Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering
Author Contributions
Conflicts of Interest
References
- Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020, 5, 686–705. [Google Scholar] [CrossRef]
- Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Rodrigo-Navarro, A.; Sankaran, S.; Dalby, M.J.; del Campo, A.; Salmaeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 2021, 6, 1175–1190. [Google Scholar] [CrossRef]
- Mochi, F.; Scatena, E.; Rodriguez, D.; Ginebra, M.P.; Gaudio, C.D. Scaffold-based bone tissue engineering in microgravity: Potential, concerns and implications. NPJ Microgravity 2022, 8, 45. [Google Scholar] [CrossRef]
- Morneau, D. Engineered hydrogels for mechanobiology. Nat. Rev. Methods Primers 2022, 2, 99. [Google Scholar] [CrossRef]
- Crush, J.; Hussain, A.; Seah, K.T.M.; Khan, W.S. Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Front. Cell. Dev. Biol. 2021, 9, 643781. [Google Scholar] [CrossRef]
- Chitra, S.; Mathew, N.K.; Jayalakshmi, S.; Balakumar, S.; Rajeshkumar, S.; Ramya, R. Strategies of Bioceramics, Bioactive Glasses in Endodontics: Future Perspectives of Restorative Dentistry. Biomed. Res. Int. 2022, 2022, 2530156. [Google Scholar] [CrossRef]
- Dasan, A.; Kraxner, J.; Grigolato, L.; Savio, G.; Elsayed, H.; Galusek, D.; Bernardo, E. 3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder. J. Funct. Biomater. 2022, 13, 8. [Google Scholar] [CrossRef]
- Urciuolo, A.; Giobbe, G.G.; Dong, Y.; Michielin, F.; Brandolino, L.; Magnussen, M.; Gagliano, O.; Selmin, G.; Scattolini, V.; Raffa, P.; et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 2023, 14, 3128. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Shanmugam, D.K.; Dasan, A.; Mosas, K.K.A. Hydrogels—A Promising Materials for 3D Printing Technology. Gels 2023, 9, 260. [Google Scholar] [CrossRef]
- Re, F.; Borsani, E.; Rezzani, R.; Sartore, L.; Russo, D. Bone Regeneration Using Mesenchymal Stromal Cells and Biocompatible Scaffolds: A Concise Review of the Current Clinical Trials. Gels 2023, 9, 389. [Google Scholar] [CrossRef]
- Dibazar, Z.E.; Nie, L.; Azizi, M.; Nekounam, H.; Hamidi, M.; Shavandi, A.; Izadi, Z.; Delattre, C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. Materials 2023, 16, 2799. [Google Scholar] [CrossRef]
- Abu-Naba’a, L.A. A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics. Ceramics 2023, 6, 898–911. [Google Scholar] [CrossRef]
- Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials 2023, 16, 1860. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef]
- Fatma, K.; Tripathy, J. Bioceramic coatings for tissue engineering. In Advanced Ceramic Coatings for Emerging Applications; A volume in Elsevier Series in Advanced Ceramic Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 291–309. [Google Scholar] [CrossRef]
- Kumar, R.; Pattanayak, I.; Dash, P.A.; Mohanty, S. Bioceramics: A review on design concepts toward tailor-made (multi)-functional materials for tissue engineering applications. J. Mater. Sci. 2023, 58, 3460–3484. [Google Scholar] [CrossRef]
- Ramadoss, R.; Padmanaban, R.; Subramanian, B. Role of Bioglass in Enamel Remineralization: Existing Strategies and Future Prospects-A Narrative Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 45–66. [Google Scholar] [CrossRef]
- Moeini, A.; Chinijani, H.T.; Khachatourian, M.A.; Fook, V.L.M.; Baino, F.; Montazerian, M. A Critical Review of Bioactive Glasses and Glass–Ceramics in Cancer Therapy. Int. J. Appl. Glass. Sci. 2023, 14, 69–87. [Google Scholar] [CrossRef]
- Obata, A.; Lee, S.; Kasuga, T. Bioactive Glass Materials for Tissue Regeneration. J. Ceram. Soc. Jpn. 2022, 130, 595–604. [Google Scholar] [CrossRef]
- Taye, M.B. Biomedical Applications of Ion-Doped Bioactive Glass: A Review. Appl. Nanosci. 2022, 12, 3797–3812. [Google Scholar] [CrossRef]
- Cheah, C.W.; Al-Namnam, N.M.; Lau, M.N.; Lim, G.S.; Raman, R.; Fairbairn, P.; Ngeow, W.C. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? Materials 2021, 14, 6123. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, F.; Guo, W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023, 9, 245. [Google Scholar] [CrossRef]
- Li, J.; Song, W.; Li, F. Polymeric DNA Hydrogels and Their Applications in Drug Delivery for Cancer Therapy. Gels 2023, 9, 239. [Google Scholar] [CrossRef]
- Zhong, R.; Talebian, S.; Mendes, B.B.; Wallace, G.; Langer, R.; Conde, J.; Shi, J. Hydrogels for RNA delivery. Nat. Mater. 2023, 22, 818–831. [Google Scholar] [CrossRef]
- Naranjo-Alcazar, R.; Bendix, S.; Groth, T.; Gallego Ferrer, G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023, 9, 230. [Google Scholar] [CrossRef]
- Liu, H.; Gong, Y.; Zhang, K.; Ke, S.; Wang, Y.; Wang, J.; Wang, H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels 2023, 9, 195. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S.; Zhang, Z.; Meng, Z.; He, J.; Ramakrishna, S.; Zhang, C. Intelligent biomaterials for micro and nanoscale 3D printing. Curr. Opin. Biomed. 2023, 26, 100454. [Google Scholar] [CrossRef]
- Atkinson, I.; Seciu-Grama, A.; Mocioiu, O.; Mocioiu, A.; Predoana, L.; Voicescu, M.; Cusu, J.; Grigorescu, R.; Ion, R.; Craciunescu, O. Preparation and Biocompatibility of Poly Methyl Methacrylate (PMMA)-Mesoporous Bioactive Glass (MBG) Composite Scaffolds. Gels 2021, 7, 180. [Google Scholar] [CrossRef]
- Anghel, E.; Petrescu, S.; Mocioiu, O.; Cusu, J.; Atkinson, I. Influence of Ceria Addition on Crystallization Behavior and Properties of Mesoporous Bioactive Glasses in the SiO2–CaO–P2O5–CeO2 System. Gels 2022, 8, 344. [Google Scholar] [CrossRef]
- Yergeshov, A.; Zoughaib, M.; Ishkaeva, R.; Savina, I.; Abdullin, T. Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels 2022, 8, 118. [Google Scholar] [CrossRef]
- Dascalu (Rusu), L.; Moldovan, M.; Sarosi, C.; Sava, S.; Dreanca, A.; Repciuc, C.; Purdoiu, R.; Nagy, A.; Badea, M.; Paun, A.; et al. Photodynamic Therapy with Natural Photosensitizers in the Management of Periodontal Disease Induced in Rats. Gels 2022, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Yudaev, P.; Mezhuev, Y.; Chistyakov, E. Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022, 8, 329. [Google Scholar] [CrossRef]
- Schrade, S.; Ritschl, L.; Suss, R.; Schilling, P.; Seidenstuecker, M. Gelatin Nanoparticles for Targeted Dual Drug Release out of Alginate-di-Aldehyde-Gelatin Gels. Gels 2022, 8, 365. [Google Scholar] [CrossRef]
- Alecu, A.; Costea, C.; Surdu, V.; Voicu, G.; Jinga, S.; Busuioc, C. Processing of Calcium Magnesium Silicates by the Sol—Gel Route. Gels 2022, 8, 574. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Peces, M.; Felix, E.; Martinez-Vazquez, F.; Fernandez-Montesinos, R.; Bomati-Miguel, O.; Mesa-Diaz, M.; Alcantara, R.; Vilches-Perez, J.; Salido, M.; De la Rosa-Fox, N.; et al. Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration. Gels 2022, 8, 634. [Google Scholar] [CrossRef]
- Phetcharat, P.; Sangsanoh, P.; Choipang, C.; Chaiarwut, S.; Suwantong, O.; Chuysinuan, P.; Supaphol, P. Curative Effects of Copper Iodide Embedded on Gallic Acid Incorporated in a Poly(vinyl alcohol) (PVA) Liquid Bandage. Gels 2023, 9, 53. [Google Scholar] [CrossRef]
- Krishani, M.; Shin, W.; Suhaimi, H.; Sambudi, N. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y. Cryopreservation of Cell Sheets for Regenerative Therapy: Application of Vitrified Hydrogel Membranes. Gels 2023, 9, 321. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasan, A.; Chandrasekar, A. Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering. Gels 2023, 9, 586. https://doi.org/10.3390/gels9070586
Dasan A, Chandrasekar A. Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering. Gels. 2023; 9(7):586. https://doi.org/10.3390/gels9070586
Chicago/Turabian StyleDasan, Arish, and Ashokraja Chandrasekar. 2023. "Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering" Gels 9, no. 7: 586. https://doi.org/10.3390/gels9070586
APA StyleDasan, A., & Chandrasekar, A. (2023). Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering. Gels, 9(7), 586. https://doi.org/10.3390/gels9070586