. [Google Scholar] [CrossRef]
- Shukla, S.; Bajpai, A.; Kulkarni, R. Preparation, characterization, and water-sorption study of polyvinyl alcohol based hydrogels with grafted hydrophilic and hydrophobic segments. J. Appl. Polym. Sci. 2005, 95, 1129–1142. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Wang, A. Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym. Adv. Technol. 2011, 22, 627–634. [Google Scholar] [CrossRef]
- Bajpai, A.; Giri, A. Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr. Polym. 2003, 53, 271–279. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, G.; Kumar, S.; Chauhan, N. Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydr. Polym. 2007, 67, 190–200. [Google Scholar] [CrossRef]
- Panda, N.; Panda, K.C.; Reddy, A.V.; Reddy, G. Process optimization, Formulation and evaluation of hydrogel {Guargum-G-Poly (Acrylamide)} based Doxofylline microbeads. Asian J. Pharm. Clin. Res. 2014, 7, 60–65. [Google Scholar]
- Vaghani, S.S.; Patel, M.M.; Satish, C. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr. Res. 2012, 347, 76–82. [Google Scholar] [CrossRef]
- Changez, M.; Burugapalli, K.; Koul, V.; Choudhary, V. The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: In vitro. Biomaterials 2003, 24, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004, 25, 3725–3732. [Google Scholar] [CrossRef]
- Haseeb, M.T.; Hussain, M.A.; Yuk, S.H.; Bashir, S.; Nauman, M. Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydr. Polym. 2016, 136, 750–756. [Google Scholar] [CrossRef]
- Rashid, H.; Ahmad, M.; Minhas, M.U.; Sohail, M.; Aamir, M.F. Synthesis and Characterization of Poly(hydroxyethyl methacrylate-co-methacrylic acid) Cross Linked Polymeric Network for the Delivery of Analgesic Agent. J. Chem. Soc. Pak. 2015, 37, 999–1007. [Google Scholar]
- Shabir, F.; Erum, A.; Tulain, U.R.; Hussain, M.A.; Ahmad, M.; Akhter, F. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Des. Monomers Polym. 2017, 20, 485–495. [Google Scholar] [CrossRef]
- Tulain, U.R.; Ahmad, M.; Rashid, A.; Malik, M.Z.; Iqbal, F.M. Fabrication of Ph-responsive hydrogel and its in vitro and in vivo evaluation. Adv. Polym. Technol. 2018, 37, 290–304. [Google Scholar] [CrossRef]
- Tulain, U.R.; Ahmad, M.; Rashid, A.; Iqbal, F.M. development and characterization of smart drug delivery System. Acta Pol. Pharm. Drug Res. 2016, 73, 1009–1022. [Google Scholar]
- Ranjha, N.M.; Mudassir, J.; Zubair, S.Z. Synthesis and characterization of pH-sensitive pectin/acrylic acid hydrogels for verapamil release study. Iran. Polym. J. 2011, 20, 147–159. [Google Scholar]
- Pandey, M.; Amin, M.C.I.M.; Mohamad, N.; Ahmad, N.; Muda, S. Structure and characteristics of bacterial cellulose-based hydrogels prepared by cryotropic gelation and irradiation methods. Polym. Plast. Technol. Eng. 2013, 52, 1510–1518. [Google Scholar] [CrossRef]
- Ranjha, N.M.; Hanif, M.; Naz, A.; Shah, M.S.; Abbas, G.; Afzal, Z. Synthesis and characterization of cetirizine-containing, pH-sensitive acrylic acid/poly(vinyl alcohol) hydrogels. J. Appl. Polym. Sci. 2016, 133, 43407. [Google Scholar] [CrossRef]
- Abbas, S.; Ahmad, B.; Iqbal, Z.; Bashir, S.; Ali, J. Study and evaluation of poly (n-vinyl-2-pyrrolidone) hydrogel swelling, theophylline loading and release. World Appl. Sci. 2013, 27, 236–249. [Google Scholar]
- Ning, X.; Huang, J.; Yuan, N.; Chen, C.; Lin, D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int. J. Mol. Sci. 2022, 23, 15757. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Lin, J.; Sun, H.; Ao, H. A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method. e-Polymers 2008, 8, 1–6. [Google Scholar] [CrossRef]
- Ranjha, N.M.; Hanif, M.; Afzal, Z.; Abbas, G. Diffusion coefficient, porosity measurement, dynamic and equilibrium swelling studies of acrylic acid/polyvinyl alcohol (aa/pva) hydrogels. Pak. J. Pharm. Sci. 2015, 1, 48–57. [Google Scholar] [CrossRef]
- Patel, H.; Panchal, D.R.; Patel, U.; Brahmbhatt, T.; Suthar, M. Matrix type drug delivery system: A review. J. Pharm. Sci. Biosci. Res. 2011, 1, 143–151. [Google Scholar]
- Lim, Y.M.; Lee, Y.M.; Nho, Y.C. Preparation and characterization of pH-sensitive poly (ethylene oxide) grafted methacrylic acid and acrylic acid hydrogels by γ-ray irradiation. Macromol. Res. 2005, 13, 327–333. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Castaño, J.A.G. Extraction and Physicochemical Characterization of Dried Powder Mucilage from Opuntia ficus-indica Cladodes and Aloe vera Leaves: A Comparative Study. Polymers 2021, 13, 1689. [Google Scholar] [CrossRef]
- Minhas, M.U.; Ahmad, M.; Khan, S.; Ali, L.; Sohail, M. Synthesis and characterization of β-cyclodextrin hydrogels: Crosslinked polymeric network for targeted delivery of 5-fluorouracil. Drug Deliv. 2016, 9, 233–242. [Google Scholar]
- Bashir, S.; Teo, Y.Y.; Naeem, S.; Ramesh, S.; Ramesh, K. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil. PLoS ONE 2017, 12, e0179250. [Google Scholar]
- Guideline, I.H.T. Validation of Analytical Procedures: Text and Methodology; Q2 (R1); Somatek Inc.: San Diego, CA, USA, 2005; p. 5. [Google Scholar]
- Acharjya, S.K.; Mallick, P.; Panda, P.; Annapurna, M.M. Spectrophotometric methods for the determination of thiocolchicoside in bulk and pharmaceutical dosage forms. J. Pharm. Educ. Res. 2010, 1, 51. [Google Scholar]
- Wankhede, S.B.; Zambare, S.S.; Chitlange, S.S. Estimation of thiocolchicoside and ketoprofen in pharmaceutical dosage form by spectrophotometric methods. J. Pharm. Res. 2010, 3, 34–39. [Google Scholar]
- Jadhav, S.D.; Butle, S.; Patil, S.D.; Jagtap, P. Validated stability indicating RP-HPLC method for simultaneous determination and in vitro dissolution studies of thiocolchicoside and diclofenac potassium from tablet dosage form. Arab. J. Chem. 2015, 8, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, A.; Joshi, T.; Vikani, K.; Senta, A. Development and validation of UV-Visible spectrophotometric method for simultaneous estimation of ketoprofen and thiocolchicoside in solid oral dosage form. Int. Res. J. Pharm. 2016, 7, 53–58. [Google Scholar] [CrossRef]
- Atyabi, F.; Vahabzadeh, R.; Dinarvand, R. Preparation of ethylcellulose coated gelatin microspheres as a multiparticulate colonic delivery system for 5-aminosalicilic acid. Iran. J. Pharm. Res. 2004, 3, 81–86. [Google Scholar]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Risbud, M.V.; Bhonde, R.R. Polyacrylamide-chitosan hydrogels: In vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 2000, 7, 69–75. [Google Scholar]
Formulation Code | Aloe vera Mucilage Extract % | Acrylamide % | Initiator % | Crosslinker % |
---|---|---|---|---|
A1 | 0.5 | 25 | 0.4 | 0.4 |
A2 | 1 | 25 | 0.4 | 0.4 |
A3 | 1.5 | 25 | 0.4 | 0.4 |
A4 | 2 | 25 | 0.4 | 0.4 |
M1 | 1.5 | 15 | 0.4 | 0.4 |
M2 | 1.5 | 20 | 0.4 | 0.4 |
C1 | 1.5 | 20 | 0.4 | 0.3 |
C2 | 1.5 | 20 | 0.4 | 0.5 |
C3 | 1.5 | 20 | 0.4 | 0.7 |
Formulation Code | Thiocolchicoside-Loaded mg/g Disk |
---|---|
By Weight Method Mean ± * S.E.M | |
A1 | 19 ± 0.8 |
A2 | 23 ± 0.7 |
A3 | 30 ±1.4 |
A4 | 35 ± 0.5 |
M1 | 40 ± 0.7 |
M2 | 32 ± 1.6 |
C1 | 25 ± 0.9 |
C2 | 22 ± 1.4 |
C3 | 18 ± 1.2 |
Parameter | Value |
---|---|
λ max (nm) | 259 |
Beer’s law limit (µg/mL) | 5–25 |
Regression equation | y = 0.038x + 0.0233 |
Intercept σ | 0.0233 |
Slope, S | 0.038 |
Correlation coefficient (r2) | 0.9995 |
Limit of detection (µg/mL) | 0.1326 |
Limit of quantification (µg/mL)) | 0.4019 |
% Drug Added | Amount of THC (µg) Added to 10 µg/mL THC Solution | The Total Amount of THC | Amount of THC Found (µg/mL) | % Recovery | Mean ± SD | % RSD |
---|---|---|---|---|---|---|
80 | 8 | 18 | 17.94 | 99.67 | 99.76 ± 0.15 | 0.12 |
80 | 8 | 18 | 17.95 | 99.72 | ||
80 | 8 | 18 | 17.98 | 99.89 | ||
100 | 10 | 20 | 19.87 | 99.35 | 99.53 ± 0.176 | 0.18 |
100 | 10 | 20 | 19.91 | 99.55 | ||
100 | 10 | 20 | 19.94 | 99.7 | ||
120 | 12 | 22 | 21.86 | 99.36 | 99.74 ± 0.366 | 0.37 |
120 | 12 | 22 | 21.95 | 99.77 | ||
120 | 12 | 22 | 22.02 | 100.09 |
Concentration (µg/mL) | Absorbance | Mean ± SD | % RSD |
---|---|---|---|
15 | 0.2858 | 0.2858 ± 0.001 | 0.34 |
15 | 0.2857 | ||
15 | 0.2859 | ||
15 | 0.2856 | ||
15 | 0.2858 | ||
15 | 0.2859 |
Intraday Precision of Three Different Concentrations of Thiocolchicoside | |||||
---|---|---|---|---|---|
Concentration (µg/mL) | Time | % RSD | |||
9:00 a.m. | 11:30 a.m. | 3:00 p.m. | |||
5 | 0.0921 | 0.0920 | 0.0922 | 0.108 | |
15 | 0.2858 | 0.2856 | 0.2854 | 0.350 | |
25 | 0.4795 | 0.4793 | 0.4791 | 0.208 | |
Interday Precision of Three Different Concentrations of Thiocolchicoside | |||||
Concentration (µg/mL) | Day | % RSD | |||
1 | 2 | 3 | |||
5 | 0.0921 | 0.0929 | 0.0931 | 1.078 | |
15 | 0.2858 | 0.2853 | 0.2851 | 0.500 | |
25 | 0.4795 | 0.4789 | 0.4685 | 0.210 |
Wavelength (nm) | Concentration (µg/mL) | Absorbance (Mean ± SD) | % RSD |
---|---|---|---|
258 | 20 | 0.3901 ± 0.002 | 0.512 |
259 | 20 | 0.3903 ± 0.001 | 0.256 |
260 | 20 | 0.3899 ± 0.001 | 0.257 |
Release Models | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Formulation Code | Zero Order | First Order | Higuchi | Korsmeyer–Peppas | Hixson–Crowell | ||||||
K0 | R2 | K1 | R2 | KH | R2 | kKP | R2 | n | kHC | R2 | |
Aloe vera–AAm polymeric networks at pH 1.2 | |||||||||||
A1 | 3.87 | 0.685 | 0.08 | 0.941 | 16.35 | 0.971 | 17.59 | 0.953 | 0.45 | 0.02 | 0.888 |
A2 | 4.1 | 0.605 | 0.09 | 0.926 | 17.4 | 0.965 | 20.73 | 0.974 | 0.43 | 0.02 | 0.865 |
A3 | 4.34 | 0.518 | 0.11 | 0.915 | 18.56 | 0.96 | 24.31 | 0.984 | 0.4 | 0.03 | 0.847 |
A4 | 4.64 | 0.477 | 0.13 | 0.935 | 19.89 | 0.951 | 26.88 | 0.983 | 0.39 | 0.04 | 0.877 |
M1 | 4.82 | 0.435 | 0.14 | 0.943 | 20.7 | 0.941 | 28.83 | 0.982 | 0.37 | 0.04 | 0.893 |
M2 | 4.21 | 0.593 | 0.1 | 0.929 | 17.91 | 0.974 | 21.92 | 0.986 | 0.42 | 0.03 | 0.868 |
C1 | 3.47 | 0.545 | 0.06 | 0.839 | 14.81 | 0.965 | 18.9 | 0.984 | 0.41 | 0.02 | 0.764 |
C2 | 2.95 | 0.543 | 0.04 | 0.784 | 12.58 | 0.964 | 16.1 | 0.984 | 0.41 | 0.01 | 0.716 |
C3 | 0.56 | 0.594 | 0.05 | 0.781 | 10.9 | 0.971 | 13.28 | 0.983 | 0.43 | 0.01 | 0.726 |
Aloe vera–AAm polymeric networks at pH 7.4 | |||||||||||
A1 | 3.82 | 0.713 | 0.07 | 0.948 | 16.09 | 0.971 | 16.56 | 0.971 | 0.45 | 0.02 | 0.9 |
A2 | 4.08 | 0.638 | 0.09 | 0.938 | 17.28 | 0.972 | 19.89 | 0.977 | 0.45 | 0.02 | 0.881 |
A3 | 4.34 | 0.52 | 0.11 | 0.916 | 18.56 | 0.958 | 24.22 | 0.982 | 0.4 | 0.03 | 0.849 |
A4 | 4.6 | 0.511 | 0.12 | 0.938 | 19.69 | 0.96 | 25.96 | 0.986 | 0.4 | 0.03 | 0.881 |
M1 | 4.8 | 0.444 | 0.14 | 0.942 | 20.63 | 0.943 | 28.56 | 0.982 | 0.38 | 0.04 | 0.893 |
M2 | 4.29 | 0.571 | 0.1 | 0.926 | 18.26 | 0.971 | 22.85 | 0.987 | 0.42 | 0.03 | 0.865 |
C1 | 3.42 | 0.517 | 0.06 | 0.82 | 14.62 | 0.955 | 19 | 0.978 | 0.4 | 0.02 | 0.742 |
C2 | 2.94 | 0.544 | 0.05 | 0.783 | 12.55 | 0.965 | 16.04 | 0.985 | 0.41 | 0.01 | 0.716 |
C3 | 2.55 | 0.618 | 0.04 | 0.796 | 10.81 | 0.976 | 12.86 | 0.985 | 0.43 | 0.01 | 0.744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, A.; Erum, A.; Tulain, U.R.; Shafiq, S.; Malik, N.S.; Sidra; Khan, M.T.; Alqahtani, M.S. Aloe vera-Based Polymeric Network: A Promising Approach for Sustained Drug Delivery, Development, Characterization, and In Vitro Evaluation. Gels 2023, 9, 474. https://doi.org/10.3390/gels9060474
Mahmood A, Erum A, Tulain UR, Shafiq S, Malik NS, Sidra, Khan MT, Alqahtani MS. Aloe vera-Based Polymeric Network: A Promising Approach for Sustained Drug Delivery, Development, Characterization, and In Vitro Evaluation. Gels. 2023; 9(6):474. https://doi.org/10.3390/gels9060474
Chicago/Turabian StyleMahmood, Arshad, Alia Erum, Ume Ruqia Tulain, Sharmeen Shafiq, Nadia Shamshad Malik, Sidra, Muhammad Tariq Khan, and Mohammed S. Alqahtani. 2023. "Aloe vera-Based Polymeric Network: A Promising Approach for Sustained Drug Delivery, Development, Characterization, and In Vitro Evaluation" Gels 9, no. 6: 474. https://doi.org/10.3390/gels9060474
APA StyleMahmood, A., Erum, A., Tulain, U. R., Shafiq, S., Malik, N. S., Sidra, Khan, M. T., & Alqahtani, M. S. (2023). Aloe vera-Based Polymeric Network: A Promising Approach for Sustained Drug Delivery, Development, Characterization, and In Vitro Evaluation. Gels, 9(6), 474. https://doi.org/10.3390/gels9060474