Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Polypyrrole Aerogels
2.2. Adsorption of Chromium (VI) Ions
2.2.1. Effect of Contact Time
2.2.2. Adsorption Kinetics
2.2.3. Intraparticle Diffusion
2.2.4. Effect of Initial Cr(VI) Concentration
2.2.5. Equilibrium Adsorption Isotherms
2.2.6. FTIR Spectroscopy of PPy Aerogels after Adsorption of Cr(VI) Ions
3. Conclusions
4. Materials and Methods
4.1. Preparation of Polypyrrole Aerogels
4.2. Characterization
4.3. Removal of Hexavalent Chromium Ions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on the surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Pratush, A.; Kumar, A.; Hu, Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review. Int. Microbiol. 2018, 21, 97–106. [Google Scholar] [CrossRef]
- Marcovecchio, J.E.; Botté, S.E.; Domini, C.E.; Freije, R.H. Heavy metals, major metals, trace elements. In Handbook Water Analysis; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zaghlol, S.; Amer, W.A.; Shaaban, M.H.; Ayad, M.M.; Bober, P.; Stejskal, J. Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. Chem. Pap. 2020, 74, 3183–3193. [Google Scholar] [CrossRef]
- Qiu, L.G.; Wang, Y.J.; Sui, R.; Zhu, C.X.; Yang, W.W.; Yu, Y.H.; Li, J.M. Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(VI) from aqueous solution. Environ. Res. 2023, 224, 115458. [Google Scholar] [CrossRef]
- Yu, L.; Li, D.; Xu, Z.Y.; Zheng, S.R. Polyaniline coated Pt/CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI). Chemosphere 2023, 310, 136685. [Google Scholar] [CrossRef] [PubMed]
- Minisy, I.M.; Acharya, U.; Veigel, S.; Morávková, Z.; Taboubi, O.; Hodan, J.; Breitenbach, S.; Unterweger, C.; Gindl-Altmutterc, W.; Bober, P. Sponge-like polypyrrole-nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C 2021, 9, 12615–12623. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, C.; Fan, C.; Chen, J.; Zhang, Z.; Liu, H. Composite modification of carbon fiber cathode with tree-like branched polypyrrole-microwires and polyaniline-nanorods for enhancing hexavalent chromium reduction. Environ. Sci. Nano 2023, 10, 891–901. [Google Scholar] [CrossRef]
- Koysuren, O.; Koysuren, H.N. Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. J. Sol-Gel Sci. Technol. 2023, 106, 131–148. [Google Scholar] [CrossRef]
- Kavitha, E.; Sowmya, A.; Prabhakar, S.; Jain, P.; Surya, R.; Rajesh, M.P. Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling. Int. J. Biol. Macromol. 2019, 132, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Sandu, T.; Andrei Sârbu, A.; Căprărescu, S.; Stoica, E.-B.; Iordache, T.-V.; Chiriac, A.-L. Polymer Membranes as Innovative Means of Quality Restoring for Wastewater Bearing Heavy Metals. Membranes 2022, 12, 1179. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Zasońska, B.A.; Acharya, U.; Konefał, M.; Pokorný, V.; Petrovsky, E.; Breitenbach, S.; Unterweger, C.; Bober, P. Magnetoconductive poly(3,4-ethylenedioxythiophene)/maghemite adsorbent for the removal of Reactive Black 5 from aqueous media. Mater. Chem. Phys. 2022, 292, 126753. [Google Scholar] [CrossRef]
- Bober, P.; Minisy, I.M.; Acharya, U.; Pfleger, J.; Babayan, V.; Kazantseva, N.; Hodan, J.; Stejskal, J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020, 260, 116266. [Google Scholar] [CrossRef]
- Chen, M.; Yan, Z.; Luan, J.; Sun, X.; Liu, W.; Ke, X. π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 2023, 454, 140300. [Google Scholar] [CrossRef]
- Silvestri, S.; Burgo, T.A.L.; Dias-Ferreira, C.; Labrincha, J.A.; Tobaldi, D.M. Polypyrrole-TiO2 composite for removal of 4-chlorophenol and diclofenac. React. Funct. Polym. 2020, 146, 104401. [Google Scholar] [CrossRef]
- Acharya, U.; Bober, P.; Trchová, M.; Zhigunov, A.; Stejskal, J.; Pfleger, J. Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer 2018, 150, 130–137. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Z.; Yan, Q.; Wei, P.; Li, Y.; Ji, J.; Li, L. Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composite Hydrogel for Cr(VI) Removal. J. Inorg. Organomet. Polym. 2021, 31, 3677–3685. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Wang, Z.; Zhang, Z.; Wang, C.; Zhao, B.; Pan, K. Ultralight and Superelastic Nanofiber Aerogels with In-Situ Loaded Polypyrrole for High-Efficient Cr (VI) Adsorption. J. Polym. Environ. 2023, 31, 637–647. [Google Scholar] [CrossRef]
- Milakin, K.A.; Taboubi, O.; Acharya, U.; Lhotka, M.; Pokorný, V.; Konefał, M.; Kočková, O.; Hromádková, J.; Hodan, J.; Bober, P. Polypyrrole-Barium Ferrite Magnetic Cryogels for Water Purification. Gels 2023, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Omastová, M.; Bober, P.; Morávková, Z.; Peřinka, N.; Kaplanová, M.; Syrový, T.; Hromádková, J.; Trchová, M.; Stejskal, J. Towards conducting inks: Polypyrrole-silver colloids. Electrochim. Acta 2014, 122, 296–302. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M.; Bober, P.; Morávková, Z.; Kopecký, D.; Vrňata, M.; Prokeš, J.; Varga, M.; Watzlová, E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016, 6, 88382–88391. [Google Scholar] [CrossRef] [Green Version]
- Omastová, M.; Trchová, M.; Kovářová, J.; Stejskal, J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003, 138, 447–455. [Google Scholar] [CrossRef]
- Blinova, N.V.; Stejskal, J.; Trchová, M.; Prokeš, J.; Omastová, M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007, 43, 2331–2341. [Google Scholar] [CrossRef]
- Milakin, K.A.; Acharya, U.; Trchová, M.; Zasońska, B.A.; Stejskal, J. Polypyrrole/gelatin cryogel as a precursor for a macroporous conducting polymer. React. Funct. Polym. 2020, 157, 104751. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley& Sons, Ltd: Chichester, UK, 2001. [Google Scholar]
- Ibrahim, M.; Osman, O.; Mahmoud, A.A. Spectroscopic Analyses of Cellulose and Chitosan: FTIR and Modeling Approach. J. Comp. Theor. Nanosci. 2011, 8, 117–123. [Google Scholar] [CrossRef]
- Karthikeyan, T.; Rajgopal, S.; Miranda, L.R. Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 2005, 124, 192–199. [Google Scholar] [CrossRef]
- Kera, N.H.; Bhaumik, M.; Pillay, K.; Ray, S.S.; Maity, A. Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J. Colloid Interface Sci. 2017, 503, 214–228. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, W.; Sun, J.; Zhou, Q. Efficient removal of Cr(VI) from water by the uniform fiber ball loaded with polypyrrole: Static adsorption, dynamic adsorption and mechanism studies. Chemosphere 2020, 248, 126102. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci. 2006, 302, 408–416. [Google Scholar] [CrossRef]
- Minisy, I.M.; Salahuddin, N.A.; Ayad, M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021, 203, 105993. [Google Scholar] [CrossRef]
- Han, X.; Gai, L.; Jiang, H.; Zhao, L.; Liu, H.; Zhang, W. Core–shell structured Fe3O4/PANI microspheres and their Cr(VI) ion removal properties. Synth. Met. 2013, 171, 1–6. [Google Scholar] [CrossRef]
- Choe, J.N.; Ji, J.M.; Yu, J.H.; Jang, K.J.; Yun, J.; Choe, S.J.; Rim, Y.I.; Jo, C.N. Adsorption of Cr(VI) in aqueous solution by polypyrrole nanotube and polypyrrole nanoparticle; Kinetics, isotherm equilibrium, and thermodynamics. Inorg. Chem. Commun. 2022, 145, 109981. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Forouzesh Rad, B.; Baghdadi, M. Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers. J. Environ. Manag. 2020, 274, 111153. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Fan, Z.; Zhong, M.; Xu, W.; He, C.; Zhang, Z. Polypyrrole/bacterial cellulose nanofiber composites for hexavalent chromium removal. Cellulose 2021, 28, 2229–2240. [Google Scholar] [CrossRef]
- Raji, C.; Anirudhan, T.S. Batch Cr (VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Res. 1998, 32, 3772–3780. [Google Scholar] [CrossRef]
- Hoang, B.N.; Nguyen, T.T.; Bui, Q.P.T.; Bach, L.G.; Vo, D.V.N.; Trinh, C.D.; Bui, X.T.; Nguyen, T.D. Enhanced selective adsorption of cation organic dyes on polyvinyl alcohol/agar/maltodextrin water-resistance biomembrane. J. Appl. Polym. Sci. 2020, 137, 48904. [Google Scholar] [CrossRef]
- Ji, J.; Xiong, H.; Zhu, Z.; Li, L.; Huang, Y.; Yu, X. Fabrication of polypyrrole/chitosan nanocomposite aerogel monolith for removal of Cr (VI). J. Polym. Environ. 2018, 26, 1979–1985. [Google Scholar] [CrossRef]
- Liang, Q.; Luo, H.; Geng, J.; Chen, J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI). Chem. Eng. J. 2018, 338, 62–71. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations. Environ. Sci. Technol. 2012, 46, 5851–5858. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 2014, 138, 146–157. [Google Scholar] [CrossRef]
Stabilizer | Young’s Modulus, kPa | Tensile Strength, kPa | Tensile Strain at Break, % | DC Conductivity, S cm−1 | Pore Diameter, µm | Pore Volume, cm3 g−1 | Porosity, % |
---|---|---|---|---|---|---|---|
PVAL | 19 | 1.5 | 9.3 | 6.1 | 10.4 | 15.4 | 95.2 |
PVP | 78 | 6.3 | 12 | 3 × 10−1 | 0.6 | 1.3 | 63.2 |
Klucel | 54 | 2.8 | 7.7 | 3 × 10−2 | 23.6 | 13.7 | 94.7 |
Gelatin | 461 | 32.7 | 14.8 | 2.4 | 7.8 | 12.7 | 94.3 |
Culminal | mechanically unstable in a swollen state | 1.5 × 10−1 | 21.1 | 7.8 | 91.0 |
Stabilizer | Qe (exp), mg g−1 | Pseudo First-Order | Pseudo Second-Order | Intraparticle Diffusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Qe, mg g−1 | k1, min−1 | R2 | Qe, mg g−1 | k2, g mg−1 min−1 | R2 | c, mg g−1 | ki, mg g−1 min−1 | R2 | ||
PVAL | 120.2 | 79.4 | 0.020 | 0.989 | 121.5 | 7.9 × 10−4 | 0.999 | 45.9 | 6.64 | 0.977 |
PVP | 109.8 | 85.4 | 0.018 | 0.986 | 110.9 | 6.2 × 10−4 | 0.999 | 36.6 | 5.76 | 0.992 |
Klucel | 119.1 | 82.2 | 0.019 | 0.987 | 120.3 | 6.9 × 10−4 | 0.999 | 41.5 | 6.73 | 0.994 |
Gelatin | 118.0 | 82.4 | 0.010 | 0.975 | 120.3 | 3.1 × 10−4 | 0.999 | 29.9 | 6.15 | 0.998 |
Culminal | 113.6 | 75.1 | 0.011 | 0.977 | 115.5 | 4.0 × 10−4 | 0.999 | 40.2 | 5.27 | 0.993 |
Stabilizer | Langmuir | Freundlich | Temkin | ||||||
---|---|---|---|---|---|---|---|---|---|
Qmax, mg g−1 | KL, L mg−1 | R2 | KF, mg g−1 | 1/n | R2 | KT, L g−1 | B | R2 | |
PVAL | 497.5 | 0.130 | 0.992 | 84.89 | 0.44 | 0.981 | 1.90 | 92.03 | 0.969 |
PVP | 221.2 | 0.172 | 0.996 | 71.19 | 0.25 | 0.815 | 1.93 | 27.69 | 0.979 |
Klucel | 237.5 | 0.219 | 0.997 | 72.69 | 0.29 | 0.952 | 3.63 | 43.56 | 0.972 |
Gelatin | 337.8 | 0.104 | 0.996 | 54.98 | 0.43 | 0.876 | 1.47 | 65.71 | 0.965 |
Culminal | 289.0 | 0.142 | 0.993 | 71.20 | 0.32 | 0.944 | 2.86 | 48.96 | 0.969 |
Adsorbent | Conditions | Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|
Fiber ball/PPy | pH 2; 50 °C | 86.74 | [30] |
PPy– nanofibrillated cellulose aerogels | pH 2; RT | 183.6 | [7] |
Cellulose sulfate fibers/PPy | pH 2 | 198 | [35] |
PPy nanotube | pH 2; 25–45 °C | 119.3–205.3 | [34] |
PPy–PANI/iron oxide nanocomposite | pH 2; 25 °C | 303 | [29] |
PPy/ cellulose acetate aerogels | pH 2; 25–45 °C | 182.8–322.6 | [19] |
PPy/ chitosan aerogel | pH 2 | 401 | [39] |
TEPA/PPy/GO aerogel | pH 2; 25 °C | 408.5 | [40] |
PPy aerogels | pH 2; RT | 221.2–497.5 | This work |
PPy/bacterial cellulose composites | pH 2; 25 °C | 555.6 | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bober, P.; Minisy, I.M.; Morávková, Z.; Hlídková, H.; Hodan, J.; Hromádková, J.; Acharya, U. Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions. Gels 2023, 9, 582. https://doi.org/10.3390/gels9070582
Bober P, Minisy IM, Morávková Z, Hlídková H, Hodan J, Hromádková J, Acharya U. Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions. Gels. 2023; 9(7):582. https://doi.org/10.3390/gels9070582
Chicago/Turabian StyleBober, Patrycja, Islam M. Minisy, Zuzana Morávková, Helena Hlídková, Jiří Hodan, Jiřina Hromádková, and Udit Acharya. 2023. "Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions" Gels 9, no. 7: 582. https://doi.org/10.3390/gels9070582
APA StyleBober, P., Minisy, I. M., Morávková, Z., Hlídková, H., Hodan, J., Hromádková, J., & Acharya, U. (2023). Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions. Gels, 9(7), 582. https://doi.org/10.3390/gels9070582