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Abstract: The stability of time-dependent compressible linear flows, which are character-
ized by periodic variations in either their shape or their shear, is investigated. Two novel
parametric instabilities are found: an instability that occurs for periodically wobbling
elliptic vortices at a number of discrete oscillation frequencies that are proportional to the
Mach number and an instability that occurs for all linear flows at various frequencies of the
shear oscillation that depend on the Mach number. In addition, the physical mechanism un-
derlying the instabilities is explained in terms of the linear interaction of three waves with
time-varying wavevectors that describe the evolution of perturbations: a vorticity wave
representing the evolution of incompressible perturbations and two counter-propagating
acoustic waves. Elliptical instability occurs because the scale of the acoustic waves de-
creases exponentially and their wave action is conserved, leading to an exponential increase
in the acoustic waves’ energies. The instability in shear-varying flows is driven by the
interaction between vorticity and the acoustic waves, which couple through the shear and
for specific frequencies resonate parametrically, leading to exponential or linear growth.

Keywords: linear flows; time-varying flows; compressible perturbations; parametric instability;
vorticity wave–acoustic wave interactions; acoustic wave resonances

1. Introduction
Since the seminal works of Kraichnan [1] and Lighthill [2], it has been established

that acoustic waves and turbulent flows interact in complex ways. This interaction is
bidirectional: Sound propagation is influenced by turbulence and vortical flows [3,4],
while acoustic waves can trigger instabilities in mixing layers or jets [5,6]. Therefore, the
investigation of incipient instabilities in compressible flows and of their underlying physical
mechanisms is an active field of research [7–10] with many engineering applications [11,12].

A class of idealized flows that have been studied extensively because they can serve as
a local approximation for the features of both incompressible and compressible turbulence
is that of linear flows [13]. This class includes those with elliptical streamlines, representing
strained vortices [14], the extensively studied Couette flow [15], and extensional flows that
are crucial in many physical processes [16–18]. The advantage of these flows is that their
stability properties and dynamics can be easily addressed, shedding light into important
physical mechanisms. In this context, analytic solutions for the evolution of small amplitude
perturbations in incompressible steady flows were obtained, and the physical mechanisms
underlying elliptic [19–21] and hyperbolic instabilities [22], as well as the transient growth
in the case of plain Couette flows [23,24], were identified.
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Some of these results were extended to compressible steady flows. In the case of
Couette flow, it was shown that at low Mach numbers the perturbations manifest as a
superposition of propagating acoustic waves, which grow linearly with time, and aperiodic
vorticity waves [25]. An interaction between vorticity and acoustic waves was also identi-
fied: Vorticity perturbations were found to extract energy from the shear and then transfer
it to the acoustic waves, exciting them at a certain amplitude [26]. Analytic estimates for the
amplitude of the excited acoustic waves via vortical perturbations showed that the excita-
tion is exponentially weak for low Mach numbers, but it is of order one for moderate Mach
numbers [27]. The analysis regarding the transient growth of perturbations for the Couette
flow was extended to moderate [28] and large Mach numbers [29], as well as to a perfect
gas model [30]. It was also extended to the cases of elliptical and extensional flows, where it
was found that the intuitive decomposition of the perturbations into acoustic and vorticity
waves holds in the low Mach number limit with similar interactions occurring [31].

The stability properties of linear time-dependent flows have received much less atten-
tion despite the fact that, in most applications, the flows are time-varying. By considering
the evolution of incompressible perturbations in the low Mach number limit, Mansour
and Lundgren [32] and Leblanc and Le Penven [33] found parametric instabilities in un-
bounded circular or elliptical vortices that were periodically compressed on their plane. In
addition, it has been shown that the core of a vortex can be destabilized via the periodic
compression of acoustic waves [34,35]. Similar instabilities were also found for a gas in
a rotating cylinder undergoing axial periodic compressions [36]. However, a thorough
investigation into the evolution of compressible perturbations across the entire class of
linear flows that are time-dependent is still lacking. This work aims to fill that gap.

In particular, we investigate the stability of circular, elliptic, Couette, and hyperbolic
flows, for which their shapes or shears vary periodically in time. This includes wobbling
elliptic or hyperbolic flows, pulsating Couette flows, and circular and elliptic flows with a
time-dependent orientation. The analysis is performed by expressing the imposed perturba-
tions as spatial Fourier waves with time-dependent wavenumbers and amplitudes, known
as Kelvin modes or shear waves [37]. This method was first applied over a century ago in
viscous shear flows [37,38] and has since been widely utilized for both laboratory [39,40]
and geophysical flows [41–43]. It was also generalized to arbitrary flows in the works of
Eckhoff [44] and Lifschitz and Hameiri [45], who developed the geometrical optic stability
method. We discover two novel parametric instabilities: one occurring in periodically
wobbling elliptic vortices and another one occurring in all linear flows when their shear
varies periodically. In addition, we investigate the physical mechanisms underlying the
instabilities in terms of the interaction between the vortical flow and acoustic waves. It
is shown that elliptical instability arises from the parametric growth of acoustic waves’
wavenumbers combined with the conservation of their wave action, while the instabilities
in shear-varying flows are due to parametric resonance between the vortical flow and the
waves as they are coupled by the shear.

This paper is organized as follows: In Section 2, we derive the equations governing
the evolution of small-amplitude perturbations and the resulting ODEs for the evolution of
the amplitudes and wavevectors of the Kelvin modes. In Sections 3 and 4, we investigate
the stability of flows with periodically varying types and shears, respectively. We finally
end with our conclusions in Section 5.

2. Perturbation Evolution for a Wide Class of Time-Varying Linear Flows
We consider the following class of planar, time-dependent flows:

u∗
0(x∗, t∗) = A∗(t∗)x∗, (1)
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These vary linearly in space x∗ = [x∗ y∗]†, where the star denotes dimensional variables,
the dagger denotes the matrix transpose, and A∗ is the following 2 × 2 shear matrix:

A∗(t∗) = ζ∗(t∗)

(
0 1

2δ(t∗)− 1 0

)
. (2)

The velocity field u∗
0 with components (u∗

x , u∗
y) describes a wide class of linear,

two-dimensional flows that occur for different values of parameters δ(t∗) and ζ∗(t∗), and
they are illustrated in Figure 1. The parameter δ is a function of the ratio r = S∗/Ω∗ of the
strain S∗ = ∂x∗u∗

y + ∂y∗u∗
x over the vorticity Ω∗ = ∂y∗u∗

x − ∂x∗u∗
y of the flow [δ = r/(1 + r)]

and describes the type of the flow: For δ = 0, the flow is circular (Figure 1a); for 0 < δ < 1/2,
the flow is elliptic with eccentricity

√
2δ (Figure 1b), and the value δ = 1/2 corresponds to

a plane Couette flow (Figure 1c); for 1/2 < δ ≤ 1, the flow is hyperbolic (Figure 1d,e). The
parameter ζ∗ is the shear rate ζ∗ = ∂y∗u∗

x, and its norm describes the magnitude of the shear
(for example, in Couette or hyperbolic flows), while its sign describes the orientation of
the flow (for example, clockwise or counter-clockwise in elliptic flows). This class of flows
includes wobbling elliptic or hyperbolic flows when δ varies with time, pulsating Couette
flows when ζ∗ varies with time, and circular and elliptic flows with a time-dependent
orientation when ζ∗ changes its sign as well. The goal of this work is to address the stability
of these time-varying flows when compressibility is taken into account.

Figure 1. The class of linear flows described by Equation (1). The curves show the streamlines
of the flow and vectors in the velocity field. (a) δ = 0 (circular flow), (b) δ = 1/4 (elliptic flow),
(c) δ = 1/2 (Couette flow), (d) δ = 3/4 (hyperbolic flow), and (e) δ = 1 (hyperbolic flow). In all
panels, ζ∗ = 1.

Assuming that we concentrate within the limit of vanishing viscocity, the mean flow
satisfies the Euler equations:(

∂

∂t∗
+ u∗

0 · ∇∗
)

u∗
0 = − 1

ρ∗0
∇∗p∗ + f ∗ext, (3)

where ρ∗0 and p∗0 are the constant background density and pressure fields of the homentropic
flow, and f ∗ext is an external forcing term that models all relevant mechanisms generating
the time-dependent flow in a simplistic manner. For instance, in the case of a plane Couette
flow, it models the time-dependent variation in the boundaries producing the flow in the
presence of viscocity. We consider small-amplitude, planar-compressible perturbations of
density ρ∗ and velocity u∗ around the mean flow, which are assumed to be isentropic. The
evolution of the perturbations is governed by the linear equations(

∂

∂t∗
+ u∗

0 · ∇∗
)

u∗ + (u∗ · ∇∗)u∗
0 = − 1

ρ∗0
∇∗p∗, (4)(

∂

∂t∗
+ u∗

0 · ∇∗
)

ρ∗ = −ρ∗0∇∗ · u∗. (5)
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The equations are non-dimensionalized, using a length scale L∗ to be determined for the
position vector, the adiabatic speed of sound c∗0 =

√
γp∗0/ρ∗0 as a velocity scale, L∗/c∗0 as

the time scale, and ρ∗0 and ρ∗0(c
∗
0)

2 as the density and pressure scales, respectively. The
non-dimensional perturbations denoted without the star evolve according to(

∂

∂t
+ MA(t)x · ∇

)
u + MA(t)u = −∇p, (6)(

∂

∂t
+ MA(t)x · ∇

)
p = −∇ · u, (7)

where the non-dimensional density perturbations are equal to the pressure perturba-
tions. The Mach number M = max(ζ∗)L∗/c∗0 is based on the maximum value of the
time-dependent shear. Therefore the non-dimensional shear is bounded by one (|ζ| ≤ 1).

To solve for the perturbation’s evolution, we employ the Kelvin non-modal
method [28,31,37], which transforms Equations (6) and (7) into a system of ODEs. The steps
for this transformation are as follows. First, we define a new system of coordinates that
follow Lagrangian trajectories, which are given as the solution to the following equation:

dx
dt

= MA · x. (8)

Defining X = x(0), the convected coordinates (X, T) are given in terms of the original
coordinates through the linear transformation:

X = C(t)x and T = t. (9)

Differentiating and using (8), we find that C is given by the solution to the equation

dC(t)
dt

= −MC(t)A(t), (10)

with C(0) = I being the 2 × 2 identity matrix. In these coordinates, the material derivative
is simply the time derivative

∂

∂t
+ MAx · ∇ =

d
dT

. (11)

As a result Equations (6) and (7) become spatially homogeneous, and we can seek solutions
in the form of plane waves

u(X, T) = û(T)eik0·X , p(X, T) = p̂(T)eik0·X , (12)

where k0 is the wave vector. Since there is no intrinsic spatial scale for the unbounded,
linear flows considered, we choose the length scale to be L∗ = 1/||k∗

0 ||, where k∗
0 is the

dimensional wave vector. In this case, the wave vector k0 is of unit norm and can be written
in terms of the angle θ that the phase lines form with the normal direction:

k0 = [cos θ sin θ]†. (13)

By substituting the plane-wave solutions (12) into Equations (6) and (7) and using the
transformation given in (9), we find that û and p̂ satisfy the following system of ODEs:

dû
dT

+ MA(T)û = −ik(T) p̂, (14)

dp̂
dT

= −ik(T) · û, (15)
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where
k(T) = C†(T)k0. (16)

The inner product k · x = k0 ·X is preserved due to Equations (9), and (16) and k is therefore
the time-dependent wavenumber in the initial coordinate x with component k = [kx ky]†

and an initial value k(0) = k0.
The system of Equations (14)–(16) yields the time-evolution of the perturbations. The

energy density of the perturbations that is given by

E(T) =
1
4

(
|ûx|2 + |ûy|2 + | p̂|2

)
, (17)

evolves according to the non-dimensional strain S = 2Mδζ and the Reynolds stress:

dE
dT

= −Mζδℜ(ûxûH
y ), (18)

where H denotes the Hermitian transpose.
The stability of the flow is addressed by rewriting the system of ODEs in the

compact form
dΥ

dT
= HΥ, (19)

where Υ = [û i p̂]† is the state vector and

H =

 0 −Mζ −kx

−Mζ(2δ − 1) 0 −ky

kx ky 0

, (20)

and then, by numerically calculating the propagator Φ(T, T0) that furnishes the solution:

Υ(T) = Φ(T, T0)Υ(T0). (21)

As the energy density of the perturbations is proportional to the Euclidean norm for the
flow-state vector

E(T) =
1
4

ΥHΥ, (22)

the stability of the flow for both short and long time scales can be investigated by performing
a singular value decomposition of the propagator [46]:

Φ(T, T0) = USVH. (23)

The non-modal, transient growth of perturbations at short or finite time scales can be
addressed by calculating the square of the first singular value at a target finite time (σ2

1 ),
which is the largest energy growth attained over this interval [23,47]. The optimal pertur-
bation achieving this growth is the corresponding first column of V, while the evolved
perturbation at the target time is the first column of U. Optimal transient growth can also
be equivalently assessed via the finite time Lyapunov exponent:

λ f (T) =
ln(||Φ(T, T0)||)

T − T0
=

ln(σ1)

T − T0
. (24)

In the small time asymptotic limit addressing the instantaneous explosive growth of
perturbations, the largest singular value is the largest real eigenvalue of (H + HH)/2
approximating the propagator, while the optimal perturbation and the corresponding
instantaneous Lyapunov vector coincide. For the linear flows considered in this work, the
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propagator is independent of the wavevector k in the small time limit. The growth then
depends only on the flow parameters and is proportional to the non-dimensional strain S:

σ1 = M|ζδ|, (25)

while the corresponding instantaneous Lyapunov vector is V1 = [1 − sgn(ζδ) 0]†. The
asymptotic stability of the flow can be addressed by calculating the first singular value in
the limit of large times, which corresponds to the first Lyapunov exponent:

λ = lim
T→∞

λ f (T) = lim
T→∞

ln(σ1)

T − T0
. (26)

The corresponding Lyapunov vector is the first column of U, while the first column of V is
the initial perturbation exciting the Lyapunov vector with the largest amplitude [46].

WKB Solution in the Limit of Small Mach Number and the WKB Base

For the case of steady Couette flow [27], as well as for the more general class of linear
flows considered here [31], much of the dynamics were exemplified by an asymptotic
WKB solution in the limit of a small Mach number. Such a solution is possible in the
case of Equations (14) and (15) as well, as the adiabatic dynamics found by Favraud and
Pagneux [31] for slowly varying flows hold even when u0 varies with time.

The WKB solution is based on the fact that the flow evolves for small Mach num-
bers (M ≪ 1) on a slow time scale τ = MT. Introducing the slow time scale in
Equation (19) yields the following:

M
dΥ

dτ
= [H0(τ) + MH1(τ)]Υ, (27)

where

H0 =

 0 0 −kx

0 0 −ky

kx ky 0

, (28)

is the zeroth order dynamical operator and

H1 = ζ

 0 −1 0
1 − 2δ 0 0

0 0 0

, (29)

contains the dynamics at next order. We can therefore write solution Υ in the form of an
asymptotic series expansion:

Υ(τ) = e(i/M)S(τ)
[
Υ(0)(τ) + MΥ(1)(τ) + M2Υ(2)(τ) + · · ·

]
. (30)

Plugging the expansion into (27) yields, for the leading order, an eigenvalue problem. The
solutions to this problem are the following order-0 WKB modes:

Υ
(0)
V =

1
k2

−ky

kx

0

 and Υ
(0)
± =

e±(i/M)
∫

k(s) ds
√

k

 kx

ky

∓ik

, (31)

with k = ||k||. The mode Υ
(0)
V is divergence-free and corresponds to the solution in

the incompressible limit that is typically referred to as a vorticity mode or a vorticity
wave [27]. The mode Υ

(0)
± is irrotational. In the limit of no flow (ζ∗ = 0), they represent
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two counter-propagating acoustic waves with wavenumber k0 and unit phase speeds. In
the low-Mach-number limit, their wavenumber evolves slowly over time while their phase
ϕ = (1/M)

∫
k(s) ds evolves over the fast time scale T = τ/M.

An additional advantage of the WKB solution, is that these three modes form a basis
on which the exact solution Υ can be written for any Mach number. That is,

Υ(τ) = cV(τ)Υ
(0)
V (τ) + c+(τ)Υ

(0)
+ (τ) + c−(τ)Υ

(0)
− (τ), (32)

where cm(τ) is the time-dependent amplitude of the vortical and acoustic parts of the
perturbation. By substituting (32) into (27) and after performing some manipulations,
Favraud and Pagneux [31] found that the time evolution of the amplitudes is governed by

d
dτ

cV

c+
c−

 = B

cV

c+
c−

, (33)

where

B = −ζ


0 −2(1 − δ)k3/2eiϕ −2(1 − δ)k3/2e−iϕ[

k2
x − (2δ − 1)k2

y

]
e−iϕ/k7/2 0 δkxkye−2iϕ/k2[

k2
x − (2δ − 1)k2

y

]
eiϕ/k7/2 δkxkye2iϕ/k2 0

, (34)

while the perturbation energy density (17) is written in terms of the three modes as

E(T) =
1

4k2 |cV |2 +
k
2
|c+|2 +

k
2
|c−|2. (35)

The matrix B describes the interaction of the three modes that can influence each other in
two ways. They can change the phase of the other waves, speeding them up or slowing
them down, or they can change their amplitude (enhancing or hindering the other waves).

The analysis of the perturbation evolution in the order-0 WKB basis allows us to
identify the two pathways by which perturbations grow. The first is through the dynamics
of the vorticity and acoustic waves exemplified by the case of waves with constant or almost
constant amplitude. In this case, it is evident from Equation (35) that the energy of the
modes can grow either transiently or asymptotically when the wavenumber grows/decays.
As will be shown in Section 3, this mechanism underlies the parametric instability in
type-varying flows (δ(T) and constant ζ). The second pathway is through the interaction
between the vorticity and acoustic waves, which is described by Equation (33) and can
modify the amplitudes of the waves even if the wavenumber is constant or bounded. As
will be shown in Section 4, the parametric instabilities arising in shear-varying flows (ζ(T)
and constant δ) occur due to this mechanism.

3. Stability Analysis of Type-Varying Flows
In this section, we study the stability of flows with time-varying types, i.e., δ = δ(T),

and constant shear ζ = 1. We consider periodic variations of the form

δ(T) = δ̄ + α cos(ωT), (36)

around a mean value δ̄ with frequency ω and strength α. As was noted before, the stability
of a type-varying flow is reflected in the evolution of the perturbation wave vector. Using
Equations (10) and (16), we find that the components of k(T) satisfy
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dkx

dT
− M[1 − 2δ(T)]ky = 0, (37)

d2ky

dT2 + M2[1 − 2δ̄ − 2α cos(ωT)
]
ky = 0. (38)

Rescaling time T = 2τ̃/ω and introducing the parameters η = 4M2(1 − 2δ̄)/ω2 and
γ = 8M2α/ω2 reduces (38) to the usual form of the Mathieu equation [48]:

d2ky

dτ̃2 + [η − γ cos(2τ̃)]ky = 0. (39)

It is well known that the Mathieu equation has both stable and unstable solutions depend-
ing on its parameters values [49] and describes many stabilization and destabilization
phenomena like the Kapitza pendulum [50]. Similarly for the time-dependent flows investi-
gated here, such parametric growth of the wavevector can stabilize or destabilize the flows
as the elliptic flow is stable when δ is constant while the hyperbolic flow is unstable [31].

3.1. Destabilization of Elliptic Flows

When the modulation frequency ω is close to a resonant frequency
ωn = 2ω0/n, n = 1, 2, 3, · · · with ω0 = M

√
|1 − 2δ̄|, the solutions of the Mathieu

Equation (38) grow exponentially due to parametric instability [48,49]. As an illustra-
tion, we present in Figure 2a the norm k(T) that is calculated via the numerical integration
of (10) for a wobbling elliptic flow with periodically varying eccentricity (0 < δ(T) < 1/2)
when ω = 2ω0. The observed growth of the norm is also accompanied by an exponential
growth of the energy of the perturbations, as shown in Figure 2b. In order to investigate
this growth, we analyze the solution in terms of the WKB-base, which is in terms of the
dynamics of the vorticity and acoustic waves.

Figure 2. Evolution of (a) the wavevector norm k(τ) = ||k(τ)|| and (b) the energy growth of the
perturbations for an elliptic flow with periodically varying eccentricities. Eccentricity is modulated
around δ̄ = 1/4 with strength α = 1/5 and frequency ω = 2ω0, where ω0 = M

√
|1 − 2δ̄| and M = 1.

In both panels, the angle is θ = π/3, and the initial conditions are Υ(0) = [1 − 1 3i/2]†.

The amplitudes of the acoustic waves shown in Figure 3a initially oscillate and asymp-
totically approach a constant value. The reason is that the terms in Equation (34) involving
the interaction of the acoustic waves with the vorticity wave are monotonically decreasing
functions of the norm of the wavevector, and the interactions cease when the norm starts to
become large. In addition, the terms involving the interaction of the two acoustic waves are
proportional to e±2iϕ, and for the extremely rapidly varying phase of the waves, this term
yields zero tendencies on average. On the other hand, the wave action of the perturbations

A(T) =
E(T)
k(T)

, (40)

shown in Figure 3b converges asymptotically to a constant value, suggesting that the energy
of the perturbations increases exponentially at the same rate as the norm of the wavevector.
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Figure 3. (a) The amplitude c± of the two acoustic waves and (b) the wave action A(τ) for an elliptic
flow with periodically varying eccentricities. The flow parameters are as in Figure 2.

This result is verified by the stability analysis of the propagator. The finite-time Lya-
punov exponent λ f (T) calculated through a singular value decomposition of the propagator
(cf. Equation (24) ) is shown in Figure 4a. For short times, we observe large transient growth
comparable to the average value of instantaneous growth, which is σ1/M = |δ̄ζ| = 1/4 for
the parameters chosen (cf. Equation (25) ), and then, it decreases rapidly while oscillating
with frequency 2ω0. For large times, we observe that it behaves as an asymptote relative
to half the finite-time Lyapunov exponent λk(T) of the norm of the wavevector that is
also shown.

Figure 4. (a) Evolution of the finite-time Lyapunov exponent λ f (T) of (14)–(16) (solid line) and
half of the finite-time Lyapunov exponent λk(T) of the norm of the wavevector (dashed line).
(b) First Lyapunov exponent λ as a function of frequency ω/ω0 and strength α of the modula-
tion. It is also noted that the Lyapunov exponent is an even function of α. In both panels, the mean
flow-type parameter is δ̄ = 1/4, θ = π/3 and M = 0.2.

The first Lyapunov exponent λ of the parametric instability is calculated by averaging
over a period of the oscillation relative to large times (τ > 180) (yellow line in Figure 4a).
We find that it does not depend on the initial angle θ of the phase lines ( the same does
not hold for the optimal perturbations exciting the Lyapunov vector with the maximum
amplitude that depends strongly on θ) but depends on the modulation frequency and
strength. This is illustrated in Figure 4b where the first Lyapunov exponent is shown as a
function of frequencies ω/ω0 and α with the range of values for the modulation strength
(α < 1/4) being such that the flow remains elliptical (δ(T) < 1/2). The detected regions
of exponential instability match with the Arnold tongues of the Mathieu equation. To
investigate the possibility of large transient growth or unbounded algebraic growth in
the asymptotically stable regions between the Arnold tongues, we calculated the finite
time Lyapunov exponent at moderate (τ ∼ 50) to large (τ > 100) times for the range of
stable frequencies. Low values of growth were found for all values of ω and α within the
asymptotically stable region.
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3.2. Stabilization of Hyperbolic Flows

Motivated by the fact that shape-varying elliptic flows are destabilized by the para-
metric growth of the wavenumber satisfying the Mathieu equation, we explore the possible
stabilization of hyperbolic flows via the time modulation of their shape, as exemplified by
a time-varying strain. The reason for this is that hyperbolic flows are unstable for steady
flows due to the same mechanism (the exponential growth of acoustic waves associated
with the corresponding growth of their wavenumber) [31] and the Mathieu equation that
governs the evolution of the component of the wavenumber allows for stable solutions in a
certain parameter range.

Indeed, it is known [51] that when η < 0, i.e., δ̄ > 1/2, stable solutions of the Mathieu
equation exist if η > −|γ|, i.e., δ̄ − |α| < 1/2. Namely, stable solutions can exist if there
is a time period when δ(τ) < 1/2 (see Equation (36)), suggesting that hyperbolic flow
can be stabilized by periodic variations in its shape only if it becomes elliptic at certain
time intervals. To verify this, we plot in Figure 5a the maximum Lyapunov exponent λ

as a function of modulation frequency ω and strength α for a value of δ̄, satisfying the
inequality above within the range of modulation strength considered. We observe that λ

is positive when α < 0.1 as the inequality above is not satisfied, i.e., δ̄ − |α| > 1/2. For
α > 0.1 satisfying the stability inequality, there is a narrow tongue with λ = 0 (light areas),
with this area becoming wider as the strength α is increased. As in the case of elliptic
instability, we calculated the finite time Lyapunov exponent for large times in order to
investigate the possibility of large transient growth or unbounded algebraic growth in the
asymptotically stable region. An example of the energy evolution is shown in Figure 5b,
where we observe that the perturbation energy undergoes periodic intervals of moderate
transient amplification but remains bounded.

Figure 5. Stabilization of hyperbolic flows by periodic modulation of their shape. (a) The maximum
Lyapunov exponent λ as a function of the normalized frequency ω/ω0 and the strength α of the
modulation for δ̄ = 0.6, M = 0.2, and θ = π/3. (b) Energy growth of a perturbation for α = 0.25 and
ω/ω0 = 1.49, for which λ = 0 [this is shown by the square in panel (a)]. The initial conditions are as
shown in Figure 2.

4. Stability Analysis of Shear-Varying Flows
In this section, we investigate the stability of flows with time-varying shear ζ(T) and

constant flow-type δ. The temporal modulations in the shear are assumed to be periodic:

ζ(T) = cos(ωT), (41)

where ω is the frequency of the modulation. For the elliptic and hyperbolic flows, this means
that their rotation changes periodically with time, without a change in their eccentricity or
strain, respectively, while for Couette flows, this means a periodically changing shear.

Exponential instability is found for all Mach numbers and in contrast to the parametric
instability for type-varying flows; in this case, there is a strong dependence of the growth
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rate on the initial angle θ, where the phase lines form with respect to the normal direction.
For low Mach numbers, the dependence of the first Lyapunov exponent on the frequency
of the modulation and the angle θ is shown in Figure 6. For elliptic flow, we observe one
narrow tongue of instability around the frequency ω = 2 and the same holds for the case of
Couette flow. The hyperbolic flow exhibits two instability tongues centered around ω = 1
and ω = 2. For both types of flows, the growth rate for ω = 2 is maximized for angles π/4
and 3π/4, while the corresponding instability for ω = 1 occurs for a band of angles close
to π/2.

Figure 6. (a,b) The first Lyapunov exponent λ in the cases of (a) an elliptic flow (δ = 1/4) and (b) a
hyperbolic flow (δ = 3/4) with a periodically modulated shear as a function of the frequency ω of
the modulation and the angle θ of the initial wavevector. In both panels, M = 0.15.

In order to examine whether the instability is associated with the growth of
the wavevector as with type-varying flows, we calculate the wavevector k(T) that is
given by the following expression:

k(T) =
[

cos
(

M
√

1 − 2δ
∫ T

0
ζ(s) ds

)
I − 1

ζ
√

1 − 2δ
sin
(

M
√

1 − 2δ
∫ T

0
ζ(s) ds

)
A†
]

k0. (42)

The norm of the wavevector shown in Figure 7a for the cases of elliptic, Couette, and hy-
perbolic flows is almost constant at an initial value of one, with small-amplitude (order M)
oscillations having modulation frequency ω in all three cases. However, the norm of the
amplitude c− of the downstream propagating acoustic wave plotted in Figure 7b diverges
exponentially, as well as the amplitude of the other acoustic waves and the vorticity wave.
We therefore conclude that it is the interaction between the acoustic and vorticity waves
that drives the parametric instability in this case.

A better understanding of the instability can be achieved by noting that while the shear
flow oscillates on the fast time scale, the wavenumber evolves on the time scale τ = MT
that is slow for low Mach numbers. Therefore, the WKB modes can be approximated to the
first order, evolving in the absence of a mean flow with constant wavenumber k(T) ≃ k0:

Y (0)
V ≃

− sin θ

cos θ

0

 and Υ
(0)
± = e±iT

cos θ

sin θ

∓i

. (43)

That is, the vorticity wave is approximately constant while the acoustic waves have
unit frequencies. We can thus look for solutions to Equation (19), comprising at leading
order of the WKB modes with a slowly varying amplitude and higher-order corrections:

Υ = cV(τ)Υ
(0)
V + c+(τ)Υ

(0)
+ + c−(τ)Υ

(0)
− + MΥ1(T, τ) + · · · . (44)
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Figure 7. Evolution of (a) the norm of the wave vector of the perturbations and (b) the norm of the
amplitude |c−| of the acoustic wave for an elliptic flow with δ = 1/4 (solid lines), for a Couette flow
(dashed lines), and for a hyperbolic flow with δ = 3/4 (dotted lines). In both panels, M = 0.15 and
θ = π/4, and the frequency is ω = 2. In (b), the initial conditions are Υ(0) = [1 1 i]†.

Substituting in (19), we obtain, for the leading order in M, vorticity and acoustic waves
with constant amplitudes. The growth of these waves is obtained by calculating the
Reynolds stress (giving the energy tendency) from the leading order solution, furnishing
some algebra:

dE
dT

= −Mζδℜ(ûx ûH
y ) = −1

2
Mδβ sin(2θ) cos(ωT)

(
|cV |2 + |c+|2 + |c−|2

)
−

−Mδβ sin(2θ) cos(ωT)ℜ
(

c+cH− e2iT
)
− 2Mδβ sin2 θ cos(ωT)ℜ

[
cV

(
cH+ e−iT + c−eiT

)]
. (45)

Secular terms arise for two resonant frequencies. The first is ω = 1, for which we have
resonance between the varying shear and the interaction of the vorticity with the acoustic
waves (last term in (45) ). The second is ω = 2, for which we have resonance between
the varying shear and the acoustic waves [second term in (45)]. This is subharmonic since
the frequency of the acoustic waves is equal to one. It is shown in Appendix A, where a
two-time scale solution is formally obtained, and the growth rate for the resonant frequency
ω = 1 is

λ̃ = M
√
(1 − δ)(2δ sin2 θ − 1), (46)

while the growth rate for ω = 2 is given by the following:

λ̃ =
Mδ

4
| sin(2θ)|. (47)

The comparison between the Lyapunov exponent calculated from the numerical integration
of Equations (14)–(16) and the asymptotic expressions given in Equations (46) and (47)
illustrated in Figure 8 shows excellent agreement. Note that for ω = 1, instability is indeed
observed only for hyperbolic flows and for a band of angles close to π/2 as the condition

sin θ ≥ 1/
√

2δ, (48)

should be satisfied for positive growth rates. For ω = 2, instability is observed for all
three classes of flow, with the growth rate being the maximum for phase lines forming an
angle π/4 with respect to the streamwise direction. Note also that for both frequencies, the
growth rate is proportional to the Mach number and is an increasing function of δ.

Finally, there are two special cases of linear growth of perturbations for ω = 1. The
first case occurs for the angle θ satisfying equality (48). In Appendix A, it is shown that
for these angles, the amplitude of the vorticity wave grows linearly, while the amplitudes
of the acoustic waves are constant. This means that in the limiting case of Couette flow,
even though there is no exponential growth, the flow is asymptotically unstable with the
linear growth of streamwise-independent (θ = π/2) perturbations. The special case of
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linear growth can also be verified by calculating the propagator matrix given in (23) that
was found to be periodic with period 2π/ω. The eigenvalues of the monodromy matrix,
i.e., the propagator calculated over one period, are shown in the complex plane in the
insets of Figure 8a for three angles. When the flow is stable, the eigenvalues lie in the unit
circle in the complex plane (solid line), while when the flow is unstable, one eigenvalue lies
outside of this disk. At the point where the transition from stability to instability occurs,
the eigenvalues coalesce, forming an exceptional point of order 2 and leading to linear
growth. Such a behavior is typical in non-Hermitian systems and is known to occur in
many physical systems [52,53]. The second case occurs for the limiting hyperbolic flow
with δ = 1, where we show in Appendix A that, for any initial angle θ, we obtain linear
growth for the amplitudes of the acoustic waves, while the amplitude of the vorticity wave
is constant.

Figure 8. Comparison of the Lyapunov exponent λ (circles) for (a) ω = 1 and (b) ω = 2 with the
estimate λ̃ (solid lines) given by Equations (46) and (47), respectively. In the inset panels, the crosses
denote the eigenvalues of the monodromy matrix of Equation (23) in the complex plane, computed
for the angle θ shown by the arrows. In both panels, δ = 3/4 and M = 0.15.

In order to see how these resonances are achieved, we look at the interaction of the
three modes given by the elements of B. The influence of each wave on the others depends
on its phase difference ±ϕ or ±2ϕ with respect to the other waves, which is almost linearly
varying with time in the limit of low Mach numbers. Therefore, if the shear is constant,
each wave has a zero net effect on the other waves’ amplitudes. This occurs, for example,
in the case of the shape-varying flows examined in Section 4, where the rapidly varying
phase leads to constant amplitudes. But in this case, this effect is negated when the shear
oscillates at resonant frequencies, facilitating a non-zero interaction between the waves,
which can mutually grow on a slow time-scale.

Some of the results found above for weakly compressible flows hold in the case of
larger Mach numbers as well. This is shown in Figure 9a, illustrating the first Lyapunov
exponent as a function of the Mach number and the frequency of the oscillation in the
case of Couette flows. We observe that the subharmonic resonance initially widens with
increasing Mach numbers, and for M ≃ 0.5, there is an additional resonance at frequency
ω ≃ 0.7. For M ≃ 1, the two bands around ω ≃ 0.7 and ω ≃ 2 form a single broad band
of instability while smaller band resonances at even lower frequencies ω < 0.5 appear. In
Figure 9b, which illustrates the dependence of the growth rate on the angle for M = 0.75, it
is shown that both the subharmonic resonance and the resonance at ω ≃ 0.7 are optimal for
angle θ ≃ π/4, while the lower frequency resonances occur for various values of the angle.

To investigate additional resonances, we utilize the solution in terms of the WKB
base. As the resonances for low Mach numbers are due to different wave interactions, we
consider two reduced dynamics of Equation (33). The first is to consider the reduced matrix
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Figure 9. Couette flow (δ = 1/2). (a) The first Lyapunov exponent λ as a function of frequency
ω and Mach number M. (b) The first Lyapunov exponent λ as a function of frequency ω and
angle θ. The Mach number is M = 0.75. (c,d) The first Lyapunov exponent computed by the reduced
dynamics (49) and (50), respectively. In panels (a,c,d), angle θ = π/3.

BAV = −ζ


0 −2(1 − δ)k3/2eiϕ −2(1 − δ)k3/2e−iϕ[

k2
x − (2δ − 1)k2

y

]
e−iϕ/k7/2 0 0[

k2
x − (2δ − 1)k2

y

]
eiϕ/k7/2 0 0

, (49)

in which we ignore the interaction of the two acoustic waves. The second is to consider the
reduced matrix

BAA = −ζ

0 0 0
0 0 δkxkye−2iϕ/k2

0 δkxkye2iϕ/k2 0

, (50)

in which the interaction of only the two acoustic waves is taken into account. Figure 9c,d
show the first Lyapunov exponent obtained from the two reduced dynamics (49) and (50),
λVA

WKB and λAA
WKB, respectively. The comparison of these growth rates to the growth rate

in Figure 9a shows that the instabilities at low frequencies are due to the interaction of
vorticity with the acoustic waves in the presence of shear, while the subharmonic resonance
arises due to the interaction of the two acoustic waves even for moderate Mach numbers.

Similar results are found for elliptic flows, as illustrated in Figure 10, where it is
shown that the additional band that appears around ω = 0.7 occurs in this case as well
(Figure 10a), with the growth rate being the maximum for θ ≃ π/4 (Figure 10b). The bands
around the subharmonic resonance and the lower frequency band merge and disappear
when M > 1.1. However, the resonances appearing at lower frequencies (ω < 0.5) that are
similar to those observed in the Couette flow persist for larger Mach numbers. Additionally,
Figure 10c,d, which show the Lyapunov exponents λVA

WKB and λAA
WKB as functions of ω

and M, suggest that the interaction of the two acoustic waves generates the subharmonic
resonances again, while the inclusion of the vorticity wave in the dynamics gives rise to the
remaining resonances at lower frequencies.
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Figure 10. (a–d): Same as in Figure 9 for an elliptic flow with δ = 1/4.

The dependence of the parametric instability on the Mach number for hyperbolic flows
is shown in Figure 11. The subharmonic resonance with the growth rate maximized for
θ = π/4 and the harmonic resonance with the growth rate maximized for θ = π/2 persist
for moderate Mach numbers, with similar characteristics and the same mechanisms driving
the instability. The only differences compared to lower Mach numbers are a broadening
of the resonant bands and a slight shift towards larger frequencies. Finally, the additional
low-frequency resonances occurring for several values of the angle that were found for the
other two classes of linear flows are observed in this case as well.

Figure 11. (a–d): Same as in Figure 9 for a hyperbolic flow with δ = 3/4.
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5. Conclusions
In this work, the linear stability of a broad class of time-varying linear flows was

investigated with respect to planar compressible perturbations. The class of flows con-
sidered includes circular, elliptic, Couette, and hyperbolic flows, and they were assumed
to either vary periodically in shape (for example, elliptic flows with periodically varying
eccentricity or hyperbolic flows with periodically varying strain) or to have a periodi-
cally varying shear (for example, elliptic flows with periodically varying orientations or
pulsating Couette flows).

The stability of the flow was addressed via a singular value decomposition of the
propagator for the temporal evolution of the amplitude of plane waves with time-dependent
wavenumbers (Kelvin modes). Two novel parametric instabilities were found. The first is
elliptic instability with respect to planar acoustic waves for vortices that wobble periodically
at resonant frequencies proportional to the Mach number with the corresponding growth
rates also being proportional to the Mach number. The second occurs for all linear flows in
the case of periodically varying shear. For low Mach numbers, two resonances, a harmonic
and a subharmonic one, were identified. The subharmonic resonance manifests for all
classes of linear flows, while the harmonic resonance manifests as exponential instability
for hyperbolic flows and as linear instability for Couette flows. The growth rate of the
perturbations in the cases of both harmonic and sub-harmonic resonances is proportional
to the Mach number and has a strong dependence on the angle that the phase lines of
the perturbations form with the normal direction. In the case of harmonic resonance, the
growth rate is maximized for streamwise-independent perturbations, and we thus expect
the emergence of streaks in the flow. In the case of subharmonic resonance we expect the
emergence of perturbations oriented at an angle π/4 with respect to the normal direction.
For larger Mach numbers, a second almost harmonic resonance appears for Couette and
elliptic flows. The band of resonant frequencies widens around the two main resonances for
all linear flows and for moderate Mach numbers, and a single resonant region of frequencies
is formed, while other resonances for smaller frequencies appear as well.

The physical mechanisms underlying the two parametric instabilities were revealed
by writing the perturbations as a superposition of three waves: a vorticity wave that
corresponds to the solution in the incompressible limit and two acoustic waves with a
time-dependent phase. It was shown that the perturbations can grow due to two pathways.
The first is through changes in their wavenumber, leading to energy growth for the waves
even when their amplitude is constant. The second is through the interactions of the three
waves that can change their phase speeds and their amplitudes.

Parametric elliptic instability was found to be driven by the first pathway: the scale
of the waves decreases exponentially due to the parametric growth of particle trajectories
caused by the periodically wobbling vortex. As the wave action of the acoustic modes is
conserved, this leads to exponential growth. For the case of periodically varying shear,
instability occurs due to the second pathway: Vorticity and acoustic waves are coupled
by time-dependent shear, with the influence of each wave on the others depending on its
phase difference with the other waves. For a constant shear, the amplitude tendency varys
sinusoidally at the rate of the time-dependent phase speed of the acoustic waves, leading
to a zero net effect on the other waves’ amplitudes. However, when the shear oscillates at
resonant frequencies, it negates this effect and facilitates a non-zero interaction between
the waves, which can mutually grow. The subharmonic resonance was found to be due to
the interaction of acoustic waves, while harmonic resonance and the resonances at lower
frequencies occur as the vortical part of the flow generates acoustic waves that do not
passively propagate, as in Lighthill-like radiation, but they feed back to the vortical part
of the flow to produce instability. A stability analysis with respect to three-dimensional
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perturbations in order to investigate how the mechanisms involving acoustic waves and
their dynamics compare to other resonances for elliptic and hyperbolic flows will be
pursued in future works.
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Appendix A. Analytical Estimate of the Growth Rate for Low Mach
Numbers in the Case of Periodically Varying Shear

In this Appendix, we derive analytical estimates for the growth of perturbations in
the case of periodically varying shear when the Mach number is small (M ≪ 1). The key
assumption is that the shear oscillates at the finite frequency ω while the wavevector that
is given by Equation (42) is a slowly varying function of time for low Mach numbers and
can be approximated by its initial value k = k0 +O(MT). As a result, the phase can be
approximated as

ϕ =
1
M

∫
k(s) ds ≃ k0τ

M
+O(1) = T +O(M), (A1)

while the leading order in the interaction coefficients in (34) is

−2(1 − δ)k3/2e±iϕ = −2(1 − δ)e±iT +O(M), (A2)

k2
x − (2δ − 1)k2

y

k7/2 e±iϕ =
(

1 − 2δ sin2 θ
)

e±iT +O(M), (A3)

δkxky

k2 =
δ sin(2θ)

2
+O(M). (A4)

After the approximation and restoration of the fast time scale T = M/τ, Equation (33),
governing the interaction of the three waves, becomes the following:

d
dT

cV

c+
c−

 = −Mζ

 0 −2(1 − δ)eiT −2(1 − δ)e−iT(
1 − 2δ sin2 θ

)
e−iT 0 δ sin(2θ)e−2iT/2(

1 − 2δ sin2 θ
)
eiT δ sin(2θ)e2iT/2 0


cV

c+
c−

. (A5)



Fluids 2025, 10, 18 18 of 20

It is obvious that there are two time scales: the short time scale T for acoustic waves and
the shear ζ and long time-scale τ = MT for the tendency of the amplitude. We therefore
use a two-time scale approximation for the solution:

cm(T, τ) = c0
m(T, τ) + Mc1

m(T, τ) + · · · , (A6)

with the time derivative being d/dT = ∂/∂T + M∂/∂τ. Carrying out substitutions in
Equation (A5) and equating the orders in M yield, at O(1), leading order terms that are a
function of the slow time only, i.e., c0

m = c0
m(τ). At O(M), we obtain the following equation:

∂

∂T

c1
V

c1
+

c1
−

 = cos(ωT)

 0 d1eiT d1e−iT

−d2e−iT 0 −d3e−2iT

−d2eiT −d3e2iT 0


c0

V
c0
+

c0
−

− d
dτ

c0
V

c0
+

c0
−

, (A7)

where d1 = 2(1 − δ), d2 = (1 − 2δ sin2 θ), and d3 = δ sin(2θ)/2. For ω ̸= 1 and ω ̸= 2, the
secular terms are the slow time derivatives of the amplitudes, and these have to vanish for
asymptotic convergence. We thus obtain a constant solution at the leading order in this
case, as well as the asymptotic stability of the flow.

For ω = 1, there are additional secular terms (cos(ωT)e±iT) deriving from the inter-
action of the vorticity wave with the two acoustic waves. A further simplification can be
obtained by noting that if c−(0) = c∗+(0) and cV(0) are real, then c− = c∗+ for all times and
cV is real for all times. Therefore, we can write, without loss of generality, the system in
terms of cV and c+ only. Assuming the sum of the secular terms to be zero for ω = 1, we
obtain the following equations for the amplitudes of the vorticity and acoustic waves:

dc0
V

dτ
=

d1

2

[
c0
+ + (c0

+)
∗
]
, (A8)

dc0
+

dτ
= −d2

2
c0

V . (A9)

For real cV , the imaginary part of c0
+ is constant, and we can assume it to be zero without

loss of generality. This yields the following second-order equation for cV :

d2c0
V

dτ2 − (1 − δ)(2δ sin2 θ − 1)c0
V = 0. (A10)

We thus obtain exponential instability with growth rate
√
(1 − δ)(2δ sin2 θ − 1) when

sin θ > 1/
√

2δ, an inequality that is satisfied only for hyperbolic flow (δ > 1/2). There is
also the special case of the zero growth rate being satisfied either if d1 = 0 (δ = 1) or if
d2 = 0 (sin θ = 1/

√
2δ). In the first case, we obtain a constant amplitude for the vorticity

wave and linear growth for the acoustic waves.

c0
+ = c0

+(0)− cos(2θ)c0
V(0)τ/2. (A11)

In the second case, we obtain constant amplitudes for the acoustic waves and linear growth
for the vorticity waves:

c0
V = c0

V(0) + 2(1 − δ)ℜ[c0
+(0)]τ. (A12)

For ω = 2, the additional secular terms derive from the interaction of the two acoustic
waves. Under the same simplification as above (c− = c∗+), the zero sum of the secular terms
furnishes the following:

dc0
+

dτ
= −d3

2
(c0

+)
∗. (A13)
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Writing the amplitude in polar form c0
+ = r(τ)eiγ(τ) and equating the real and imagi-

nary parts after some algebra, we obtain the following equations for the tendency of the
amplitude and the phase:

dγ

dτ
=

d3

2
sin(2γ), (A14)

dr
dτ

= −d3r
2

cos(2γ). (A15)

The first equation has the following solution:

γ = arctan
[
tan(γ(0))ed3τ

]
. (A16)

For d3 < 0, that is, for θ ∈ [π/2, π), γ converges asymptotically to either zero or π

depending on the initial conditions. For d3 > 0, that is, for θ ∈ [0, π/2), γ converges to
±π/2 depending again on the initial conditions. Plugging (A16) in (A15) and integrating,
we obtain the following:

r =
√

cos2(γ(0))e−d3τ + sin2(γ(0))ed3τ . (A17)

In the large time’s asymptotic limit, r ∼ ed3τ/2 if d3 > 0 or r ∼ e−d3τ/2 if d3 < 0. Therefore,
in any case, the growth rate is given by |d3|/2.
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