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Abstract: Inorganic arsenic in drinking water from groundwater sources is one of the potential
causes of arsenic-contaminated environments, and it is highly toxic to human health even at low
concentrations. The purpose of this study was to develop a magnetic adsorbent capable of removing
arsenic from water. Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels are a type of porous
material that forms when resorcinol and formaldehyde (RF) react to form a polymer network, which
is then cross-linked with magnetite. Sonication-assisted direct and indirect methods were investigated
for loading Fe3O4 and achieving optimal mixing and dispersion of Fe3O4 in the RF solution. Variations
of the molar ratios of the catalyst (R/C = 50, 100, 150, and 200), water (R/W = 0.04 and 0.05), and
Fe3O4 (M/R = 0.01, 0.03, 0.05, 0.1, 0.15, and 0.2), and thermal treatment were applied to evaluate their
textural properties and adsorption capacities. Magnetic carbon xerogel monoliths (MXRF600) using
indirect sonication were pyrolyzed at 600 ◦C for 6 h with a nitrogen gas flow in the tube furnace.
Nanoporous carbon xerogels with a high surface area (292 m2/g) and magnetic properties were
obtained. The maximum monolayer adsorption capacity of As(III) and As(V) was 694.3 µg/g and
1720.3 µg/g, respectively. The incorporation of magnetite in the xerogel structure was physical,
without participation in the polycondensation reaction, as confirmed by XRD, FTIR, and SEM
analysis. Therefore, Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels were developed as a
potential adsorbent for the effective removal of arsenic with low and high ranges of As(III) and As(V)
concentrations from groundwater.

Keywords: adsorption; arsenate and arsenite; carbon xerogels; resorcinol-formaldehyde; sonication

1. Introduction

A current environmental and human health problem is the availability of water due to
the increasing demand and contamination of drinking water sources. Most of the accessible
drinking water is found in aquifers, which are underground reservoirs of water. However,
the presence of contaminants such as arsenic, which naturally occur in the environment
due to geological factors, can migrate into groundwater through weathering processes.

Inorganic arsenic (As) is a well-known carcinogenic element and one of the most
significant chemical pollutants worldwide, found in several countries across the globe. The
Agency for Toxic Substances and Disease Registry (ATSDR) has ranked arsenic as the top
substance with potential risks to public health on a global scale [1]. The World Health
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Organization (WHO) recommends a guideline value of 10 µg/L for arsenic concentrations
in drinking water, which is also considered acceptable by the United States Environmental
Protection Agency (EPA) [2,3]. In Mexico, the NOM-127-SSA1-2021, “Environmental Health,
Water for Human Use and Consumption—Permissible Limits of Quality and Treatments
for Water Purification”, sets an allowable limit of 10 µg/L for arsenic in drinking water [4].
Groundwater contamination by arsenic affects millions of people in various countries,
including the United States, Argentina, Australia, Bangladesh, Cambodia, Chile, China,
India, Laos, Myanmar, Mexico, Pakistan, Taiwan, Thailand, and Vietnam [5–7].

Arsenic contamination in drinking water is a serious problem in Mexico. The levels of
arsenic in drinking water in some regions of the country exceed the recommended limit of
10 µg/L. Many people in Mexico are at risk due to consuming water with elevated arsenic
levels. children are at risk of developing serious health problems as a result of their exposure
to arsenic [8]. The concentrations of arsenic in water samples from Chihuahua ranged
from 0.1 to 419.8 µg/L, which is associated with adverse health effects [9]. Groundwater
background values in Guanajuato State were evaluated, and the arsenic values from
sample wells were in the range of 0.068–0.777 mg/L. These values are due to geogenic
sources containing volcanic rocks, specifically rhyolites, which have a presence of As and
F in the hot deep flow [10]. Three Yaqui villages in southern Sonora, Mexico, have been
studied for arsenic exposure through drinking water. The range of arsenic concentration
in these villages was 11.8–70.01 µg/L, and it has been associated with lung function and
inflammation, as well as respiratory infections in children [11].

Arsenic can exist in various oxidation states, but in natural water sources, it is predom-
inantly found in its inorganic forms as trivalent arsenite (As(III)) or pentavalent arsenate
(As(V)) oxyanions. The presence of arsenic-contaminated water that is used for drinking,
food preparation, and agricultural irrigation poses a significant threat to public health.
Prolonged exposure to arsenic through the ingestion of contaminated food and water can
lead to the development of cancer and skin lesions [12]. Arsenic has been linked to various
diseases affecting the cardiovascular, liver, neurological, immune, endocrine systems, as
well as the skin. It has also been associated with diabetes and various types of cancer, such
as skin, liver, lung, and bladder cancer, due to its absorption through the gastrointestinal
tract, skin, and respiratory system [13]. Furthermore, elevated levels of arsenic in drinking
water have been associated with an increased risk of myocardial infarction [14], adverse
effects on fertility in women [15,16], and negative consequences for fetal development
during pregnancy [17].

The processes and technologies for the removal of arsenic from water that are known
currently are oxidation, precipitation, coagulation and softening with lime, reverse osmosis,
microfiltration, nanofiltration, adsorption, biological treatments, phytoremediation, electro-
dialysis, and electrokinetics, among others [18–20]. Among these methods, the application
of adsorption is a promising technique and has been widely extended in the treatment of
water and wastewater due to its high efficiency, affordability, ease of design, operation,
handling, and maintenance, and the variety of adsorbent materials that can be regenerated
and reused. Furthermore, no additional chemicals are needed in the operation, and there is
no production of sludge or generation of toxic byproducts [7,21].

Some emerging arsenic adsorbents are chemically modified zeolites [22], zeolitic
imidazole frameworks [23], lanthanum hydroxide–doped graphene oxide biopolymer
foam [24], metal–organic framework-based composite materials [25], and jarosites [26]. The
vast majority of reported adsorbents are micro or nanometer-size powders; although some
of these materials have a high adsorption capacity for micropollutants from water, their
application at the pilot plant or industrial level is limited by the difficulty of separating the
adsorbent from the treated water.

Iron-based adsorbents are excellent adsorbents for removing arsenic from water. Mag-
netite (Fe3O4) is one of the most well-known iron oxides/hydroxides due to its strong
affinity for arsenic and ease of accessibility [27]. Iron-based adsorbents are non-toxic, low
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cost, and easily accessible in large quantities and offer promising results for arsenic removal
from water [28,29].

The gels are mesoporous materials with texture, mechanical resistance, and chemical
stability. They can be controlled and designed according to the variation of the synthesis
and processing conditions. Gels are formed by the addition and/or polycondensation
of a low molecular weight oligomer in an aqueous or alcoholic solution. First, a “sol”
is formed, a colloidal solution of solid particles that grow and coalesce to the gel point,
making the sol-gel transition at which the viscosity of the medium changes. The formed wet
gel behaves like a giant molecule of equal size to the container where it is prepared. The gel
progressively strengthens as residual unreacted oligomers bind to the developing network.
This phenomenon is called aging or curing, and it allows favorable conditions for drying
the gel with the least number of breaks in the structure formed. In other words, the gel is
composed of a continuous solid skeleton formed by chains of monomer particles arranged
in a pearl necklace that is immersed in a continuous liquid phase. By removing the liquid
from the wet gel, a large pore volume can be obtained [30]. The solvent that saturates the
pores can be evacuated by three following drying methods: subcritical, supercritical, and
cryogenic. Subcritical or conventional drying under atmospheric conditions can generate
drastic changes in the surface tension of the solvent once the vapor–liquid interface is
formed, this difference between the surface tension of the coexisting vapor and liquid
phases produces collapses in the pore structure of the gels. The result is a dense polymer
called xerogel. A specific application of resorcinol formaldehyde (RF) gel, including the
doping of RF gels with metals or metal oxides, is found in the removal of contaminants
from drinking water and wastewater [31–34].

Ultrasound technology has been utilized for the synthesis of various materials, in-
cluding nanoparticles, and has found numerous applications such as homogenizing, emul-
sifying, dispersing, deagglomeration, sonochemistry, and sono-catalysis. The effects of
sonication on agglomeration, metal release, zeta potential, and the administered dose were
evaluated using probe sonication for the synthesis of non-functionalized nanoparticles such
as copper, aluminum, manganese, and zinc oxide [35]. The results showed that sonication
can be used to control the size and morphology of nanoparticles, as well as to improve their
dispersibility and zeta potential. Iron(III) trimesate xerogel was prepared using ultrasonic
irradiation within a short time of 10 to 20 min and a low pH solution [36]. This method
produced a product with a high specific surface area of 1042 m2/g. The high specific
surface area of the xerogel was attributed to the formation of a porous structure during the
ultrasonic irradiation process. Furthermore, silica xerogels were prepared using the sol-gel
method with ultrasonic treatment to accelerate aging and hydrophobic treatment [37].
The effect of ultrasonic frequency, specifically 100 kHz and 500 kHz, on the structure was
investigated. It was found that 500 kHz accelerated the aging reaction, facilitated hydropho-
bization, and rapidly suppressed gel shrinkage. These studies demonstrate the potential
of ultrasound technology for the synthesis of various materials with desired properties.
Ultrasound can be used to control the size, morphology, dispersibility, zeta potential, and
aging of nanoparticles. It can also be used to accelerate the formation of porous structures
and to improve the hydrophobicity of materials. Ultrasonic technology can be considered
an environmentally friendly application because it reduces processing time, increases cost
efficiency, simplifies manipulation, enhances the purity of the final product, and lowers
energy consumption [32,34].

Regarding the theoretical knowledge of resorcinol-formaldehyde xerogels and the
applications of iron-based adsorbents such as Fe3O4 for arsenic removal, this study applied
the ultrasonic-assisted synthesis of carbon xerogels to evaluate the effect of Fe3O4 loading
through both direct and indirect methods on the removal of arsenic species in groundwater.
The novelty of this work is a Fe3O4-monolithic resorcinol-formaldehyde carbon xerogel
that, due to its chemical composition and ordered porous structure, is capable of removing
arsenite and arsenate ions present in groundwater. Moreover, due to its magnetic properties,
it is possible to easily recover it from the treated water.
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This research focuses on generating magnetic carbon xerogels with morphological,
magnetic, textural, and physical–chemical properties in the form of pellets, which makes
them reusable. These materials have the capability to adsorb arsenates and arsenites. The
synthesis procedure was developed considering the effect of Fe3O4 loading via ultrasonic
methods, both direct and indirect, while varying the molar ratios of Fe, catalyst, and water.
The arsenic adsorption test was conducted in batch, and the synthesized materials were
characterized using various analytical techniques before and after the adsorption of arsenic.
The intended purpose of this work is for the adsorbent materials produced to serve as
viable alternatives within the technological advancements for water remediation. The
magnetic properties of carbon xerogels facilitate the separation, reuse, regeneration, and
recycling of the adsorbents so that their useful life is extended. The efficient separation
of aged adsorbents also facilitates the recovery and final disposal of contaminants and
strengthens the environmental sustainability of the water purification process.

The experimental reproducibility of Fe3O4-monolithic resorcinol-formaldehyde carbon
xerogels involves several challenges, including the composition of the starting materials
(variation in molar ratios), the homogeneity of dispersion (direct and indirect ultrasoni-
cation methods), the sonication conditions (power output, duration, and frequency), the
gelation and curing conditions, and the post-synthesis treatments (pyrolysis). Controlling
these parameters consistently across different experiments can be challenging, and this can
affect the properties of the resulting monolithic carbon xerogels. Subsequently, the adsorp-
tion capacity of the final material was improved with increasing the initial concentration
and the adsorption affinity for arsenic species.

The environmental sustainability of the arsenic adsorption process using Fe3O4-
monolithic resorcinol-formaldehyde carbon xerogels can be evaluated through methodolo-
gies such as the lifecycle, planetary boundaries, and sustainable development goals [38].
However, applying these methodologies and their indicators is beyond the scope of
this article.

2. Results and Discussion
2.1. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels: Effect of Loading of Magnetite with
Indirect and Direct Sonication, and Modification of Catalyst

This study focuses on the development and initial preparation of monolithic xerogels
with magnetic properties using magnetite (Fe3O4, Lanxess) as an adsorbent material for
water treatment. The magnetic xerogel monoliths (MCs and MXs) were synthesized through
the sol-gel polymerization of resorcinol and formaldehyde (RF) with sodium carbonate (C)
as a catalyst, employing indirect and direct sonication, respectively. The effect of varying
the molar ratios of resorcinol/catalyst was evaluated to obtain the high adsorption capacity
in the arsenate adsorption.

2.1.1. Characterization of MCs and MXs

To identify the phases in the xerogels, XRD analysis was carried out. XRD pattern of
RFX revealed the presence of both crystalline and amorphous phases as shown in Figure 1,
which is similar to the pattern reported by [39,40].

The XRD patterns of magnetic xerogels prepared using direct and indirect sonication
methods and different R/C ratios (Figure 1) were found to be similar, with diffraction peaks
at 2 θ values of 18◦, 30◦, 35.5◦, 43◦, 57◦, and 62◦ corresponding to the crystallographic
planes of magnetite 111, 220, 311, 400, 511, and 440, as reported in the ICCD card number 00-
01900629. These findings align with the research of [41]. The percentage of crystalline phase
for RFX, MX1, and MX2 was 10.54%, 12.45%, and 10.51%, respectively. Meanwhile, the
percentage of crystalline phase for MC1-MC4 ranged from 10.51% to 12.64%. The percent-
age of crystalline phase for magnetic xerogels prepared using direct and indirect methods
(MX1 and MC1) at the same molar ratios and gelation process was approximately 12%.
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Figure 1. Powder X-ray diffraction patterns of the xerogels (RFX), Fe3O4-monolithic resorcinol-
formaldehyde xerogels synthesized through direct sonication (MX1 and MX2), and indirect sonication
with different R/C (MC1-MC4), along with their corresponding JCPDS card assignments.

The crystal size of the magnetic xerogels was determined by calculating the X-ray
diffraction peak widths using Bragg’s law and Debye Scherrer equation, as described
by [42].

D = Kλ/βCosθ, (1)

where D is the crystalline size, K denotes represents the Scherrer constant (0.98), λ represents
the X-rays wavelength (1.54178 Å), β denotes the full width at half maximum (FWHM) and
θ is the Bragg diffraction angle (radians).

Table 1 shows the average crystalline sizes of MC50, MC100, and MC200 were in
the range of 22.94–25.88 nm. Additionally, their values of β (0.32–0.36 radians) and
θ (35.52–35.53 radians) were similar. However, the crystallinity of particle of MC200
(R/C = 200) was higher than MC50 (R/C = 50) and MC100 (R/C = 100). This indicates that
increasing the R/C ratio can result in increased crystallinity, which is similar to the results
obtained by [43].

Table 1. The average crystal size of magnetic xerogels varying R/C Molar ratios.

Sample Name R/C Molar
Ratios

Crystal Size
Average (nm)

FWHM (β)
(Radian) θ (Radian)

MC1 50 24.52 0.34 35.54
MC2 100 22.94 0.36 35.52
MC4 200 25.88 0.32 35.53

The morphology of RF xerogels (RFX) was observed using scanning electron mi-
croscopy (SEM). Figure 2a shows that RFX is composed of a large number of microclusters
that are uniformly distributed. These microclusters contain the resorcinol-formaldehyde
polymer. The RF gel network is formed with nearly spherical particles, showing similar
results to those obtained by [44]. Furthermore, the interconnects between the microclusters
were observed to form porous materials. This porosity is likely due to the gelation process
used in the synthesis of RFX, which involves the formation of a three-dimensional network
of interconnected polymer chains [39,45,46]. Therefore, RFX is a highly porous material
with a complex microstructure.
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Figure 2a shows the difference between the outside and inside of the RF gel. The
microclusters in the outer region appear more compact than those in the inner region. This
difference in microstructure is likely due to the contact of the outer region with the glass
tube during the gelation process. During gelation, the RF solution is typically poured
into a mold or tube and allowed to solidify. The contact of the outer region with the glass
surface may have caused the microclusters to pack more tightly together, resulting in a
more compact microstructure.

In this study, the SEM analysis revealed the effect of direct and indirect ultrasonication
on the preparation of magnetic xerogels. Figure 3 depicts the morphology of magnetic gels,
namely MX1 and MC4, synthesized with the same molar ratios. It can be observed that
the morphology of MC4 (Figure 3b,d) characterizes nearly spherical particles that partially
overlap, resulting in the formation of large pores. This morphology is likely attributed
to the incorporation of magnetite particles into the RF gel during synthesis. Comparing
MX1 and MC4 at the same magnification range of 15,000 and 25,000, it is evident that MX1
has smaller particle and pore sizes compared to MC4. Additionally, MX1 shows a more
compact RF gel structure than MC4. Both techniques involve delivering energy to the RF
solution with magnetite particles through probe sonication. However, the resulting particle
sizes and mesoporosity of RF gels differ between the two methods. Indirect sonication
generates cavitation in the water bath using high-intensity ultrasound through a water bath,
while direct sonication involves the probe causing cavitation during sample processing. It
can be explained that the particle size of MX1 decreases after ultrasonication, as observed
by [37,47,48].

Energy-dispersive X-ray spectroscopy (EDX) is a technique used to determine the
elemental composition of a material. In this study, EDX analysis was used to determine the
Fe content, confirming the incorporation of Fe content in the structure of magnetic RF gels.
Both magnetic gels demonstrate the physical incorporation of magnetite into the structure
of RF gel without participating in the polycondensation reaction of RF, as stated by [47].
MC4 shows a more uniform distribution of magnetite contents in the structure of RF gel
than MX1.

During the synthesis of MX1 with direct sonication, the RF solution was mixed, and
the temperature increased dramatically from 45 ◦C to 79 ◦C within 5 min, resulting in the
formation of a black gel. On the other hand, MC4 was prepared using indirect sonication.
The mixed solution of MC1-MC4 allowed the dispersion of magnetite into the RF gel, and
the temperature of the solution continuously increased from 33 ◦C to 85 ◦C, and finally
leading to the formation of a black gel within the water bath for 60 min.
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It can be explained that direct sonication involves the use of a sonication probe directly
immersed in the reaction mixture. The probe emits ultrasonic waves that directly interact
with the sample, resulting in more localized and precise energy transfer. However, direct
sonication generally requires shorter processing times compared to indirect sonication,
as the energy efficiently reaches the desired regions, accelerating the required reactions.
Consequently, the mixed solution of MX1 with ultrasonication experienced a significant
increase in temperature, leading to reduced gelation times [49]. In this study, magnetite was
added to the RF solution, and due to its natural behavior, magnetite tends to agglomerate
within a short mixing time. Considering the variables involved in the solution, gelation,
and curing processes, high temperatures during synthesis lead to porosity shrinkage [49].

After ultrasonication of magnetite into an aqueous RF solution, the particle size of
magnetite was decreased, which can be clearly observed with MC4. The EDX analysis
revealed that MC4 incorporated 1.19% Fe content (Figure 4d). The M/R ratio used in
the synthesis was 0.01, indicating a low concentration of magnetite compared to the RF
polymer. This suggests that even with a low M/R ratio, the incorporation of Fe in the RF
gel was successful, due to the use of magnetite particles in the synthesis process.

The morphology of the MCs was studied by SEM as shown in Figure 5. A three-
dimensional RF gel network was formed with nearly spherical particles [46,50]. MC1
and MC4 prepared with different Na2CO3 concentrations, the morphology and pore size
distribution can be observed that MC1 with lower R/C molar and high initial pH solution
exhibit smaller particles and pore sizes than other materials. pH variations can alter the
nucleation and growth of the gel network, leading to changes in the average pore size, pore
connectivity, and surface area of the xerogel. Higher pH values can promote the formation
of smaller pores, while lower pH values may result in larger pores [50].
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The mesoporosity of RF gels increases with an increase in the R/C ratio, as reported in
previous studies by [39,45,51]. This indicates that the porosity of RF gels can be controlled
by adjusting the R/C ratio in the synthesis process. Mesopores are pores with diameters
between 2 and 50 nm and are desirable for various applications such as adsorption.

Table 2 shows the textural properties of magnetic xerogels, the effect of direct, and
indirect sonication on the textural properties of materials, specifically MX1 and MC4,
respectively. The surface area of the magnetic xerogels for both MX1 and MC4 increased
significantly compared to the xerogel. MC4 exhibited a higher surface area of 529.47 m2/g,
whereas MX1 had a surface area of 472.41 m2/g. Additionally, the total pore volume and
average pore diameter of MC4 were lower than those of MX1. This can be explained by
the fact that MX1, prepared through direct sonication with a shorter sonication time for
gelation, resulted in a lower surface area but higher total pore volume and larger average
pore size.

Table 2. Textural parameters, pHpzc, and IEP of xerogel and Fe3O4-monolithic resorcinol-
formaldehyde xerogels.

Samples Molar Ratio
of R/C

Area BET
(m2/g)

Total Pore
Volume (cm3/g)

Average Pore
Diameter (nm) pHpzc IEP

RFX 200 399.19 0.517 5.23 2.99 2.74
MX1 200 472.41 0.842 7.57 4.54 3.09
MC1 50 365.93 0.255 2.79 6.63 3.40
MC2 100 545.09 0.549 4.03 6.12 3.59
MC4 200 529.47 0.683 5.16 4.35 3.70

The effect of pore structure in magnetic xerogels using the ultrasound-assisted sol-gel
method was investigated through N2 physisorption analysis. It can be explained that direct
sonication promotes the formation of smaller and more uniform pores within the xerogel
structure, as the energy can be precisely targeted to specific regions. On the other hand,
indirect sonication may result in the generation of larger or more irregularly shaped pores
in the xerogel due to less controlled and localized energy transfer. This observation is
consistent with the findings in Figure 3 of SEM images and Figure 4 depicting particle
distributions, which demonstrate that MX1 has a smaller particle size compared to MC4.

Moreover, Table 2 shows the effect of catalyst contents on the surface area and pore
volume of the magnetic xerogels. The results of the RF gels using sodium carbonate as
a catalyst show that MC200 had a higher average pore diameter (5.16 nm) than MC100
(4.03 nm), but MC200 had a lower surface area (529.47 m2/g) than MC100 (545.09 m2/g).
However, MC200 (529.47 m2/g) exhibited a surface area lower than MC100 (545.09 m2/g).
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These findings are consistent with those of [52], reported that increasing the molar ratios of
R/C in gels prepared with Na2CO3 leads to an increase in average pore width. When lower
molar ratios of R/C are used for RF gel preparation, a higher concentration of Na2CO3
results in the formation of smaller clusters with smaller average-sized pores. Therefore,
MC100, with its lower R/C ratios, has a greater number of smaller pore diameters, and a
higher surface area, making it more suitable for use in water treatment adsorption.

In this study, the obtained results of the mesoporous nature of magnetic xerogels
with varying R/C demonstrated the effect on the surface area and pore volume of the
RF polymer in magnetic xerogels. It can be explained that the pH of the RF solution is
associated with the quantity of catalyst utilized during the synthesis. When the pH was
decreased, both the surface area and pore volume of the RF polymer in xerogels increased.
This indicates that lower pH values result in the formation of a greater number of pores
and increased surface area within the RF polymer retained in the xerogels [53]. Moreover, it
can be explained that the larger carbonate ions have a trigonal planar molecular geometry,
which may cause steric hindrance. Consequently, the condensation of the intermediates
leads to the generation of larger pores of the samples [54]. The use of a higher amount of
catalyst leads to more rapid gelation, resulting in a less uniform structure with fewer and
larger pores. Alternatively, the catalyst itself may interfere with the formation of crosslinks
within the RF polymer, leading to a less porous structure. Therefore, higher amounts of
catalyst used during the synthesis have a similar effect on the surface area and porosity of
the resulting material, as observed in the results obtained by [55].

The determination of the isoelectric point (IEP) and point of zero charges (pHpzc)
of xerogels and magnetic xerogels was carried out by measuring the zeta potential and
pH, as shown in Table 2. The IEP and pHpzc of MX1 and MC4 prepared by direct and
indirect sonication, respectively, with R/C 200 are in a similar range of values. However,
the RF xerogel exhibits lower IEP and pHpzc values compared to the other materials. These
findings are similar to the results reported by [56], where organic xerogels demonstrated a
pHpzc value of 3.

Figure 6 shows the particle distribution of xerogel and magnetic xerogels prepared
using the sol-gel method under ultrasonic irradiation. The particle size distribution in the
obtained xerogels may vary because of sonication-assisted synthesis and variations in the
R/C ratios. RFX exhibits a broader particle size distribution with larger particles compared
to MX1 and MC4, which were prepared with the same molar ratios and drying process.
RFX, prepared without sonication, showed a larger particle size, which is consistent with
the findings of [57].

It can be observed that the average particle diameter of MX1 (28.05 nm) was lower
than that of MC4 (32.65 nm), which is similar to the results obtained from SEM analysis.
The use of direct sonication in the preparation of MX1 resulted in a narrower particle
distribution due to localized energy transfer, leading to more consistent particle sizes in
the obtained xerogel. On the other hand, MC4 exhibited a wider range of particle sizes
due to less precise control of sonication energy distribution. Therefore, the direct method
of sonication generally leads to a lower particle size distribution compared to the indirect
method, due to the more localized and intense energy transfer that promotes effective
fragmentation and reduction in particle size. Similar findings of the study of [58].

The initial pH of the solution is a factor influencing the polymerization of xerogels,
especially when varying the molar ratio of the catalyst. The pH values of the RF solutions
for MC1, MC2, MC3, and MC4 were 7.26, 7.05, 6.92, and 6.82, respectively, within the
similar range of the study of [52]. It can be observed that higher catalyst concentrations
with lower R/C molar ratios result in smaller particles and pore sizes, as reported by [53].
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Figure 6. Particle size distribution of RF xerogel and Fe3O4-monolithic resorcinol-formaldehyde
xerogels prepared by the sol-gel method under ultrasonic irradiation and presented in (a) grouping
and (b) separation graphs.

The pH of the precursor solution plays a crucial role in determining the final structure
of the obtained xerogel. It affects the kinetics of polymerization and crosslinking reactions,
as well as the condensation and gelation processes. The mechanism of polymerization in
RF gels involves two steps: the addition reaction to form hydroxymethyl derivatives of
resorcinol and the condensation of these derivatives to form methylene or methylene ether
bridged compounds [49]. In a high pH solution, the first addition reaction is favored. This
leads to a higher rate of polymerization and crosslinking, resulting in a more extensively
crosslinked network structure and a relatively quick process. This process often yields small
nodules and narrow mesopores. Gelation kinetics, which refers to the rate of transition
from a liquid precursor solution to a gel network, is strongly influenced by pH. Higher pH
values generally promote faster gelation, while lower pH values slow down the process.
The gelation kinetics can significantly impact the overall pore structure and porosity of the
xerogel. When the condensation reaction occurs in the presence of small particles resulting
from the high pH conditions, it produces materials with smaller pores, leading to a higher
density or more compact RF gel structure [59]. On the other hand, lower pH values may
result in a less densely crosslinked structure.

Figure 7a depicts the FTIR spectra of RFX and magnetic gels prepared using ultrasoni-
cation with direct and indirect techniques, covering a wavelength range of 4000–400 cm−1.
The characteristic FTIR bands of RFX, MX, and MC are similar. However, MC4, MX1, and
MX2 exhibit an FTIR band at 478 cm−1 attributed to Fe-O stretching vibration [60,61]. The
profiles of RFX, MC4, and MXs show the presence of six absorption bands: (i) O-H stretch-
ing at 3300 cm−1, (ii) C-H stretching at 2900 cm−1, (iii) C = C stretching in the aromatic ring
at 1600 cm−1, (iv) C-H bending vibration at 1400 cm−1, (v) C-O stretching at 1200 cm−1,
and (vi) methylene ether C-O-C linkage stretching between two resorcinol molecules at
1000 cm−1 [62]. The FTIR spectra of RF gel and MC1-MC4 can be observed in Figure 7b,
and all of them exhibit bands that are correlated with the bands described above.
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Regarding the characterization of MCs and MXs, it can be observed that the prepa-
ration of monolithic resorcinol-formaldehyde xerogels involved different methods of son-
ication, utilizing low and high intensity, respectively. However, the results of their XRD
and FTIR analyses show significant similarities. This is in contrast to the study conducted
by [48], where the preparation of ZnO nanoparticles using direct and indirect sonication
had an impact on the crystalline structure (XRD analysis) and resulted in different IR spec-
tra of the samples. Due to the probable growth mechanisms of ZnO nanoparticles, various
crystallization mechanisms were proposed. However, in the case of xerogels, ultrasonic
irradiation aids in promoting aging and hydrophobization reactions. Additionally, [37]
discovered that the preparation of silica xerogels can be accomplished in less than 1/5 of
the time required by conventional methods.

2.1.2. Performance of Adsorption of Arsenic Using MCs and MXs

In the batch adsorption experiment of As(V) using MCs and MXs, the effect of pH in
the range of 2 to 7 was used to evaluate their adsorption capacities, as shown in Figure 8.
MC1 and MC2 demonstrated high adsorption capacities, qe were more in the range of
63.26–73.47 µg/g and 59.18–61.22 µg/g, respectively, than other materials. MX1 and MX2
showed higher adsorption capacity in the acidic solution. Due to the pHpzc being the zero
net charge on the surface of the adsorbent, the adsorbent surfaces are charged positively
or negatively, depending on whether the pH of the solution is lower or higher than the
pHpzc values, respectively [55]. The analysis result of pHpzc of MX1 was 4.54, meaning that
MX1 adsorbed As(V) at pH values lower than this value. The same can be described for the
adsorption of MC1 and MC2, whose pHpzc values were 6.63 and 6.12, respectively.

2.2. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels with Direct and Indirect Sonications:
Effects of Power Output of Ultrasonic Processor, Varying the Molar Ratios of M/R and R/W

Table 3 presents the molar ratios used in the synthesis of five magnetic xerogels,
specifically MX3-MX7. These xerogels were prepared with molar ratios of M/R of 0.03,
0.05, 0.1, 0.15, and 0.2, respectively. The xerogels were synthesized using direct ultrasonic-
assisted synthesis with an ultrasonic VCX130 operating at 130 watts and a 1/4” diameter
probe. The M/R ratios increased with the increasing Fe contents, as determined by chemical
composition analysis using ICP-Optical Emission Spectroscopy. However, MX6 and MX7
exhibited similar Fe content values. In this case, it can be explained that the high quantity
of magnetite may not have fully incorporated into the gel matrix and some of it may have
washed out during the solvent exchange, as evidenced by the observation of a brown
solution after changing the acetone solution.
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Figure 8. Effect of pH on the adsorption of As(V) using Fe3O4-monolithic resorcinol-formaldehyde
xerogels (Condition: initial concentration 100 µg/L, dose 1 g/L, 6 h, and temperature 25 ◦C).

Table 3. Fe3O4-Monolithic resorcinol-formaldehyde xerogels prepared with direct sonication with
low power output varying M/R ratios ranging from 0.03 to 0.2, resulting in different Fe content.

Molar Ratios
Direct Ultrasonic-Assisted Synthesis

MX3 MX4 MX5 MX6 MX7

R/W 0.04

R/C 200

R/F 0.5

M/R 0.03 0.05 0.1 0.15 0.2

Fe content (w%) 3.48 5.62 9.29 13.39 13.13

Solids content (w/v%) 19.59 20.37 22.29 24.23 26.16

MX8-MX11 were synthesized using indirect sonication via the Q700 sonicator, which
has a power output of 700 watts and a 1/2” diameter probe. The molar ratios used in the
synthesis, along with the corresponding Fe content, are shown in Table 4.

Table 4. Fe3O4-Monolithic resorcinol-formaldehyde xerogels prepared with indirect sonication with
high power output varying M/R ratios ranging from 0.03 to 0.15.

Molar Ratios
Indirect Ultrasonic-Assisted Synthesis

MX8 MX9 MX10 MX11

R/W 0.05

R/C 200

R/F 0.5

M/R 0.03 0.05 0.1 0.15

Fe content (w%) 3.41 5.82 11.59 16.09

Solids content (w/v%) 23.04 23.95 26.22 28.48

At the same molar ratios of M/R at 0.15 for direct (MX7) and indirect (MX11) sonica-
tion, MX11 demonstrated a higher Fe content than MX7. The theoretical calculations of Fe
content for MX8, MX9, MX10, and MX11 are 4.27%, 6.85%, 12.52%, and 17.29%, respectively.
These values are similar to the results obtained from ICP-OES analysis. This can be ex-
plained that increasing the power output to 700 watts makes the system more homogenous.
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2.2.1. Characterization of Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels MX3-MX7
and MX8-MX11

SEM images and mapping analysis of MX3-MX7 are shown in Figure 9, with an increas-
ing amount of magnetite through direct sonification. Figure 9a–e shows the SEM images of
the surface morphology of magnetic xerogels composed of large numbers of microclusters
with a three-dimensional network. However, some parts of them are agglomerated, and
some bright particles can be observed. The elemental distribution of these particles can be
confirmed with the corresponding EDX spectra, which demonstrate the existence of iron
(Fe), oxygen (O), carbon (C), aluminum (Al), and sodium (Na).
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Figure 9. SEM images and EDX mapping analysis of magnetic xerogels prepared with R/C = 200, 
R/W = 0.04, and varying M/R of MX3 = 0.03 (a,f), MX4 = 0.05 (b,g), MX5 = 0.1 (c,h), MX6 = 0.15 (d,i), 
and MX7 = 0.2 (e,j), respectively. 

Figure 9. SEM images and EDX mapping analysis of magnetic xerogels prepared with R/C = 200,
R/W = 0.04, and varying M/R of MX3 = 0.03 (a,f), MX4 = 0.05 (b,g), MX5 = 0.1 (c,h), MX6 = 0.15 (d,i),
and MX7 = 0.2 (e,j), respectively.
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Elemental mapping was analyzed to observe the distribution of synthesized magnetite
on RF matrix gels, as shown in Figure 9f–j. The individual EDX mapping of Fe element
distributions: blue = low, green = medium, and red = high. Magnetite particles were ob-
served in a blue color and were evenly distributed on the RF surface, with a higher quantity
corresponding to the increasing M/R ratios. Similar results were obtained from Table 3. The
results of the mapping analysis show that the incorporation of Fe into the structure of the
samples is homogeneously distributed, similar to the results obtained from activated carbon
xerogels doped with iron (II) phthalocyanine by ultrasonication [63]. However, some of
them had some accumulation of Fe due to the increase of high concentration of magnetite
in the RF solution. It can be observed in Figure 9h,i, where EDX mappings for Fe display a
red color in several regions, indicating a high concentration of Fe within the RF gels. The
agglomeration of the microclusters and the presence of bright particles on the surface of the
MX5-MX7 xerogels suggest that the synthesis process could be improved. Further studies
are needed to optimize the synthesis conditions in order to produce magnetic xerogels with
improved properties.

The XRD patterns of MX3-MX7, prepared by direct sonication, and MX8-MX11, pre-
pared by indirect sonication, are shown in Figure 10a,b, respectively. Both sets of samples
were synthesized with different molar ratios and utilized different ultrasonic processors.
However, both sets varied the M/R ratios from 0.03 to 0.2 for MX3-MX7 and from 0.03 to
0.15 for MX8-MX11. Consequently, the XRD analysis of the magnetic xerogels demonstrated
the presence of magnetite, in accordance with the JCPDS card assignments, as described
in Figure 1. The diffraction peaks at d311 (2 θ = 35.68◦) appeared high and sharp for all
materials, indicating their magnetic properties [42], the intensity of the iron phase peaks
increased with higher M/R ratios in the synthesis. These results are particularly relevant
for the analysis of the chemical composition, as presented in Tables 3 and 4.
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Figure 10. XRD patterns of magnetic xerogels prepared by (a) direct (MX3-MX7) and (b) indirect
(MX8-MX11) ultrasonic with varying M/R ratios of 0.03–0.2.

The FTIR spectra of monolithic resorcinol-formaldehyde xerogels prepared by direct
sonication, with varying M/R molar ratios of 0.05, 0.1, 0.15, and 0.2 (referred to as MX4,
MX5, MX6, and MX7, respectively) are similar, as shown in Figure 11a. Similarly, Figure 11b
presents FTIR spectra of MX8-MX11, prepared by indirect sonication, which exhibit similar-
ities. The resulting FTIR spectrum displays peaks corresponding to different vibrational
modes of the molecules in the sample, as discussed in detail in Figure 7. Both groups of
materials exhibit an FTIR band at 468 cm−1, attributed to Fe-O stretching vibration [60,61].
Therefore, the use of different sonication methods and power outputs of the ultrasonic
processor has no effect on the functional groups and chemical compounds present in the
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samples of monolithic resorcinol-formaldehyde xerogel, based on the absorption of infrared
radiation with wavelength ranges of 4000–400 cm−1.
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2.2.2. Performance of Adsorption of Arsenic Using MX4-MX7 and MX8-MX11

Figure 12a presents the removal efficiency of As(V) using MX4-MX7 prepared by direct
sonication via a sonicator with 130 watts of power. The removal efficiency of MX4-MX7
was higher than RFX, which was prepared without using magnetite. In particular, MX4
with a lower loading of Fe3O4 (M/R = 0.03) gave the highest arsenic removal of 58.78%.
Meanwhile, arsenic removals were lower with MX5, then increased and remained constant
for MX6 and MX7. This can be explained by the capacity of the sonicator. With a low power
output sonication and small diameter tip, it was possible to homogenize the solution well
with a low quantity of magnetite. However, with increasing magnetite loading into the RF
solution with M/R of 0.05, 0.07, and 0.15, the As removal results were similar. This can be
confirmed with SEM/EDX analysis (Figure 9), which showed that magnetite was more
homogeneously distributed in MX4 than in the other materials.
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Figure 12b shows the arsenic removal using MX8-MX11 prepared by indirect ultrasonic-
assisted synthesis with 700 watts. The removal of MX8 (M/R = 0.03) and MX9 (M/R = 0.05)
increased dramatically from 36.49% to 58.78%. With the increasing of M/R to 0.1 and 0.15,
their arsenic removal of MX10 and MX11 remained constant, which demonstrated the same
behavior as MX4-MX7.

Additionally, the effect of the molar ratio of R/W and M/R on the total solids content
of the materials is shown in Tables 3 and 4. The solid content increases with increasing
magnetite loading. At the same molar ratios of M/R, the total solids content also increases
with increasing R/W. Moreover, low solids contents result in fragile structures, and very
high solids contents result in increased densification of the material that lowers porosity.
Therefore, the optimum solids content of the xerogel is 20 w/v% [45].

2.3. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels and Carbon Xerogels by
Indirect Sonication
2.3.1. Characterization of Fe3O4-Monolithic Resorcinol-Formaldehyde Carbon Xerogels

Some parts of the RF surface of Fe3O4-Monolithic resorcinol-formaldehyde xerogels
(MXRF) were agglomerated due to the formation of magnetite, as shown in Figure 13a. The
presence of Fe in the RF gels was determined to be 14.83 w% by AAS, compared to 24.67%
of Fe as quantified by EDX in the solid sample. It can be observed that the morphology and
EDAX analysis did not change significantly after the adsorption process (Figure 13b).
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Figure 14a shows N2 adsorption–desorption isotherms at 77 K, and Figure 4b illustrates
the pore size distributions of XRF and MXRF. The analysis results of BET surface area, total
pore volume, and average pore size of xerogel adsorbent were 399.19 m2/g, 0.517 cm3/g,
and 5.228 nm, respectively. When magnetite composites were added to xerogels, the porous
properties of MXRF for BET surface area, total pore volume, and average pore diameter
were 292 m2/g, 0.279 cm3/g, and 3.81 nm, respectively.
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Figure 14. (a) N2 adsorption isotherms and (b) pore size distributions of xerogel (RFX) and Fe3O4-
monolithic resorcinol-formaldehyde xerogels (MXRF).

Figure 14a shows that the adsorption isotherms of RFX and MXRF adsorbents at a
constant temperature of 77 K with N2 as the adsorptive exhibit a linear relationship between
relative pressure and amount adsorbed. RFX and MXRF exhibited type IV adsorption
isotherms with H2 and H4 hysteresis loops, respectively. This implies that RFX contained
typical mesoporous materials and MXRF contained micro- and mesoporous adsorbents,
similar to the results of the pore size distributions.

Figure 14b shows that the main pore diameter sizes of RXF and MXRF are in the range
of 2–50 nm, which is defined as mesoporous material. The pore size distribution of MXRF
reveals that the average pore diameter was 3.81 nm, which is similar to the results of the
narrow centering of PSD of Fe, Co, and Ni doped carbon xerogels [64]. This indicates that
the doping with transition metals, such as magnetite, into the xerogels has a similar effect
to the composite of magnetite, which affects the reduction of surface areas and total pore
volume of the material and makes alterations to their textural properties [65,66]. Similar
results were found from SEM analysis, which showed increased agglomeration of particles
in RF gels.

As shown in Figure 15, FTIR analysis of MXRF before and after adsorption of As(III)
was obtained using attenuated total reflection (ATR) technique. Absorption peaks at
558 cm−1 are characteristic peaks of Fe-O-Fe, which are indicative of magnetite, confirming
the presence of Fe3O4 on the MXRF adsorbent [67]. The bending vibration of the hydroxyl
groups (Fe–OH) confirmed the formation of iron oxide in xerogels [68] and O–H groups
on the gel surface. These groups are possible to facilitate the adsorption of arsenic by iron
oxides composites in the matrices of RF magnetic xerogels [28].
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Figure 15. FTIR analysis before and after adsorption of As(III) of (a) magnetic xerogels of resorcinol
formaldehyde (MXRF) and (b) magnetic carbon xerogels of resorcinol formaldehyde (MXRF600).

XRD patterns of MXRF and MXRF600 before and after adsorption (Figure 16) clearly
demonstrated that they had high intensity peaks that contained a crystalline phase and
corresponded to Fe3O4 with the Joint Committee on Powder Diffraction Standards (JCPDS)
card No. 19-0629. Therefore, the chemical and structural properties of MXRF and MXRF600
did not change significantly following the carbonization and adsorption process.

Gels 2023, 9, 618 20 of 30 
 

 

 
Figure 16. XRD diffractogram of Fe3O4-monolithic resorcinol-formaldehyde xerogels (MXRF) and 
carbon xerogel (MXRF600) before and after adsorption of As(III). 

2.3.2. Adsorption of Low and High Concentration of As(III) and As(V) with MXRF  
and MXRF600 

In the adsorption process, contact time is one parameter that is a time-dependent 
process. Adsorption kinetic studies are important in water treatment. These studies can 
describe the mechanism of the adsorption process and provide kinetic adsorption con-
stants and valuable information. The experimental data were analyzed with four kinetic 
models: pseudo first-order, pseudo second-order, Elovich, and Power function.  

The effect of contact time on the adsorption process was varied from 10 to 1440 min 
with different ranges of initial concentration for the low range of As(III) concentrations 
(25, 50, and 75 µg/L) and high range of concentration for As(III) and As(V) were 514 
µg/L and 1034 µg/L, respectively. The adsorption kinetic of As(III) on MXRF is shown in 
Figure 17. The removal efficiency for As(III) concentration of 75 µg/L increased faster in 
10 min and remained constant until 240 min at 97.33%.  

Kinetic parameters and correlation coefficients for As(III) and As(V) adsorption by 
using MXRF600 were obtained by nonlinear regression as presented in Table 5, includ-
ing residual root mean square error (RMSE). The condition of As(III) and As(V) adsorp-
tion kinetics were pH of 3, dosage of 2 g/L, and initial concentration of As(III) and As(V) 
solution of 0.514 mg/L and 1.034 mg/L, respectively. The adsorption kinetic models that 
presented the best fit in the As(III) and As(V) adsorption process were the Power equa-
tion and Elovich chemisorption model. 

It can be observed that MXRF600 demonstrated greater adsorption of As(III) and 
As(V) than MXRF, implying a higher adsorption capacity. The final step of preparing 
MXRF600 was to produce a carbon xerogel with a carbonization process for removing 
the rest of the oxygen and hydrogen groups and improving a thermally stable 
nanostructure [49]. With the use of high temperature under an inert atmosphere, MXRF 
and MXRF600 demonstrated modifications in their chemical composition and texture 
properties, which can be identified with the analysis of XRD, FTIR, N2 physisorption, 
and SEM/EDAX, as discussed above. 

Figure 16. XRD diffractogram of Fe3O4-monolithic resorcinol-formaldehyde xerogels (MXRF) and
carbon xerogel (MXRF600) before and after adsorption of As(III).

2.3.2. Adsorption of Low and High Concentration of As(III) and As(V) with MXRF
and MXRF600

In the adsorption process, contact time is one parameter that is a time-dependent
process. Adsorption kinetic studies are important in water treatment. These studies can
describe the mechanism of the adsorption process and provide kinetic adsorption constants
and valuable information. The experimental data were analyzed with four kinetic models:
pseudo first-order, pseudo second-order, Elovich, and Power function.
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The effect of contact time on the adsorption process was varied from 10 to 1440 min
with different ranges of initial concentration for the low range of As(III) concentrations (25,
50, and 75 µg/L) and high range of concentration for As(III) and As(V) were 514 µg/L and
1034 µg/L, respectively. The adsorption kinetic of As(III) on MXRF is shown in Figure 17.
The removal efficiency for As(III) concentration of 75 µg/L increased faster in 10 min and
remained constant until 240 min at 97.33%.
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pH of 3, and dosage of 2 g/L.

Kinetic parameters and correlation coefficients for As(III) and As(V) adsorption by
using MXRF600 were obtained by nonlinear regression as presented in Table 5, including
residual root mean square error (RMSE). The condition of As(III) and As(V) adsorption
kinetics were pH of 3, dosage of 2 g/L, and initial concentration of As(III) and As(V)
solution of 0.514 mg/L and 1.034 mg/L, respectively. The adsorption kinetic models that
presented the best fit in the As(III) and As(V) adsorption process were the Power equation
and Elovich chemisorption model.

Table 5. Kinetic parameters and error indices of Pseudo First-Order, Pseudo Second-Order, Elovich,
and Power Equation for As(III) and As(V) removal using MXRF600.

Adsorption
Pseudo First-Order Pseudo Second-Order

qt (µg/g) k1 R2 RMSE qt (µg/g) k2 R2 RMSE

As(III) 129.68 0.153 0.374 9.900 134.03 0.002 0.575 8.161
As(V) 230.55 0.147 0.446 17.09 238.00 0.001 0.600 14.51

Adsorption
Elovich Equation Power Equation

α (µg/g min) β (g/µg) R2 RMSE a b R2 RMSE

As(III) 808,122.16 0.129 0.830 5.166 93.36 0.062 0.842 4.979
As(V) 2,288,305.88 0.075 0.807 10.07 166.34 0.061 0.822 9.681

It can be observed that MXRF600 demonstrated greater adsorption of As(III) and As(V)
than MXRF, implying a higher adsorption capacity. The final step of preparing MXRF600
was to produce a carbon xerogel with a carbonization process for removing the rest of the
oxygen and hydrogen groups and improving a thermally stable nanostructure [49]. With
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the use of high temperature under an inert atmosphere, MXRF and MXRF600 demonstrated
modifications in their chemical composition and texture properties, which can be identified
with the analysis of XRD, FTIR, N2 physisorption, and SEM/EDAX, as discussed above.

In this study, the experimental data were analyzed with nonlinear equations using
the Langmuir and Freundlich isotherm models to describe the adsorption of As(III) and
As(V) on MXRF600. The Langmuir isotherm model assumes that a monomolecular layer of
adsorbate molecules is formed on the adsorbent surface, with each molecule having the
same adsorption energy. The Freundlich isotherm model describes the heterogeneity of the
surface and the distribution of adsorption energies.

The conditions for the isotherm adsorption were as follows: adsorbent dose of 2 g/L,
initial solution pH of 3.0, and contact time of 24 h. The initial concentrations of the As(III)
and As(V) solutions were in the range of 0.05–1.27 mg/L and 0.12–3.0 mg/L, respectively.
The Langmuir and Freundlich model parameters and regression coefficients are shown in
Table 6. The experimental data for the adsorption of As(III) and As(V) on magnetic carbon
xerogel monoliths were fitted to the Langmuir models, and the maximum monolayer
adsorption capacity (qmax) of As(III) and As(V) were 694.3 and 1720.3 µg/g, respectively,
with R2 values (RSME) of As(III) and As(V) were 0.897 (3.865), and 0.901(9.220), respectively.

Table 6. Isotherm parameters and correlation coefficients for As(III) and As(V) adsorption on
MXRF600.

Adsorption
Langmuir Freundlich

qmax (µg/g) KL (L/µg) R2 RMSE KF ((µg/g)(L/µg)1/n) n R2 RMSE

As(III) 694.3 1.527 0.897 3.865 502.8 1.346 0.894 3.903
As(V) 1720.3 0.641 0.901 9.220 655.7 1.338 0.899 9.309

3. Conclusions

The ultrasonic-assisted synthesis of Fe3O4-monolithic resorcinol-formaldehyde xe-
rogels using direct and indirect sonication methods as an easier recovery of adsorbent
was shown to reduce the gelation time and improve the textural properties of the final
product. The optimal mixing time for magnetite dispersion in an RF aqueous solution was
determined to be 5 min using direct sonication and 60 min using indirect sonication, as
confirmed by SEM/EDX analysis. This study investigated the effect of different molar ratios
of R/C, M/R, R/W, and thermal treatment on RF xerogel. The results show MXRF600 was
synthesized by indirect sonication with R/F = 0.5, R/C = 100, R/W = 0.05, and M/R = 0.15
and enhanced adsorption capacity for As(III) and As(V) from groundwater due to the influ-
ence of sonication assistance and the carbonization process. However, the optimization of
the process parameters for the adsorption of magnetic carbon xerogels should be studied to
find out the optimum condition and improve their performance in removing contaminants
from the environment. The desorption process, regeneration efficiency, and the lifecycle
assessment of magnetic carbon xerogels are suggested for future research.

4. Materials and Methods
4.1. Reagents and Materials

Reagents required to perform the synthesis of Fe3O4 nanoparticles were prepared in
duplicate, including ferric chloride hexahydrate (FeCl3·6H2O, 98.9%, Fermont), ferrous
sulfate heptahydrate (FeSO4.7H2O, 99%, Meyer), and sodium hydroxide (NaOH, 97%,
Meyer. Nitrogen gas was purchased from Infra (Morelos, Mexico). Resorcinol (C6H4(OH)2,
98%, Chemistry Meyer), sodium carbonate (Na2CO3, J.T. Baker, 100%), formaldehyde
(HCHO, 37% methanol stabilized Solution, J.T. Baker), acetone ((CH3)2CO, 99.5%, J.T.
Baker,), and magnetite Fe3O4 (Lanxess, Bayferrox) were used for synthesis of magnetic
xerogels. All the solutions used in the synthesis and adsorption experiment were made
using ultrapure Type I water from the water purification system (WaterproBT, Labconco,
Kansas City, MO, USA).
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4.2. Synthesis of Adsorbent Materials

The gels were synthesized by polymerizing resorcinol (R, C6H6O2) and formaldehyde
(F, CH2O) in water (W), using sodium carbonate (C, Na2CO3) as a catalyst, following
the procedure described by [69]. The synthesis utilized molar proportions of R/C = 200,
R/F = 0.5, and R/W = 0.06 [70,71]. While keeping other factors constant, the effect of
loading of Fe (via direct and indirect sonication), Fe content (M/R = 0.03–0.2), water
(R/W = 0.04–0.06), and catalyst (R/C = 50–200) ratios were varied in the realization of the
monoliths. Then, they were evaluated for their impact on the physicochemical properties of
the resulting materials, as well as their ability to remove As(III) and As(V). Iron oxides (M)
used in this study were magnetite obtained from Lanxess, García, Nuevo León, Mexico.

The procedure for synthesizing the gels involved placing half of the deionized water
and the mass of R in a 100 mL beaker, which was then vigorously shaken to homogenize
the solution. The F solution was added, followed by the addition of C, and the mixture was
stirred magnetically until homogeneous. pH of RF solution was controlled between 5.5–6.0
to obtain high surface areas of resulting materials [52]. The resulting solution was then
placed in Pyrex® glass tubes, which were sealed with a stopper to prevent evaporation. The
temperature of the RF solution during reaction of an ultrasonic processor was controlled
to be in the range of 80 to 85 ◦C. To evaluate the optimal mixing time and the dispersion
of magnetite in the RF aqueous solution, three types of ultrasonic devices were applied.
First, a digital ultrasonic device (UP400St; Hielscher, Teltow, Germany) with an output of
400 watts, a frequency of 24 kHz, and a 1-inch diameter probe was used in the synthesis of
RFX, MC1-MC4, MX1-MX2, and MXRF. The device was equipped with automatic frequency
tuning and adjusting an amplitude ranging from 80% to 100%. An ultrasonic processor
(VCX 130; Sonics & Materials, Inc., Newton, CT, USA) with a power output of 130 watts,
a frequency of 20 kHz, and a 1

4 -inch diameter tip was applied in the synthesis of MX3-
MX7. A sonicator (Q700; Qsonica L.L.C, Newtown, CT, USA) with a power rating of
700 watts, a frequency of 20 kHz, and a 1/2-inch diameter probe was used in the synthesis
of MX8-MX11. All ultrasonic processors were used for homogenization, dispersal, and
deagglomeration of magnetite particles in the RF aqueous solution, using both direct and
indirect sonication methods before the gelation process.

4.2.1. Monolithic Resorcinol-Formaldehyde Xerogels Effect of Loading of Magnetite with
Direct and Indirect Sonication, and Modification of Catalyst

The study investigated the optimal mixing time and dispersion of magnetite in RF
aqueous solution, using both direct and indirect ultrasonication methods prior to the
gelation process. Magnetic xerogel monoliths (MCs) were prepared by indirect sonication
with molar ratios of R/F = 0.5, R/W = 0.06, and M/R = 0.01, and varying proportions of
resorcinol and catalyst. MC1, MC2, MC3, and MC4 were identified based on R/C ratios
of 50, 100, 150, and 200, respectively. The homogenization process was carried out using
ultrasonic-assisted synthesis, with digital ultrasonic equipment (UP400St; Hielscher, Teltow,
Germany), starting at room temperature. After 5 min of sonication, the temperature reached
85 ◦C. Magnetite (M) was added into the homogeneous RF aqueous solution and subjected
to indirect sonication for 60 min to disperse the magnetite particles before the gelation
process. Additionally, the variable factors studied in this work include loading of magnetite
with direct and indirect ultrasonication. Therefore, MX1 was prepared using the same
method as MC4 but with direct sonication to compare their properties and adsorption
capacity of arsenic in aqueous solution. Afterward, the materials were placed in the oven
at 80 ◦C for 5 days. In the case of MX2, the gelation and curing process was changed to be
left at room temperature for 5 days.
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4.2.2. Monolithic Resorcinol-Formaldehyde Xerogels with Direct and Indirect Sonication:
Effects of Power Output of Ultrasonic Processor, Varying the Molar Ratios of M/R
and R/W

In this study, monoliths of magnetic xerogels (MXs) were prepared by the sol-gel
polymerization of resorcinol with formaldehyde, using an alkaline catalyst and direct
sonication of magnetite to incorporate them into the xerogels. Different proportions of iron
oxides were modified to achieve the maximum adsorption capacity. Initially, batches of
magnetic xerogel monoliths (MX3-MX7) were prepared by varying the M/R ratio from 0.03
to 0.2. The molar ratios of R/F = 0.5, R/C = 200, and R/W = 0.04 were maintained for a
small portion of the batches. The preparation process involved the use of an ultrasonic
processor VCX 130 with a power output of 130 watts and a frequency of 20 kHz.

4.2.3. Monolithic Resorcinol-Formaldehyde Carbon Xerogels by Indirect Sonication

The monolithic resorcinol-formaldehyde xerogels (MXRF) were synthesized in a larger
batch using UP400St equipment with the relations of molar ratio of R/F = 0.5, R/C = 100,
R/W = 0.05, and M/R = 0.15. Then, the gels were cured in a conventional oven for three
days at 80 ◦C. The gels were taken off the glass tubes and allowed to cool to room tem-
perature. After that, the gels were cut using a diamond disk into pellet forms of 5 mm in
diameter. The materials were then exchanged with acetone, sealed in a jar with the lid
tightly closed, and wrapped with paraffin film. The jar was placed in a shaking water
bath (BS-11; Lab Companion, Daejeon, Republic of Korea) at 150 rpm for two days, with
fresh acetone being added daily. Subsequently, the gels were dried for three days in a
conventional oven at 80 ◦C.

MXRF were then pyrolyzed using a tube furnace (STF55346C-1; Lindberg/Blue M,
Asheville, NC, USA) with the following conditions: temperature of 600 ◦C, heating ramp
of 3 ◦C/min, time of 6 h, and nitrogen flow of 100 mL/min. The resulting product was
monolithic resorcinol-formaldehyde carbon xerogels, which were labelled as MXRF600.

4.3. Characterization through Analytical Techniques

To assess the physicochemical characteristics of the synthesized materials, the follow-
ing techniques were employed:

X-ray diffraction (XRD) analysis was used to identify the main constituents and
mineralogical phases of the synthesized materials. The analysis was performed using
an X-ray diffractometer on MCs, MXs, and MX3-MX11 samples (XPert PW3040; Philips,
Almelo, The Netherlands), and on MXRF and MXRF600 (D8 ADVANCE; Bruker, Karisruhe,
Germany). Sample preparation involved sieving the sample through a 200-mesh sieve,
resulting in an average particle size of 74 µm. A high-temperature chamber attached to
the X-ray diffractometer was used to measure diffraction patterns up to 900 ◦C. Cu(Kα)
radiation was applied in a 2θ range from 10◦ to 80◦.

Fourier transform infrared spectroscopy (FTIR) was employed to investigate the
surface functional groups of the adsorbents before and after arsenic adsorption, in order
to understand the mechanism of ion adsorption. FTIR analysis was conducted using
a Shimadzu IRAffinity-1S instrument (Shimadzu Corp., Kyoto, Japan) on dry powder
samples. Infrared spectra were measured by connecting to the attenuated total reflection
(ATR) contained in the disk of crystal (type IIIa monocrystalline diamond). Before the
analysis, the samples were sieved through a standard test sieve No. 142 to obtain a uniform
particle size of 106 µm. Subsequently, the powder samples were dried in an oven at 60 ◦C for
15 h under dry air to avoid interference from water vapor adsorption in the infrared region,
which could affect the analysis result. After installing the ATR with infrared spectroscopy,
the solid samples were directly added to the crystal plate and pressed for surface analysis.
All spectra were recorded between the wavenumbers of 400–4000 cm−1, with 45 scans
per sample.

The surface morphology, pore structure, and element analysis of the magnetic xero-
gels were analyzed using a scanning electron microscope (SEM). MCs, MXs, MXRF, and
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MXRF600 were analyzed using a field emission scanning electron microscope (FE-SEM)
(7800F Prime; JEOL, Tokyo, Japan) after gold coating. MX3-MX11 were analyzed using a
scanning electron microscope (SEM) (JSM-IT300; JEOL, Tokyo, Japan). The samples were
coated with graphite before the analysis. The acceleration voltages used were between
5 and 20 kV. The textural properties of magnetic xerogels, and magnetic carbon xerogels
were characterized by physical adsorption of N2 at 77 K, using physisorption apparatus
(ASAP 2020; Micromeritics, Norcross, GA, USA and NOVA touch 2LX; Quantachrome
Instruments, Boynton Beach, FL, USA). The samples were dried at 110 ◦C for 15 h prior to
N2 physisorption analysis.

Particle Size Distribution (PSD) was determined using Dynamic Light Scattering
Analyzers (PMX 500; Microtrac, Meerbuch, Germany), and the data report was generated
by FLEX software version 11.1.0.1

The determination of the point of zero charge (pHpzc) and the isoelectric point (IEP)
was conducted following the methods described by [72]. The pH solutions were prepared
by adjusting deionized water to pH values of 2, 4, 6, 8, 10, and 12 using 0.1 M HCl or
0.1 M NaOH solutions. The pH was measured using a multi-parameter device (Orion Star
A211; Thermo Scientific, Beverly, MA, USA). A zeta potential analyzer (PMX 500; Microtrac,
Meerbuch, Germany) was employed to measure the zeta potential, with pH variations
ranging from 2 to 11 for the determination of the isoelectric point (IEP).

The amount of Fe in the magnetic xerogel monoliths was determined by Inductively
Coupled Plasma (ICP) Optical Emission Spectrometer (OES) (Optima 8300; Perkin Elmer,
Shelton, CT, USA).

4.4. Batch Adsorption Experiment

Groundwater used in experimental study was obtained from a well approximately
70 m deep located at Jiutepec, Morelos Mexico. Physical and chemical characteristics of
groundwater sample used in this study were analyzed. pH (7.6), total dissolved solids
(TDS, 172.6 mg/L), turbidity (1.53 NTU), chlorides (Cl−, 10.1 mg/L), iron (Fe, 0.03 mg/L),
fluoride (F−, 0.25 mg/L), manganese (Mn, 0.001 mg/L), nitrate (NO−

3 , 4.4 mg/L), sulphate
(SO2−

4 , 37 mg/L), and phosphate (PO3−
4 , 0.82 mg/L) were all in the limitation of Mexican

stand NOM-127-SSA1-2021 [4]. Since there was no arsenic in the selected water, arsenic
was added to the stock solution prepared for adsorption tests on synthetic samples. This
water was used to prepare the corresponding arsenic solution to the required concentra-
tions by adding sodium arsenite (NaAsO2, Sigma-Aldrich) and sodium arsenate dibasic
heptahydrate (HAsNa2O4·7H2O, Sigma-Aldrich) for studying As(III) and As(V) adsorption
processes, respectively.

The batch adsorption experiment of As(V) using MCs and MXs as adsorbents was
conducted to evaluate their adsorption capacities. The effect of solution pH (2–7) on As(V)
adsorption was investigated with an initial concentration of 100 µg/L, a dose of 1 g/L,
150 rpm, a contact time of 6 h, and a temperature of 26.2 ± 1 ◦C.

Batch adsorption of As(V) using MX4-MX7 and MX8-MX11 was studied with direct
sonication at low power output, and indirect sonication at high power output, respectively.
The following conditions were used: an initial concentration of As(V) of 200 µg/L, pH of 3,
a dose of 2 g/L, 150 rpm, a contact time of 6 h, and a temperature of 26.3 ± 1 ◦C.

XRF600 was carbonized into pellets and used in this form to test kinetics and isotherms.
The kinetic study adsorption using MXRF with As(III) concentrations of 0.025, 0.05, and
0.075 mg/L was conducted at a pH of 3, a dosage of 2 g/L, 150 rpm, a temperature of
26.5 ± 1 ◦C, and contact time ranging from 10 to 1800 min. The adsorption kinetics of
As(III) and As(V) using MXRF600 were carried out under a pH of 3, a dosage of 2 g/L,
and initial concentration of As(III) and As(V) solution of 0.514 mg/L and 1.034 mg/L,
respectively, with a contact time ranging from 10 to 1440 min.

The conditions for the isotherm adsorption using MXRF600 were as follows: an
adsorbent dose of 2 g/L, an initial solution pH of 3.0, 150 rpm, a temperature of 26.4 ± 1 ◦C,
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and a contact time of 24 h. The initial concentrations of the As(III) and As(V) solutions
were in the range of 0.05 to 1.27 mg/L and 0.12 to 3.0 mg/L, respectively.

The importance of kinetic and equilibrium models of adsorption is described in the
mechanisms and dynamics of the adsorption system of adsorbents. Adsorption kinetic
models that control the adsorption process of arsenic are related to the adsorbate uptake on
the adsorbent with chemisorption. Therefore, the Pseudo First-Order (PFO), Pseudo Second-
Order (PSO), and Elovich and Power equations were applied to perform the experimental
data in this study. The assumptions of the PFO model are: sorption at localized sites,
the energy of adsorption is independent of surface coverage, a saturated monolayer of
adsorbates, and the concentration of the adsorbate is constant [73]. The assumptions of
the PSO model are similar to those of the PFO model. The PSO kinetic equation typically
describes metal ion uptake on activated carbons well, as well as the adsorption of dyes,
herbicides, oils, and organic compounds from aqueous solutions [73,74]. The Elovich
equation is used to describe the kinetics of a heterogeneous diffusion process [74]. It is
a semi-empirical equation that is based on the assumption that the rate of diffusion is
controlled by the rate of adsorption onto active sites on the heterogeneity of the surface of
the adsorbent.

The Langmuir and Freundlich isotherm models are the most commonly used equilib-
rium models for determining the relative concentrations of the solute adsorbed onto the
solid in the solution [75]. The Langmuir isotherm assumes that a solute is adsorbed onto
a homogeneous surface with a finite number of similar active sites, forming a monolayer.
The Freundlich isotherm is an empirical model that describes multilayer adsorption.

The equations for kinetic and equilibrium models of adsorption used in this study are
listed in Table 7.

Table 7. Equation of kinetic and isotherm models of adsorption.

Kinetic Models Non-Linear Equations References

Pseudo First-Order qt = qe(1 − exp(−k1 t)) [74,75]

Pseudo Second-Order qt =
qe

2 k2 t
1+k2 qe t [74,75]

Elovich Equation qt =
1
β ln(1 + αβt) [76]

Power Equation qt = atb [76]

Isotherm Models Non-Linear Equations References

Langmuir qe =
KLqmCe

(1+KLCe)
[74]

Freundlich qe= KFCe
1
n [74]

qt and qe are the amount of adsorbate adsorbed at time t (mg/g) and the equilibrium adsorption capacity (mg/g),
respectively. k1 is the PFO rate constant (min−1), and k2 is the PSO rate constant (min−1), respectively. t is the
contact time (min). α is the initial adsorption rate (mg/g min), β is related to surface coverage (g/mg), and a
and b are constants. Ce is the equilibrium concentration of adsorbate in solution (mg/L). qm is the maximum
adsorption capacity (mg/g). KL is the Langmuir constant that is related to the adsorption energy (L/mg). KF and
n are Freundlich constants that measure the adsorption capacity ((mg/g)(L/mg)1/n) and intensity, respectively.

The arsenic adsorption process was carried out in a batch reactor system. The effect
of contact time and initial concentration of arsenic adsorption was investigated on MXRF
and MXRF600. Different kinetic and isotherm adsorption models were analyzed using
nonlinear regression analysis with the statistical software R v3.5.

4.5. Determination of As(III) and As(V)

The determination of arsenic species was performed using hydride generation atomic
absorption spectroscopy (HG-AAS) (Varian; SpectrAA220, Mulgrave, VIC, Australia). To
analyze As (III) at trace concentrations, AAS must be combined with the hydride generation
(HG) technique with citric-citrate buffer [77].
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A total of 10 mL of the samples were adjusted to pH 2. In the case of samples of
As(V), 1 mL of HCl and 1 mL of potassium iodide and ascorbic acid were added. This was
conducted in order to reduce As(V) to As(III). On the other hand, the arsenic (NaAsO2)
calibration curve was prepared. First, a solution was prepared with 1 mL of arsenic standard
and 1 mL of HNO3. This solution was then diluted to a concentration of 1 mg/L. From this,
the solutions of 0.001, 0.002, 0.004, 0.006, and 0.0075 mg/L were made in 100 mL flasks.
A small amount of deionized water was added to each flask, along with 0.1, 0.2, 0.4, 0.6,
and 0.75 mL of stock solution, 6 mL of HNO3, 10 mL of KI, and 4 mL of HCl. Then, the
solutions were calibrated with deionized water. Finally, the solutions were analyzed in a
HG-AAS at a wavelength of 193.7 nm.
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