One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Bonding Mechanism of TGP_X Aerogels
2.1.1. Fourier-Transform Infrared (FTIR) Analysis of the TGP_X Aerogels
2.1.2. X-ray Photoelectron Spectroscopy (XPS) Analysis of the TGP_X Aerogels
2.2. Physical Property and Textural Analysis of the TGP_X Aerogels
2.3. Morphological Analysis of the TGP_X Aerogels
2.4. Mechanical Property Analysis of the TGP_X Aerogels
2.5. The Thermal Stability and Performance of the TGP_X Aerogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the TGP_X Aerogels
4.3. Characterization of the TGP_X Aerogels
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorcheh, A.S.; Abbasi, M. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J. Non-Cryst. Solids 2021, 553, 120517. [Google Scholar] [CrossRef]
- Parale, V.G.; Han, W.; Jung, H.-N.; Lee, K.-Y.; Park, H.-H. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area. Solid State Sci. 2018, 75, 63–70. [Google Scholar] [CrossRef]
- Neugebauer, A.; Chen, K.; Tang, A.; Allgeier, A.; Glicksman, L.R.; Gibson, L.J. Thermal conductivity and characterization of compacted, granular silica aerogel. Energy Build. 2014, 79, 47–57. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, Y.; Feng, J.; Zhang, S.; Peng, F.; Xiao, Y.; Li, L.; Feng, J. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater. Des. 2020, 191, 108640. [Google Scholar] [CrossRef]
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Mazrouei-Sebdani, Z.; Begum, H.; Schoenwald, S.; Horoshenkov, K.V.; Malfait, W.J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids 2021, 562, 120770. [Google Scholar] [CrossRef]
- Amonette, J.E.; Matyáš, J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous Mater. 2017, 250, 100–119. [Google Scholar] [CrossRef]
- Bheekhun, N.; Talib, A.; Rahim, A.; Hassan, M.R. Aerogels in aerospace: An overview. Adv. Mater. Sci. Eng. 2013, 2013, 406065. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Liao, K.; Wang, D.; Lu, Q.; Zhou, C.; He, P.; Ran, R.; Zhou, W.; Jin, W.; Shao, Z. Water-proof, electrolyte-nonvolatile, and flexible Li-air batteries via O2-permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Mater. 2020, 27, 297–306. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Kehrle, J.; Purkait, T.K.; Kaiser, S.; Raftopoulos, K.N.; Winnacker, M.; Ludwig, T.; Aghajamali, M.; Hanzlik, M.; Rodewald, K.; Helbich, T. Superhydrophobic silicon nanocrystal–silica aerogel hybrid materials: Synthesis, properties, and sensing application. Langmuir 2018, 34, 4888–4896. [Google Scholar] [CrossRef] [PubMed]
- Maleki, H.; Durães, L.; Portugal, A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater. 2014, 197, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Meti, P.; Mahadik, D.; Lee, K.-Y.; Wang, Q.; Kanamori, K.; Gong, Y.-D.; Park, H.-H. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022, 222, 111091. [Google Scholar] [CrossRef]
- Lin, J.; Li, G.; Liu, W.; Qiu, R.; Wei, H.; Zong, K.; Cai, X. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications. J. Mater. Sci. 2021, 56, 10812–10833. [Google Scholar] [CrossRef]
- Omranpour, H.; Motahari, S. Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature. J. Non-Cryst. Solids 2013, 379, 7–11. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, X.; Song, H.; Guo, K.; Hu, Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015, 39, 7832–7838. [Google Scholar] [CrossRef]
- Jiang, L.; Kato, K.; Mayumi, K.; Yokoyama, H.; Ito, K. One-pot synthesis and characterization of polyrotaxane–silica hybrid aerogel. ACS Macro Lett. 2017, 6, 281–286. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Gong, L.; Zhang, H. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 84, 316–325. [Google Scholar] [CrossRef]
- Hung, W.-C.; Horng, R.S.; Shia, R.-E. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites. J. Sol-Gel Sci. Technol. 2021, 97, 414–421. [Google Scholar] [CrossRef]
- Zu, G.; Shimizu, T.; Kanamori, K.; Zhu, Y.; Maeno, A.; Kaji, H.; Shen, J.; Nakanishi, K. Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 2018, 12, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Jana, S.C.; Lama, B.; Espe, M.P. Self-crosslinkable poly (urethane urea)-reinforced silica aerogels. RSC Adv. 2015, 5, 71551–71558. [Google Scholar] [CrossRef]
- Meador, M.A.B.; Weber, A.S.; Hindi, A.; Naumenko, M.; McCorkle, L.; Quade, D.; Vivod, S.L.; Gould, G.L.; White, S.; Deshpande, K. Structure-property relationships in porous 3D nanostructures: Epoxy-cross-linked silica aerogels produced using ethanol as the solvent. ACS Appl. Mater. Interfaces 2009, 1, 894–906. [Google Scholar] [CrossRef]
- Domènech, B.; Mata, I.; Molins, E. Tuning the structure and the mechanical properties of epoxy–silica sol–gel hybrid materials. RSC Adv. 2016, 6, 10736–10742. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jana, S.C. Synergistic hybrid organic-inorganic aerogels. ACS Appl. Mater. Interfaces 2013, 5, 6423–6429. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mark, J. Polyimide-ceramic hybrid composites by the sol-gel route. Chem. Mater. 2001, 13, 3320–3330. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; Portugal, A. Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J. Phys. Chem. C 2015, 119, 7689–7703. [Google Scholar] [CrossRef]
- Zu, G.; Kanamori, K.; Shimizu, T.; Zhu, Y.; Maeno, A.; Kaji, H.; Nakanishi, K.; Shen, J. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem. Mater. 2018, 30, 2759–2770. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, H.; Ghanem, A.; El-Rassy, H. Mercury removal from aqueous solutions using silica, polyacrylamide and hybrid silica–polyacrylamide aerogels. Chem. Eng. J. 2010, 159, 107–115. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Zhang, Z.; Zhao, Y.; Wang, H. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates. J. Colloid Interface Sci. 2020, 573, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Mahon, R.; Balogun, Y.; Oluyemi, G.; Njuguna, J. Swelling performance of sodium polyacrylate and poly (acrylamide-co-acrylic acid) potassium salt. SN Appl. Sci. 2020, 2, 117. [Google Scholar] [CrossRef] [Green Version]
- Linhares, T.; de Amorim, M.T.P.; Durães, L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J. Mater. Chem. A 2019, 7, 22768–22802. [Google Scholar] [CrossRef]
- Zhang, S.-N.; Pang, H.-Q.; Fan, T.-H.; Ye, Q.; Cai, Q.-L.; Wu, X. Thermal Insulation Performance of SiC-Doped Silica Aerogels under Large Temperature and Air Pressure Differences. Gels 2022, 8, 320. [Google Scholar] [CrossRef]
- Yan, Z.; Ma, Z.; Deng, J.; Luo, G. Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates. Chem. Eng. Sci. 2021, 242, 116746. [Google Scholar] [CrossRef]
- Dai, X.; Xu, X.; Yu, X.; Sun, X.; Pan, J.; Zhang, X.; Min, J. Cationic core/shell polysiloxane acrylate emulsion: Synthesis, film morphology, and performance on cotton pigment coloration. Cellulose 2022, 29, 2093–2106. [Google Scholar] [CrossRef]
- Zong, S.; Wei, W.; Jiang, Z.; Yan, Z.; Zhu, J.; Xie, J. Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: Skeleton strength and surface modification. RSC Adv. 2015, 5, 55579–55587. [Google Scholar] [CrossRef]
- Yu, H.; Liang, X.; Wang, J.; Wang, M.; Yang, S. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method. Solid State Sci. 2015, 48, 155–162. [Google Scholar] [CrossRef]
- Meti, P.; Wang, Q.; Gong, Y.-D.; Mahadik, D.; Park, H.-H. Sorbitol cross-linked silica aerogels with improved textural and mechanical properties. Ceram. Int. 2022, 48, 19198–19205. [Google Scholar] [CrossRef]
- Smitha, V.S.; Azeez, P.M.A.; Warrier, K.G.; Nair, B.N.; Hareesh, U.N.S. Transparent and Hydrophobic MTMS/GPTMS Hybrid Aerogel Monoliths and Coatings by Sol-Gel Method: A Viable Remedy for Oil-Spill Cleanup. ChemistrySelect 2018, 3, 2989–2997. [Google Scholar] [CrossRef]
- Feng, L.; Yang, H.; Dong, X.; Lei, H.; Chen, D. pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J. Appl. Polym. Sci. 2018, 135, 45886. [Google Scholar] [CrossRef]
- Prasad, T.; Halder, S.; Dhar, S.S. Imidazole-supported silica one-pot processed nanoparticles to enhance toughness of epoxy based nanocomposites. Mater. Chem. Phys. 2019, 231, 75–86. [Google Scholar] [CrossRef]
- Karamikamkar, S.; Abidli, A.; Behzadfar, E.; Rezaei, S.; Naguib, H.E.; Park, C.B. The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Adv. 2019, 9, 11503–11520. [Google Scholar] [CrossRef]
- Choi, H.; Kim, T.; Kim, T.; Moon, S.; Yoo, S.; Parale, V.G.; Dhavale, R.P.; Kang, K.; Sohn, H.; Park, H.-H. Ultralow dielectric cross-linked silica aerogel nanocomposite films for interconnect technology. Appl. Mater. Today 2022, 28, 101536. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.; Jiang, Y.; Zhang, S.; Li, L.; Feng, J. Facile fabrication of hydrophobic polyvinylpolysilsesquioxane aerogels with improved optical properties. J. Sol-Gel Sci. Technol. 2020, 94, 88–97. [Google Scholar] [CrossRef]
- Karamikamkar, S.; Fashandi, M.; Naguib, H.E.; Park, C.B. In situ interface design in graphene-embedded polymeric silica aerogel with organic/inorganic hybridization. ACS Appl. Mater. Interfaces 2020, 12, 26635–26648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ji, X.; Yin, Y.; Wang, C. Temperature induced color changing cotton fabricated via grafting epoxy modified thermochromic capsules. Cellulose 2019, 26, 5745–5756. [Google Scholar] [CrossRef]
- Choi, H.; Parale, V.G.; Kim, T.; Choi, Y.-S.; Tae, J.; Park, H.-H. Structural and mechanical properties of hybrid silica aerogel formed using triethoxy (1-phenylethenyl) silane. Microporous Mesoporous Mater. 2020, 298, 110092. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Lee, K.-Y.; Phadtare, V.D.; Dhavale, R.P.; Park, H.-H. Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity. Ceram. Int. 2020, 46, 4939–4946. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, J.; Guo, Q.; Yang, J. 3D-printed highly porous and reusable chitosan monoliths for Cu (II) removal. J. Mater. Sci. 2019, 54, 6728–6741. [Google Scholar] [CrossRef]
- Rao, A.V.; Bangi, U.K.; Kavale, M.S.; Imai, H.; Hirashima, H. Reduction in the processing time of doped sodium silicate based ambient pressure dried aerogels using shaker. Microporous Mesoporous Mater. 2010, 134, 93–99. [Google Scholar] [CrossRef]
- Yim, T.-J.; Kim, S.Y.; Yoo, K.-P. Fabrication and thermophysical characterization of nano-porous silica-polyurethane hybrid aerogel by sol-gel processing and supercritical solvent drying technique. Korean J. Chem. Eng. 2002, 19, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ghica, M.E.; Almeida, C.M.; Fonseca, M.; Portugal, A.; Durães, L. Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems. Polymers 2020, 12, 1278. [Google Scholar] [CrossRef] [PubMed]
- Merillas, B.; Lamy-Mendes, A.; Villafañe, F.; Durães, L.; Rodríguez-Pérez, M. Silica-Based Aerogel Composites Reinforced with Reticulated Polyurethane Foams: Thermal and Mechanical Properties. Gels 2022, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, F.; Fabrizio, E.F.; McCorkle, L.; Scheiman, D.A.; Dass, A.; Palczer, A.; Meador, M.B.; Johnston, J.C.; Leventis, N. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J. Mater. Chem. 2006, 16, 3046–3054. [Google Scholar] [CrossRef]
- Jung, H.-N.-R.; Lee, Y.K.; Parale, V.G.; Cho, H.H.; Mahadik, D.B.; Park, H.-H. Hydrophobic silica composite aerogels using poly (methyl methacrylate) by rapid supercritical extraction process. J. Sol-Gel Sci. Technol. 2017, 83, 692–697. [Google Scholar] [CrossRef]
- Ngo, I.-L.; Jeon, S.; Byon, C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int. J. Heat Mass Transf. 2016, 98, 219–226. [Google Scholar] [CrossRef]
- Zendehdel, M.; Barati, A.; Alikhani, H. Preparation and characterization of poly (acryl amide-coacrylic acid)/nay and Clinoptilolite nanocomposites with improved methylene blue dye removal behavior from aqueous solution. e-Polymers 2011, 11, 002. [Google Scholar] [CrossRef] [Green Version]
- Katti, A.; Shimpi, N.; Roy, S.; Lu, H.; Fabrizio, E.F.; Dass, A.; Capadona, L.A.; Leventis, N. Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem. Mater. 2006, 18, 285–296. [Google Scholar] [CrossRef]
- Kim, M.; Eo, K.; Lim, H.J.; Kwon, Y.K. Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres. Compos. Sci. Technol. 2018, 165, 355–361. [Google Scholar] [CrossRef]
- Guohui, Z.; Amala, D.; Abdel-Monem, M.R.; Jeffery, T.; Joseph, A.C.; Chariklia, S.L.; Eve, F.F.; Faysal, I.; Plousia, V.; Daniel, A.S.; et al. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. [Google Scholar]
Aerogel | Density (g/cm3) | Porosity (%) | Thermal Conductivity (mW/mK) | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|---|
TGP_0 | 0.084 | 95.57 | 22.4 | 608.6 | 1.01 | 6.65 |
TGP_2 | 0.087 | 95.42 | 22.8 | 552.4 | 0.89 | 6.44 |
TGP_4 | 0.096 | 94.94 | 23.9 | 493.9 | 0.82 | 6.65 |
TGP_6 | 0.10 | 94.73 | 24.5 | 456.8 | 0.75 | 6.60 |
TGP_8 | 0.12 | 93.68 | 30.6 | 369.0 | 0.60 | 7.38 |
Aerogel | Breaking Load at 25% Strain (MPa) | Compressive Modulus (MPa) |
---|---|---|
TGP_0 | 0.08 | 0.4 |
TGP_2 | 0.19 | 0.8 |
TGP_4 | 0.36 | 1.4 |
TGP_6 | 0.69 | 2.7 |
TGP_8 | 0.75 | 2.9 |
Hybrid Silica Aerogels | Reinforcing Method | Density (g/cm3) | Specific Surface Area (m2/g) | Thermal Conductivity (mW/mK) | Thermal Stability (°C) | Compression Modulus (MPa) | Ref. |
---|---|---|---|---|---|---|---|
TMOS/polyurea | Post-gelation washing | 0.47 | 261 | 41 | 300 | 129 | [58] |
TEOS/PTPES | Radical polymerization | 0.024–0.096 | 420.5–975.7 | - | 190 | 0.03–0.062 | [47] |
TMOS/BTESB/BTMSH/TMSPM | One-pot synthesis | 0.13–0.39 | 7.0–719.0 | 39–93 | 392–518 | 0.0017–0.0067 | [13] |
TEOS/APTES/BTMSH/BPGE/RGE | Post-gelation washing | 0.05–0.35 | 99–375 | - | - | 1.4–97.8 | [23] |
TEOS/polyimide | Chemical imidization | 0.09–1.21 | 210.1–272.1 | 23–24 | 527.9 | 0.046–0.112 | [59] |
TMOS/polyacrylate | One-pot synthesis | 0.24–0.52 | 53–155.1 | 65–138 | - | 0.786–2.65 | [27] |
TEOS/polyureathane | One-pot synthesis | 0.79–3.91 | 760.2–912.8 | 33.2–71.3 | - | 0.13–0.45 | [60] |
TMOS/polyurea | Post-gelation washing | 0.18–0.61 | 140–969 | - | 350 | 0.01–4 | [53] |
PACA-silica aerogel | One-pot synthesis | 0.084–0.12 | 369.0–608.6 | 22.4–30.6 | 343 | 0.4–2.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ransing, A.A.; Dhavale, R.P.; Parale, V.G.; Bangi, U.K.H.; Choi, H.; Lee, W.; Kim, J.; Wang, Q.; Phadtare, V.D.; Kim, T.; et al. One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties. Gels 2023, 9, 651. https://doi.org/10.3390/gels9080651
Ransing AA, Dhavale RP, Parale VG, Bangi UKH, Choi H, Lee W, Kim J, Wang Q, Phadtare VD, Kim T, et al. One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties. Gels. 2023; 9(8):651. https://doi.org/10.3390/gels9080651
Chicago/Turabian StyleRansing, Akshay A., Rushikesh P. Dhavale, Vinayak G. Parale, Uzma K. H. Bangi, Haryeong Choi, Wonjun Lee, Jiseung Kim, Qi Wang, Varsha D. Phadtare, Taehee Kim, and et al. 2023. "One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties" Gels 9, no. 8: 651. https://doi.org/10.3390/gels9080651
APA StyleRansing, A. A., Dhavale, R. P., Parale, V. G., Bangi, U. K. H., Choi, H., Lee, W., Kim, J., Wang, Q., Phadtare, V. D., Kim, T., Jung, W. K., & Park, H. -H. (2023). One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties. Gels, 9(8), 651. https://doi.org/10.3390/gels9080651