Water-Content-Dependent Switching of the Bending Behavior of Photoresponsive Hydrogels Composed of Hydrophilic Acrylamide-Based Main Chains and Hydrophobic Azobenzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Moisture-Sensitive Photoresponsive Hydrogels
2.2. Photoresponsiveness of Hydrogels in Different Moisture Environments on the Molecular Scale
2.3. Photoresponsiveness of Hydrogels in Different Moisture Environments at the Macro Scale
2.4. Structural Studies of Photoresponsive Hydrogels by X-ray Scattering Measurements
2.5. Proposed Bending Mechanism in Response to Water Content
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.3. Preparation of PR-Azo
4.4. Preparation of PACMO-Azo(sol)
4.5. Preparation of PDMAA-Azo(sol)
4.6. Preparation of PDEAA-Azo(sol)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, M.; Mochizuki, A. Effect of Water Structure on Blood Compatibility—Thermal Analysis of Water in Poly(Meth)Acrylate. J. Biomed. Mater. Res. Part A 2004, 68, 684–695. [Google Scholar] [CrossRef]
- Fujii, Y.; Nagamura, T.; Tanaka, K. Relaxation Behavior of Poly(Methyl Methacrylate) at a Water Interface. J. Phys. Chem. B 2010, 114, 3457–3460. [Google Scholar] [CrossRef]
- Horinouchi, A.; Atarashi, H.; Fujii, Y.; Tanaka, K. Dynamics of Water-Induced Surface Reorganization in Poly(Methyl Methacrylate) Films. Macromolecules 2012, 45, 4638–4642. [Google Scholar] [CrossRef]
- Okano, N.; Osaki, M.; Ikura, R.; Takashima, Y.; Yamaguchi, H.; Harada, A. Bulk Copolymerization of Host–Guest Monomers with Liquid-Type Acrylamide Monomers for Supramolecular Materials Applications. ACS Appl. Polym. Mater. 2020, 2, 1553–1560. [Google Scholar] [CrossRef]
- Park, J.; Tamura, H.; Nakahata, M.; Kobayashi, Y.; Yamaguchi, H.; Nakajima, K.; Takahashi, H.; Takata, S.; Kayano, K.; Harada, A.; et al. Self-Healable and Conductive Hydrogel Coatings Based on Host-Guest Complexation between β-Cyclodextrin and Adamantane. Chem. Lett. 2023, 52, 172–176. [Google Scholar] [CrossRef]
- Itagaki, H.; Kurokawa, T.; Furukawa, H.; Nakajima, T.; Katsumoto, Y.; Gong, J.P. Water-Induced Brittle-Ductile Transition of Double Network Hydrogels. Macromolecules 2010, 43, 9495–9500. [Google Scholar] [CrossRef]
- Liu, J.; Scherman, O.A. Cucurbit[n]Uril Supramolecular Hydrogel Networks as Tough and Healable Adhesives. Adv. Funct. Mater. 2018, 28, 1800848. [Google Scholar] [CrossRef]
- Zhang, X.N.; Wang, Y.J.; Sun, S.; Hou, L.; Wu, P.; Wu, Z.L.; Zheng, Q. A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules 2018, 51, 8136–8146. [Google Scholar] [CrossRef]
- Cui, K.; Ye, Y.N.; Sun, T.L.; Chen, L.; Li, X.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; Gong, J.P. Effect of Structure Heterogeneity on Mechanical Performance of Physical Polyampholytes Hydrogels. Macromolecules 2019, 52, 7369–7378. [Google Scholar] [CrossRef]
- Suarez-Martinez, P.C.; Batys, P.; Sammalkorpi, M.; Lutkenhaus, J.L. Time-Temperature and Time-Water Superposition Principles Applied to Poly(Allylamine)/Poly(Acrylic Acid) Complexes. Macromolecules 2019, 52, 3066–3074. [Google Scholar] [CrossRef]
- Osaki, M.; Yonei, S.; Ueda, C.; Ikura, R.; Park, J.; Yamaguchi, H.; Harada, A.; Tanaka, M.; Takashima, Y. Mechanical Properties with Respect to Water Content of Host-Guest Hydrogels. Macromolecules 2021, 54, 8067–8076. [Google Scholar] [CrossRef]
- Ueda, C.; Park, J.; Hirose, K.; Konishi, S.; Ikemoto, Y.; Osaki, M.; Yamaguchi, H.; Harada, A.; Tanaka, M.; Watanabe, G.; et al. Behavior of Supramolecular Cross-Links Formed by Host-Guest Interactions in Hydrogels Responding to Water Contents. Supramol. Mater. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Whitaker, D.J.; Park, J.; Ueda, C.; Wu, G.; Harada, A.; Matsuba, G.; Takashima, Y.; Scherman, O.A. Water Content and Guest Size Dictate the Mechanical Properties of Cyclodextrin Mediated Hydrogels. Polym. Chem. 2022, 13, 5127–5134. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Patel, J.B.; Tiwana, P.; Seidler, N.; Morse, G.E.; Lozman, O.R.; Johnston, M.B.; Herz, L.M. Effect of Ultraviolet Radiation on Organic Photovoltaic Materials and Devices. ACS Appl. Mater. Interfaces 2019, 11, 21543–21551. [Google Scholar] [CrossRef]
- Sørensen, L.; Groven, A.S.; Hovsbakken, I.A.; Del Puerto, O.; Krause, D.F.; Sarno, A.; Booth, A.M. UV Degradation of Natural and Synthetic Microfibers Causes Fragmentation and Release of Polymer Degradation Products and Chemical Additives. Sci. Total Environ. 2021, 755, 143170. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, R.; Zharnikov, M. The Effect of Ultraviolet Light on Biorepulsive Hydrogel Poly(Ethylene Glycol) Films. ACS Appl. Polym. Mater. 2021, 3, 3446–3454. [Google Scholar] [CrossRef]
- Yu, Y.; Nakano, M.; Ikeda, T. Directed Bending of a Polymer Film by Light. Nature 2003, 425, 145. [Google Scholar] [CrossRef]
- Barrett, C.J.; Mamiya, J.; Yager, K.G.; Ikeda, T. Photo-Mechanical Effects in Azobenzene-Containing Soft Materials. Soft Matter 2007, 3, 1249–1261. [Google Scholar] [CrossRef]
- Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion-Contraction of Photoresponsive Artificial Muscle Regulated by Host-Guest Interactions. Nat. Commun. 2012, 3, 1270. [Google Scholar] [CrossRef]
- Iwaso, K.; Takashima, Y.; Harada, A. Fast Response Dry-Type Artificial Molecular Muscles with [C2]Daisy Chains. Nat. Chem. 2016, 8, 625–632. [Google Scholar] [CrossRef]
- Hada, M.; Yamaguchi, D.; Ishikawa, T.; Sawa, T.; Tsuruta, K.; Ishikawa, K.; Koshihara, S.Y.; Hayashi, Y.; Kato, T. Ultrafast Isomerization-Induced Cooperative Motions to Higher Molecular Orientation in Smectic Liquid-Crystalline Azobenzene Molecules. Nat. Commun. 2019, 10, 4159. [Google Scholar] [CrossRef]
- Kuenstler, A.S.; Clark, K.D.; Read De Alaniz, J.; Hayward, R.C. Reversible Actuation via Photoisomerization-Induced Melting of a Semicrystalline Poly(Azobenzene). ACS Macro Lett. 2020, 9, 902–909. [Google Scholar] [CrossRef]
- Homma, K.; Chang, A.C.; Yamamoto, S.; Tamate, R.; Ueki, T.; Nakanishi, J. Design of Azobenzene-Bearing Hydrogel with Photoswitchable Mechanics Driven by Photo-Induced Phase Transition for in Vitro Disease Modeling. Acta Biomater. 2021, 132, 103–113. [Google Scholar] [CrossRef]
- Park, J.; Tamura, H.; Yamaguchi, H.; Harada, A.; Takashima, Y. Supramolecular Nylon-Based Actuators with a High Work Efficiency Based on Host–Guest Complexation and the Mechanoisomerization of Azobenzene. Polym. J. 2022, 54, 1213–1223. [Google Scholar] [CrossRef]
- Jiang, Z.-C.; Xiao, Y.-Y.; Tong, X.; Zhao, Y. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion. Angew. Chem. Int. Ed. 2019, 58, 5332–5337. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Gao, J.; Xu, P.; Chen, Q.; Xing, D.; Yan, J.; Zaworotko, M.J.; Xu, J.; Chen, Y.; et al. Fabrication of Large Single Crystals for Platinum-Based Linear Polymers with Controlled-Release and Photoactuator Performance. Angew. Chem. Int. Ed. 2019, 58, 18634–18640. [Google Scholar] [CrossRef]
- Li, Y.; Goswami, M.; Zhang, Y.; Liu, T.; Zhang, J.; Kessler, M.R.; Wang, L.; Rios, O. Combined Light- and Heat-Induced Shape Memory Behavior of Anthracene-Based Epoxy Elastomers. Sci. Rep. 2020, 10, 20214. [Google Scholar] [CrossRef]
- Jiang, Z.; Tan, M.L.; Taheri, M.; Yan, Q.; Tsuzuki, T.; Gardiner, M.G.; Diggle, B.; Connal, L.A. Strong, Self-Healable, and Recyclable Visible-Light-Responsive Hydrogel Actuators. Angew. Chem. Int. Ed. 2020, 59, 7049–7056. [Google Scholar] [CrossRef]
- Saifi, A.; Negi, C.; Kumar, K. Visible Light Responsive Soft Actuator Based on Functional Anthracene Dye. Eur. Polym. J. 2022, 171, 111176. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, D.-H.; Ma, X.; Tian, H. Sol–Gel Conversion Based on Photoswitching between Noncovalently and Covalently Linked Netlike Supramolecular Polymers. Chem. Commun. 2013, 49, 9800–9802. [Google Scholar] [CrossRef]
- Banerjee, S.; Tripathy, R.; Cozzens, D.; Nagy, T.; Keki, S.; Zsuga, M.; Faust, R. Photoinduced Smart, Self-Healing Polymer Sealant for Photovoltaics. ACS Appl. Mater. Interfaces 2015, 7, 2064–2072. [Google Scholar] [CrossRef]
- Rahimi, S.; Khoee, S.; Ghandi, M. Development of Photo and PH Dual Crosslinked Coumarin-Containing Chitosan Nanoparticles for Controlled Drug Release. Carbohydr. Polym. 2018, 201, 236–245. [Google Scholar] [CrossRef]
- Wang, L.; Ma, X.; Wu, L.; Sha, Y.; Yu, B.; Lan, X.; Luo, Y.; Shi, Y.; Wang, Y.; Luo, Z. Coumarin Derivative Trigger Controlled Photo-Healing of Ion Gels and Photo-Controlled Reversible Adhesiveness. Eur. Polym. J. 2021, 144, 110213. [Google Scholar] [CrossRef]
- Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-Induced Shape-Memory Polymers. Nature 2005, 434, 879–882. [Google Scholar] [CrossRef]
- Wu, L.; Jin, C.; Sun, X. Synthesis, Properties, and Light-Induced Shape Memory Effect of Multiblock Polyesterurethanes Containing Biodegradable Segments and Pendant Cinnamamide Groups. Biomacromolecules 2011, 12, 235–241. [Google Scholar] [CrossRef]
- Rochette, J.M.; Ashby, V.S. Photoresponsive Polyesters for Tailorable Shape Memory Biomaterials. Macromolecules 2013, 46, 2134–2140. [Google Scholar] [CrossRef]
- Tunc, D.; Le Coz, C.; Alexandre, M.; Desbois, P.; Lecomte, P.; Carlotti, S. Reversible Cross-Linking of Aliphatic Polyamides Bearing Thermo- and Photoresponsive Cinnamoyl Moieties. Macromolecules 2014, 47, 8247–8254. [Google Scholar] [CrossRef]
- Durand, P.-L.; Brège, A.; Chollet, G.; Grau, E.; Cramail, H. Simple and Efficient Approach toward Photosensitive Biobased Aliphatic Polycarbonate Materials. ACS Macro Lett. 2018, 7, 250–254. [Google Scholar] [CrossRef]
- Gelebart, A.H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.W.; Selinger, R.L.B.; Broer, D.J. Making Waves in a Photoactive Polymer Film. Nature 2017, 546, 632–636. [Google Scholar] [CrossRef]
- Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically Healable Supramolecular Polymers. Nature 2011, 472, 334–337. [Google Scholar] [CrossRef]
- Yang, S.; Du, X.; Du, Z.; Zhou, M.; Cheng, X.; Wang, H.; Yan, B. Robust, Stretchable and Photothermal Self-Healing Polyurethane Elastomer Based on Furan-Modified Polydopamine Nanoparticles. Polymer 2020, 190, 122219. [Google Scholar] [CrossRef]
- Son, D.H.; Bae, H.E.; Bae, M.J.; Lee, S.-H.; Cheong, I.W.; Park, Y.I.; Jeong, J.-E.; Kim, J.C. Fast, Localized, and Low-Energy Consumption Self-Healing of Automotive Clearcoats Using a Photothermal Effect Triggered by NIR Radiation. ACS Appl. Polym. Mater. 2022, 4, 3802–3810. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Photogated Humidity-Driven Motility. Nat. Commun. 2015, 6, 7429. [Google Scholar] [CrossRef]
- Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An Autonomous Actuator Driven by Fluctuations in Ambient Humidity. Nat. Mater. 2016, 15, 1084–1089. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, B.; Sun, S.; Wei, J.; Wu, L.; Yu, Y. Humidity- and Photo-Induced Mechanical Actuation of Cross-Linked Liquid Crystal Polymers. Adv. Mater. 2017, 29, 1604792. [Google Scholar] [CrossRef]
- Yan, Q.; Mao, L.; Feng, B.; Zhang, L.; Wu, Y.; Huang, W. Reversible Patterning Cross-Linked, Humidity-Responsive Polymer Films with Programmatically and Accurately Controlled Deformation. ACS Appl. Mater. Interfaces 2021, 13, 7608–7616. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Cui, Z.; Liu, S.; Feng, D.; Mei, G.; Zhang, R.; An, B.; Qian, D.; Zhou, X.; et al. Dual-Responsive Jumping Actuators by Light and Humidity. J. Mater. Chem. A 2022, 10, 25337–25346. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, Q.; Meng, D.; Wang, X.; Ma, J.; Li, J.; He, X. Chitosan/Polyvinyl Alcohol-Based Direction-Controlled Photo-Humidity Dual Responsive Membrane. ACS Appl. Polym. Mater. 2022, 4, 488–496. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Z.; Xu, H.; Ma, X.; Yin, J.; Tian, M. Revisiting the Mechanism of Redox-Polymerization to Build the Hydrogel with Excellent Properties Using a Novel Initiator. Soft Matter 2016, 12, 2575–2582. [Google Scholar] [CrossRef]
- Güizado-Rodríguez, M.; López-Tejeda, M.; Escalante, J.; Guerrero-Álvarez, J.A.; Nicho, M.E. Photosensitive Polyaniline Colloidal Particles Prepared by Enzymatic Polymerization Using the Azopolymer DMA-Co-AZAAm as Stabilizer. Mater. Chem. Phys. 2010, 124, 389–394. [Google Scholar] [CrossRef]
R | ktrans→cis/s−1 | kcis→trans/s−1 |
---|---|---|
ACMO | 9.0 ± 3.2 × 10−3 | 3.4 ± 1.2 × 10−3 |
DMAA | 1.1 ± 0.66 × 10−2 | 3.6 ± 0.88 × 10−3 |
DEAA | 1.3 ± 1.0 × 10−2 | 4.4 ± 1.7 × 10−3 |
R | ktrans→cis/s−1 | kcis→trans/s−1 |
---|---|---|
ACMO | 9.4 ± 2.0 × 10−3 | 6.4 ± 1.3 × 10−3 |
DMAA | 1.3 ± 0.30 × 10−2 | 6.1 ± 2.3 × 10−3 |
DEAA | 1.9 ± 1.0 × 10−2 | 6.2 ± 2.1 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Shimizu, Y.; Zhou, X.; Ikura, R.; Matsuba, G.; Takashima, Y. Water-Content-Dependent Switching of the Bending Behavior of Photoresponsive Hydrogels Composed of Hydrophilic Acrylamide-Based Main Chains and Hydrophobic Azobenzene. Gels 2023, 9, 658. https://doi.org/10.3390/gels9080658
Park J, Shimizu Y, Zhou X, Ikura R, Matsuba G, Takashima Y. Water-Content-Dependent Switching of the Bending Behavior of Photoresponsive Hydrogels Composed of Hydrophilic Acrylamide-Based Main Chains and Hydrophobic Azobenzene. Gels. 2023; 9(8):658. https://doi.org/10.3390/gels9080658
Chicago/Turabian StylePark, Junsu, Yuki Shimizu, Xin Zhou, Ryohei Ikura, Go Matsuba, and Yoshinori Takashima. 2023. "Water-Content-Dependent Switching of the Bending Behavior of Photoresponsive Hydrogels Composed of Hydrophilic Acrylamide-Based Main Chains and Hydrophobic Azobenzene" Gels 9, no. 8: 658. https://doi.org/10.3390/gels9080658
APA StylePark, J., Shimizu, Y., Zhou, X., Ikura, R., Matsuba, G., & Takashima, Y. (2023). Water-Content-Dependent Switching of the Bending Behavior of Photoresponsive Hydrogels Composed of Hydrophilic Acrylamide-Based Main Chains and Hydrophobic Azobenzene. Gels, 9(8), 658. https://doi.org/10.3390/gels9080658