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Large-Eddy Simulation of the Flow Past a Circular Cylinder at
Re = 130,000: Effects of Numerical Platforms and Single- and
Double-Precision Arithmetic
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1 3DMSimtek AS, 4056 Tananger, Norway; dmitry.lysenko@3dmsimtek.no
2 TechnipFMC, 4066 Stavanger, Norway

Abstract: Numerical simulations of sub-critical flow past a circular cylinder at Reynolds
number Re = 130,000 are performed using two numerical platforms: the commercial, Ansys
Fluent, and the open-source, OpenFOAM (finite volume method and large-eddy simulation
based on a differential equation for the sub-grid kinetic energy). An overview of the
available experimental data and similar large-eddy simulation studies is presented. A
detailed analysis of all accumulated data demonstrates satisfactory agreement between
them with a dispersion of approximately 20% for the main integral flow parameters. A
detailed comparison of the results obtained using single- and double-precision numerical
methods in Ansys Fluent did not reveal any noticeable discrepancies in the integral and
local flow parameters as well as the spectral characteristics. It is shown that the behavior
of the dynamic system of the fluid dynamic equations computed with single precision is
stable by Lyapunov and does not lead to any loss of accuracy. The reconstructed attractors
of the dynamic systems in phase space are limited by an ellipsoid.

Keywords: large-eddy simulation; circular cylinder; floating point precision; computational
fluid dynamics

1. Introduction
The results of a large-eddy simulation (LES) of the flow over a circular cylinder for

the Reynolds number Re = 130,000 are presented. This work is a logical continuation of
previous studies, where the large-eddy simulation was verified through external aero-
dynamic problems of various bluff bodies for the Reynolds numbers Re = 3900 [1–3],
Re = 20,000 [4], Re = 40,000–50,000 [5–7]. The present results can be used as a basis for
the further development of active flow control and boundary layer separation technology
using trapped vortex cells [8].

The goals and objectives are as follows:

• Further verify and validate large-eddy simulation for the turbulent separated flows at
practical Reynolds numbers.

• Review the available experimental data and compare the LES results obtained by the
Ansys Fluent and OpenFOAM platforms.

• Evaluate the accuracy of LES using coarse and medium-sized computational grids
(10–25 million cells).

• Investigate the LES results computed with single-precision arithmetic.
• Apply stability theory and Lyapunov metrics to analyze the turbulent separated flows

as dynamic systems.
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The flow over a circular cylinder at different Reynolds and Mach numbers is a gener-
ally recognized benchmark in both computational and experimental aerodynamics. For
the specific Reynolds number, Re = 130,000, the pioneering LES work can be considered
Breuer’s [9], which investigated numerical schemes, computational grids, and sub-grid
scale models. Cao and Tamura [10] focus on the study of three-dimensional vortex struc-
tures in the wake of a cylinder by analyzing the periodicity (modulation) of time series of
aerodynamic coefficients. Lloyd and James [11] test LES on fairly coarse computational
grids for the Reynolds numbers Re = 63,000–500,000. Yeon et al. [12] present detailed results
from numerical simulations for several flow regimes: sub-critical (Re = 126,000), critical
(Re = 250,000), and post-critical (Re = 757,000). Much attention is paid to estimating the
required linear size of the computational domain in the spanwise direction. For Re = 126,000,
a fairly satisfactory agreement between the predictions and experimental data was obtained.
Plata et al. [13] utilize an adapted LES based on the Galerkin method for the Reynolds numbers
Re = 3900, Re = 20,000, and Re = 140,000.

The work of Cantwell and Coles [14] can be considered a fundamental experimental
study, where, in addition to the integral flow parameters (such as forces, vortex shedding
frequency, and pressure coefficient), local distributions of the velocity field in the streamwise
and vertical directions are given, which is an important aspect for the validation and
verification of the LES technique. In addition to the work of Cantwell and Coles [14], a
number of experimental studies are available in the literature where alternative data can be
found, but are mainly limited to integral characteristics [15–31].

It is crucial to critically examine the extensive experimental database available. Pa-
rameters such as the mean lift coefficient, mean angle of separation, and Strouhal number,
computed using LES and measured experimentally, show high density and low scattering.
However, a significant dispersion of approximately 20% is observed for the mean drag
coefficient and distributions of the fluctuating lift. This dispersion suggests the existence
of flow bifurcation or an earlier transition of laminar boundary layers to turbulent ones,
leading the flow to the critical regime.

Available data on the effect of floating-point arithmetic on the accuracy of computa-
tional fluid dynamics (CFD) problems are limited to the work of Brogi et al. [32], where the
effect of single-, double-, and mixed-precision (SP, DP, and SPDP hereinafter, respectively)
arithmetic was presented using the OpenFOAM toolbox. They showed, on the one hand,
that the use of SP and DP for a number of laminar flows does not affect the accuracy of the
solution. On the other hand, for a number of the turbulent flows, the opposite results were
obtained. For the turbulent flows, round-off errors in nonlinear terms of the Navier–Stokes
equations lead to an increase of high-frequency disturbances (or noise) and, in some cases,
can lead to a solution’s divergence for systems of linear algebraic equations. Thus, Brogi
et al. [32] failed to obtain a converged solution for the isotropic decaying turbulence test
case using the ‘rhoPimpleFoam’ application and single-precision arithmetic. Here, they
recommend using the concept of mixed-precision arithmetic, SPDP, implemented in Open-
FOAM (starting from v1906), where matrix operations are computed within DP and all
other underlying code is compiled and executed within SP. They also show the importance
of the turbulence model and the grid cell sizes, i.e., that implicit numerical diffusion can
compensate for the high-frequency perturbations caused by rounding errors in the case
where the linear scales of the smallest eddy structures are comparable to or smaller than
the size of the grid cell.

The article is presented in five parts. The first two sections are devoted to the problem
statement and aspects of numerical and mathematical modeling. Then, the main results are
presented and compared with the already available experimental and numerical data. The
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fourth part provides a brief discussion and critical review. At the end, the main conclusions
are presented.

2. Problem Statement, Computational Grids, and Brief Aspects of
Mathematical Modeling and Numerical Methods

A brief problem statement, description of the computational domain and finite-volume
grids, and some aspects of mathematical modeling and numerical methods are presented.

The turbulent flow is characterized by the following Reynolds and Mach numbers:
Re = ρ∞U∞D/µ∞ = 130,000, M = U∞/a∞ = 0.05, respectively. Here, ρ is the density,
U is the velocity, a is the speed of sound, µ represents the dynamic molecular viscosity,
and D is the diameter of cylinder. The subscript ∞ indicates the flow parameters at the
inlet boundary.

Computational Grids

Numerical simulations are performed on two types of meshes:

• Unstructured, hexahedral with different levels of adaptation (Figure 1b–d; used here
and below the abbreviation HM). The computational domain is defined as a rectan-
gular parallelepiped with dimensions 30D × 20D × 10D in the x, y, and z directions,
respectively. As a starting point, the computational block was divided into 60× 40× 20
nodes. Next, the grid was successively adapted in three iterations with a coefficient
of 2 × 2 × 2 in the regions from y/D = −4 to y/D = 4, y/D = −2.25 to y/D = 2.25,
and y/D = −1.9 to y/D = 1.9. The cylindrical region with a radius of 1.75, located in
the center of the Cartesian coordinates, was adapted at the next level with the same
coefficient. The last iteration was applied to a rectangular region with dimensions
x/D = −1 to x/D = 2 and from y/D = −1 to y/D = 1. Grid adaptation at all
levels completely covered the computational region in the spanwise direction. Thus,
the circumferential grid resolution of the cylinder is Nθ = 184, and along the span,
Nz = 640 (Lz/D = 0.0156). For the adequate resolution of the boundary layer on the
surface of the cylinder, a viscous sub-grid was added with a minimum dimensionless
cell height, y+ = h1st/D = 4 × 10−4, an expansion factor of 1.04, and a total number
of layers of 40, respectively. The total grid size is 2.43 × 107 cells.

• Curvilinear, orthogonal O-type (Figure 1e–g; used here and below the abbreviation
OM) with a dimension of 444 × 444 × 64 (1.36 × 107 cells) in the x, y, and z directions,
respectively. The length of the computational domain in the streamwise direction
is 25 × D, and in the spanwise direction, Lz = π × D. The grid nodes are radially
relaxed from the cylinder toward the outflow boundary with the dimensionless height
of the first cell being y+ = r/D = 1.25 × 10−4 and an expansion coefficient in the
radial direction of 1.06.

Two automatic grid partitioning techniques were used in the present simulations:
METIS [33] and PT-Scotch [34], which are based on a graph partitioning approach and
implemented in Ansys Fluent and OpenFOAM packages, respectively.
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Figure 1. General view of the unstructured, hexahedral and curvilinear, orthogonal meshes and
computational domain ((b,d) and (e,g), respectively), and their frontal view and zoom in the vicinity
of cylinder (c,f). x, y and z are Cartesian coordinates in the longitudinal, vertical, and spanwise
directions, and θ and r are circumferential and radial coordinates (a).

3. Brief Aspects of Mathematical Modeling and Numerical Simulations
The Favre-filtered balance equations for mass, momentum, and energy are

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj
= 0, (1)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj

∂xj
+

∂ p̄
∂xi

−
∂σ̌ij

∂xj
= −

∂τij

∂xj
, (2)

∂ρ̄h̃
∂t

+
∂ρ̄h̃ũj

∂xj
− ∂ p̄

∂t
− ũj

∂ p̄
∂xj

+
∂q̌j

∂xj
− σ̌jiS̃ij = −Cv

∂Qj

∂xj
. (3)

The symbols ρ, p, and u represent density, pressure, and velocity, respectively. En-
thalpy per unit mass, h, is given by h = ε + p/ρ, with ε as internal energy per unit mass
and T as temperature. The notations (·̄), (·̃), and (·̌) indicate Reynolds-averaging, Favre-
averaging, and filtering operations, respectively.

The conductive flux and viscous stresses are expressed as

q̌j = −κ(T̃)
∂T̃
∂xi

(4)

and

σ̌ij = 2µ(T̃)
(

S̃ij −
1
3

δijS̃kk

)
, (5)

where the rate-of-strain tensor, S̃ij, is

S̃ij =
1
2

(
∂ũi
∂xj

+
∂ũj

∂xi

)
. (6)

Here, the viscosity, µ, is calculated by Sutherland’s law and κ—conductivity.
For completeness, a filtered equation of state (EoS) is provided to close the system of

governing equations using the ideal gas law:
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p̄ = ρ̄RT̃. (7)

Assuming the sub-grid scales (SGS) incompressibility hypothesis [35,36], the SGS
stress τij and heat flux Qj can be expressed as follows:

τij = ρ̄
(
ũiuj − ũiũj

)
, (8)

Qj = ρ̄
(

ũjT − ũjT̃
)

. (9)

For closure, the k-equation eddy viscosity SGS model [37–39] and its dynamic version
are used, based on the SGS kinetic energy k̃ = 1

2 (ũ · u − ũ · ũ). The SGS turbulence stresses
are expressed as

τij = −2µBS̃ij = −2ckρ
√

k̃∆S̃ij, (10)

with the SGS viscosity computed as

µB = ckρ
√

k̃∆, (11)

where ∆ is the filter length. The transport equation used to estimate k̃ is

∂

∂t
(
ρ̄k̃
)
+

∂

∂xj

(
ρ̄ũj k̃

)
= Fp + Fd − Fϵ, (12)

where production Fp, diffusion Fd, and dissipation Fϵ are expressed as

Fp = −B · D̃, (13)

Fd =
∂

∂xj

(
(µB + µ)

∂k̃
∂xj

)
, (14)

Fϵ = cϵ ρ̄ k̃3/2/∆, (15)

B =
2
3

ρ̄k̃I − 2µBD̃D, (16)

D̃D =

[
D̃ − 1

3
(trD̃)I

]
, (17)

D̃ =
1
2

(
grad ũ + grad ũT

)
. (18)

Here, I is the unit tensor, B is the density-weighted stress tensor, D̃D is the deviatoric
part of the rate of strain tensor, and the model coefficients are ck = 0.07 and cϵ = 1.048 [40].
The dynamic model for the k-equation can be derived using the Germano identity with
another filter kernel of width ∆ = 2∆ (the theoretical background can be found in [35]).

Large-eddy simulation is performed using the CFD platforms Ansys Fluent 2021R1 [41]
and OpenFOAM v2212 [42] (hereinafter, the abbreviations AF and OF are used, respec-
tively). To close the filtered, Favre-averaged Navier–Stokes equations, the differential
sub-grid scale model for the turbulence kinetic energy (k-model) and its dynamic modifi-
cation are used. Both numerical platforms are based on the finite volume method (FVM)
implemented as a pressure-based solver [43] using a limited central differencing scheme of
the second-order (bounded CDS-2) for the velocity, a second-order upwind scheme (SOU)
for the remaining nonlinear convective terms, and an implicit Euler method (bounded
BDF-2) for time integration [35]. The time integration step is chosen to ensure that the
local Courant number is less than one (CFL < 1). The system of linear algebraic equa-
tions is solved using the algebraic multigrid method (AMG) accompanied by the additive
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correction strategy [44] and the classical iterative Gauss–Seidel procedure in AF and the
symmetric iterative Gauss–Seidel method for all dependent variables except pressure,
which is calculated using the geometric multigrid method (GAMG) [45] in OF.

For the spectral analysis of time series, the classical methods of the fast Fourier
transform (FFT), Welch periodograms [46], and continuous wavelet transform (CWT) are
used, detailed descriptions of which can be found in [1]. The Lyapunov metric, described in
detail in our previous work [3], is used to study the phase properties of dynamic systems.

The formulation of boundary and initial conditions is similar to that presented ear-
lier [1] with the exception of setting the velocity field at the inlet boundary and corresponds
to the free-stream values of the Reynolds and Mach numbers Re = 130,000 and M = 0.05.
The inlet boundary conditions (on the left side of the computational domain) were treated
as laminar. At the outlet, wave-transmissive or non-reflecting conditions were applied.
Isothermal no-slip conditions were enforced on the cylinder’s surface. Periodic flow was
assumed in the spanwise direction of the cylinder. The initial conditions corresponded
to the sudden stopping of a cylinder in a fluid flow, meaning the inflow conditions were
initially extended throughout the entire computational region. The ideal gas law is used
to account for compressibility. Molecular viscosity and thermal conductivity are assumed
to be constant. The Prandtl number was taken to be 0.75, and the ratio of specific heat
capacities was 1.4.

The characteristic convective time is defined as the ratio of the streamwise length of the
computational domain to the free-stream velocity, τconv = Lx/U∞. The solution is considered
statistically converged after τconv > 4. To obtain statistically independent data, time averaging
is performed over an interval equal to Nvs = 25 (here, Nvs is the vortex shedding cycle or the
period of oscillatory motion). The averaging operator is denoted as ⟨⟩.

4. Results
The runs matrix is given in Table 1. It should be noted that LES using OF were per-

formed on an unstructured hexahedral grid, while the O-type grid was used to study the
effects of single- and double-precision arithmetic using AF. The following sub-grid scale
models were tested: the differential model for the kinetic energy (or the k-model, with
coefficients Ck = 0.07 and Cϵ = 1.042, hereinafter TKE) and its dynamic modification
(hereinafter dTKE). The results are compared with the experimental data of Achenbach [17],
Cantwell and Coles [14], Schewe [22], Norberg [27], and Lim and Li [29] and LES data
presented by Breuer [9], Cao and Tamura [10], Lloyd and James [11], Yeon et al. [12], and
Plata et al. [13]. A critical remark should be made here: in physical experiments of exter-
nal aerodynamics, an important factor is the turbulence intensity and the uniformity of
the incoming flow, which in turn is determined by the quality of a wind tunnel. Some-
times, there is a possibility that the laminar–turbulent transition will occur directly in the
boundary layer before its separation from the bluff body surface. In this case, a number
of integral parameters, such as the separation angle, pulsations of the lift coefficient, and
the length of the recirculation zone, can be significantly overestimated/underestimated. In
addition, a flow bifurcation is possible, as in the case of the flow over a circular cylinder at
Re = 3900 [3].



Fluids 2025, 10, 4 7 of 25

Table 1. Runs matrix: numerical platform, floating-point arithmetic, computational grid, and sub-grid
scale model.

Run CFD Code Precision Mesh TM
OF-TKE OF DP HM TKE

OF-dTKE OF DP HM dTKE
OFm-dTKE OF SPDP OM dTKE
AF32-dTKE AF SP OM dTKE
AF64-dTKE AF DP OM dTKE

T-AF32-dTKE AF SP HMT dTKE
T-AF64-dTKE AF DP HMT dTKE

4.1. Instantaneous Flow Field

The dynamics of the lift and drag coefficients over time are shown in Figure 2.
Figure 3 illustrates the formation of a vortex street and coherent energy structures us-
ing the Q-criterion, Q = S2 − Ω2 = 104 (where S is the strain rate tensor and Ω represents
the vorticity). Figure 4 shows the probability density function of the normalized lift co-
efficient Cl . Two different forms of probability distribution obtained for the AF32-dTKE,
AF64-TKE and OF-TKE, OF-dTKE runs, respectively, are clearly visible. OF-TKE (and it
seems OF-dTKE as well) has a distribution close to bi-modal, having two widely spaced and
symmetrical peaks. For AF32-dTKE and AF64-dTKE, the histograms reproduce the shape
of the Gaussian curve (or normal distribution) quite well. In practice, for the sub-critical
flow over a cylinder, the normal distribution of Cl obtained by Schewe [22], as well as in the
numerical results obtained by Cao and Tamura [10], is confirmed. The physical interpreta-
tion of this phenomenon is that random modulations of amplitude and frequency during
the formation and shedding of vortices and their subsequent convection downstream from
the wake contribute to the formation of a distribution close to normal [10]. The difference in
probability density distributions between AF32-dTKE, AF64-TKE and OF-TKE, OF-dTKE
may explain the observed variations in aerodynamic coefficients in Figure 2. It should also
be considered that the time integration interval used in this study may not be large enough
to obtain a fully statistically converged flow field.

Figure 2. Time evolution of the lift (a,c) and drag (b,d) coefficients obtained for OF-TKE, OF-dTKE
and AF64-dTKE, AF32-dTKE runs, respectively, during over ≈30 oscillation periods for the flow past
a circular cylinder at Re = 130,000.
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Figure 3. Visualization of a vortex shedding downstream from a circular cylinder at Re = 130,000
using the Q-criterion, Q = 104: OF-dTKE (a) and AF64-dTKE (b).

Figure 4. Probability density distribution (PDF) of the lift coefficient normalized by its root-mean-
square value: AF32-dTKE (a), AF64-dTKE (b), OF-TKE (c), and OF-dTKE (d).
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4.2. Integral Parameters

Table 2 presents the main integral flow parameters, such as the lift (Cl), drag (Cd), and
pressure base suction (Cpb) coefficients, the Strouhal number (Stp), the separation zone
length (Lr), and the primary boundary layer separation angle θs.

The distribution of the pressure coefficient ⟨Cp⟩ = 2(⟨p⟩ − p∞)/(ρ∞U2
∞) (here, p∞ is

the free-stream pressure) over a circular cylinder is shown in Figure 5a. The numerical
results obtained by OF-TKE, OF-dTKE are in satisfactory agreement with the experiments
of Cantwell and Cowles [14] and Lim and Li [29], as well as with the numerical data of
Cao and Tamura [10] and Yeon et al. [12], while the ⟨Cp⟩ distributions by AF32-dTKE and
AF64-dTKE better approximate the experimental data of Achenbach [17].

In Figure 5b, the friction coefficient along the cylinder surface ⟨Cτ⟩ = 2(⟨τ⟩ −
p∞)/(ρ∞U2

∞) (here, τ is the friction) obtained in the present LES is compared with the
experiment by Achenbach [17]. The OF-TKE, OF-dTKE runs are in satisfactory agreement
with the numerical data of Yeon et al. [12] and qualitatively reproduce distributions by
Achenbach [17]. It should be noted that the experimental measurements of Achenbach [17]
for Re = 100, 000 are used. The AF32-dTKE and AF64-dTKE runs show qualitative agree-
ment with the data of Achenbach [17] starting from the stagnation point (θs = 0◦) to the
separation point θ ≈ 80◦. The separation angle θs is determined from the condition of zero
shear stress on the cylinder surface. From the experiments of Achenbach [17] and Cantwell
and Cowles [14], the boundary layer separation occurs at θs = 77–78◦. The computed
values of θs are slightly overestimated as θs = 83–85◦ but are consistent with the data of
Yeon et al. [12] (θs = 81◦). In the results obtained by Breuer [9], the separation point is
shifted even further downstream θs = 91–94◦. The nature of the curves ⟨Cτ⟩ obtained in
the simulations on the back side of the cylinder indicates the presence of secondary vortex
structures, however, due to the lack of experimental data, their quantitative assessment is
not given here.

The mean base suction coefficient ⟨Cp,b⟩ is defined as the pressure coefficient on the
cylinder surface at the point where θ = 180◦. Its values computed by OF-TKE, OF-dTKE,
AF32-dTKE, and AF64-dTKE were ⟨−Cp,b⟩ = 1.36 and ⟨−Cp,b⟩ = 1.01, respectively. At the
same time, the experimental results yield values in the range of ⟨−Cp,b⟩ = 1.15–1.25 [14,17,29].
A wide range of values of ⟨Cp,b⟩ is also observed in the available LES works: from
⟨−Cp,b⟩ = 0.86–1.01 [11] to ⟨−Cp,b⟩ = 1.51–1.64 [9,12,13].

The base suction pressure coefficient is related to the drag (Cd) and lift (Cl) co-
efficients, which are calculated by integrating the pressure over the cylinder surface:
Cd = 2Fx/(ρ∞U2

∞ A) and Cl = 2Fy/(ρ∞U2
∞ A). Here, Fx and Fy are the forces acting on the

cylinder in the streamwise and vertical directions, respectively. A = Lz × D is the surface
area of the cylinder projected along the span. The mean drag coefficient was ⟨Cd⟩ = 1.34
for OF-TKE, OF-dTKE and ⟨Cd⟩ = 0.94 for AF32-dTKE and AF64-dTKE, respectively. The
experimental value of the drag coefficient converges to ⟨Cd⟩ = 1.2 [14,17,22,29], except
in the data provided in the NACA-TM-3038 report [16], where ⟨Cd⟩ ≈ 0.95–1.05 is pre-
sented. The numerical values obtained from different LES studies show a large scatter
⟨Cd⟩ = 0.89–1.43 [9–13]. It is interesting to note that the mean value predicted by LES,
including the present results, converges to ⟨Cd⟩ = 1.19 ± 0.2% with a dispersion of about
20%. The lift coefficient pulsations obtained in the present work (⟨C′

l ⟩ = 0.27–0.41) are
consistent with the available experimental (⟨C′

l ⟩ = 0.25–0.52 [14,22,27]) and numerical
(⟨C′

l ⟩ = 0.3–0.63 [10–12]) data.
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Figure 5. Comparison of the pressure (a) and friction (b) coefficients over the cylinder surface
(θs = 0—stagnation point) for the flow over a circular cylinder at Re = 130,000. Note that the present
results are not averaged in the spanwise direction in order to show their variation over Lz.

An important parameter is the length of the recirculation zone Lr, defined as the
distance between the base of the cylinder and the sign change of the centerline mean
streamwise velocity. It is well-known that the measurement of Lr in experiments often
strongly depends on the early laminar–turbulent transition in separated shear layers,
usually caused by the incoming turbulence intensity, when the early transition corresponds
to a shorter length of the separated zone [3,47]. From the LES point of view, the important
parameters are the statistical convergence [48], the free-stream turbulence intensity [3],
the spanwise length of the computational domain [10], and, in general, the numerical
dissipation of the computational methodology (grids, convective schemes, algorithms,
etc.) [9,11–13]. The experimental values of the recirculation zone length are limited by the
data of Cantwell and Cowles [14], Lr = 0.4–0.5. These values correlate quite satisfactorily
with the numerical data of [9,12,13], Lr = 0.42–0.63, and the present results obtained by
OF-TKE and OF-dTKE, Lr = 0.55–0.58. At the same time, AF32-dTKE and AF64-dTKE show
Lr = 0.68 when the length of the separation zone significantly exceeds the experimental
measurements [14].
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Table 2. Review of experimental and LES studies for the turbulent flow over a circular cylinder at
Re = 130,000: parameters and integral characteristics.

Source Method ⟨Cd⟩ ⟨C′
l ⟩ St −⟨Cp,b⟩ ⟨Lr /D⟩ θs

Achenbach [17] HWA 1.19 1.25 78
Cantwell & Coles [14] HWA 1.24 0.52 0.179 1.21 0.4–0.5 77

Schewe [22] HWA 1.17 0.25 0.20
Norberg [27] 0.49 0.185

Lim & Lee [29] HWA 1.2 0.185 1.15

Breuer (DC) [9] LES 1.28 0.22 1.51 0.46 94
Breuer (D3) [9] LES 1.37 0.21 1.6 0.42 91

Cao & Tamura [10] LES 1.16 0.3 0.2
Lloyd & James (4C) [11] LES 1.00 0.63 0.177 1.01
Lloyd & James (4F) [11] LES 0.89 0.5 0.203 0.86

Yeon et al. [12] LES 1.37 0.62 0.2 1.64 0.63 81
Plata et al. [13] LES 1.43 0.19 1.59 0.5

Present work
OF-TKE LES 1.33 0.41 0.19 1.36 0.55 83◦

OF-dTKE LES 1.34 0.53 0.19 1.37 0.58 83◦
OFm-dTKE LES 0.98 0.55 0.18 1.03 0.62 89◦
AF32-dTKE LES 0.94 0.28 0.21 1.01 0.68 85◦
AF64-dTKE LES 0.94 0.27 0.21 1.01 0.68 85◦

T-AF32-dTKE LES 1.01 0.30 0.22 0.95 0.67 89◦
T-AF64-dTKE LES 1.01 0.31 0.22 0.95 0.67 89◦

4.3. First- and Second-Order Statistics

The distribution of the mean streamwise velocity ⟨Ux⟩ along the central axis is shown
in Figure 6a. It is clearly seen that the present LES is in satisfactory agreement with the
experiment by Cantwell and Coles [14] in the far wake (x/D > 2), while in the vicinity
of the cylinder, the results generally overestimate the length of the recirculation zone. It
is interesting to note that the flow intensity (minimum values of the streamwise velocity)
in the core of the separation zone obtained by AF32-dTKE and AF64-dTKE differs by
approximately 1.5 times from the values obtained by OF-TKE and OF-dTKE.

Figure 6. Distribution of the mean streamwise velocity (a) as well as the RMS values of the streamwise
(b) and vertical (c) velocity along the central axis for the flow over a circular cylinder at Re = 130,000.
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The pulsations of the streamwise velocity ⟨U′
x⟩ along the central axis (Figure 6b)

obtained by OF-TKE and OF-dTKE are in satisfactory agreement with measurements
made by Cantwell and Coles [14] and with the LES data of Cao and Tamura [10] and
Yeon et al. [12]. The results obtained by AF32-dTKE and AF64-dTKE are closer to the
experiment by Lim and Lee [29].

The predicted pulsations of the vertical velocity
〈

U′
y

〉
along the central axis and

experiment data of Cantwell and Coles [14] are compared in Figure 6c. The results obtained
by AF32-dTKE and AF64-dTKE match the numerical data of Cao and Tamura [10] and are
underestimated by about 15% compared with the experiment of Cantwell and Coles [14].
The results obtained by OF-TKE and OF-dTKE diverge by about 30% from the physical
measurements in the near wake (x/D < 2), after which they begin to converge smoothly.
The same trend is observed in the LES results obtained by Yeon et al. [12].

In Figure 7, the predicted and experimental profiles of the mean streamwise and
vertical velocities in the radial cross-section of the computational domain are compared
at x/D = 1, 1.5, and 2. The deficit observed in the present LES in all three cross-sections
for the streamwise velocity with respect to the experimental data is explained by the
general overestimated value of the separation zone length. For the vertical velocity, satis-
factory agreement was obtained between the present LES and experiment by Cantwell and
Coles [14], with the exception of x/D = 1, where a small disagreement was also observed
for AF32-dTKE and AF64-dTKE. Figure 7 shows the radial profiles of the root-mean-square
values of the normal Reynolds stresses, ⟨U′

xU′
y⟩, where, in general, qualitative agreement

between the present and experimental data is observed. The discrepancies for the peak
values are approximately 20%.

Figure 7. Radial profiles of the mean streamwise and vertical velocities as well as the mean Reynolds
stresses ⟨U′

xU′
u⟩ in the near wake (x/D = 1.0, 1.5, 2.0) for the flow over a circular cylinder at

Re = 130,000.
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4.4. One-Dimensional Energy Spectra

The flow over a circular cylinder at Re = 130,000 belongs to the sub-critical regime
when the boundary layers remain laminar (1000 < Re < 200,000). In this range of Reynolds
numbers, both absolute and convective instabilities are present: asymmetric vortex shed-
ding (Benard/von Kármán) and Kelvin–Helmholtz (KH) in the shear layer [49]. The vortex
instability is periodic and has a characteristic frequency fvs = StU∞/D, where St is the
Strouhal number. Using FFT for the vertical velocity in the near wake of the cylinder
(x/D = 1.5, y/D = 0), the computed Strouhal numbers were St = 0.19 for AF32-dTKE
and AF64-dTKE, and St = 0.21 for OF-TKE and OF-dTKE, respectively. It should be noted
that if FFT is applied for the lift coefficient, the Strouhal numbers are slightly different:
St = 0.19 and St = 0.18 for AF32-dTKE, AF64-dTKE and OF-TKE, OF-dTKE, respec-
tively. The experimental value of the Strouhal number for Re = 130,000 varies within
St = 0.18–0.20 [14,22,27,29]. The LES data from Table 2 also show a small dispersion,
St = 0.177–0.22.

In Figure 8a, the one-dimensional energy spectra, normalized by the characteristic
Strouhal frequency ( fvs), are compared with the experimental measurements of Ong and
Wallace [50], Parnaudeau et al. [48], and the −5/3 power law. The Welch’s periodogram
technique [46] is used to smooth the spectral curves. Also, to increase the statistical
significance [47], the spectra are averaged in the spanwise direction. It is well known that
the effect of the excessive dissipation of the numerical method usually leads to the rapid
attenuation of the spectrum and unsatisfactory reproduction of the inertial interval [1,47,51].
In the present work, the inertial interval is clearly reproduced over a wide range of wave
numbers, which agrees well with the experiments by Ong and Wallace [50] and Parnaudeau
et al. [48]. The presence of small-scale, coherent energy structures that remain active far from
the cylinder is shown in Figure 3. All predicted curves in Figure 8a collapse satisfactorily
up to f / fvs ≈ 1, after which they begin to decay slowly.

Figure 8. One-dimensional energy spectra of the vertical velocity in the near wake of a cir-
cular cylinder (a) and shear layer instability (b) at Re = 130,000. Signals measured at points
x/D = 1.5, y/D = 0 (a) and x/D = 0.15, y/D = 0.5 (b) with multiple distributions along the span.
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The dynamics of boundary layer separation are similar to the mixing layer when the
length of the recirculation zone is large enough. The Kelvin–Helmholtz (KH) mechanism
underlying the shear layer instability has a characteristic frequency ( fkh) for Re > 1200
at which the mixing layer collapses into highly concentrated vortices [52]. At present, a
sufficiently large amount of experimental data has accumulated to analyze the dependence
of the characteristic frequency of the mixing layer on the Reynolds number for various
simple geometric figures. Some data are presented in Figure 9, and the reader can find a
further analysis of them in [6,7].

In the LES framework of the flow over a circular cylinder at Re = 3900 [1] and
Re = 20,000 [4], the values fkh/ fvs = 7–8 and fkh/ fvs = 16.2 were computed, respectively.
These results are in good agreement with the available experimental and numerical results [53].
In the work of Cao and Tamura [10] for Re = 130,000, the numerical values of the characteristic
peak frequencies fkh/ fvs = 15–17 are presented. The present LES for Re = 130,000 (AF32-dTKE
and AF64-dTKE) are in the range of fkh/ fvs ≈ 28.9. Based on these numbers, it is possible
to show a quadratic dependence of the characteristic instability frequency on the Reynolds
number of the form

√
Re, taking into account the thickness and separation velocity of the

laminar boundary layer, which is in good agreement with Bloor [54], who established the
exponent, n = 0.67: fkh/ fvs = A ×Re0.67. The present results are well approximated by the
adjusted value n = 0.65 (Figure 9).

Figure 9. Dependence of the normalized characteristic frequency of the separated shear layers on the
Reynolds number: results of numerical and physical modeling. Here CC, SC, TC and HC—abbreviations
for the circular, square, triangular and semi-circular cylinders, respectively. Experimental and
numerical data collected from [1,4,6,7,54–65].

Figure 8b shows the curves of the energy spectra, where a relatively broadband
frequency range of fkh/ fvs is visible. To quantitatively estimate the average frequency of
the KH instability, the one-dimensional wavelet transform is used. Figure 10 presents the
CWT results for the vertical velocity measured in the shear layer near the vicinity of the
circular cylinder for the different Reynolds numbers. It is clearly seen that both the BK and
KH instabilities occur only periodically and have an intermittent character. The KH peaks
do not always appear at the same frequency but are localized in a certain frequency range
and also depend on time. A tendency for the energy density to increase with increasing
Reynolds number is clearly visible.
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Figure 10. Energy scalogram of wavelet coefficients for the vertical velocity in the wake of circular
cylinder in a separated shear layer, calculated using CWT for Re = 3900, 20,000 and 130,000 (AF64-
dTKE run). Energy scalograms for Re = 3900 and Re = 20,000 were computed based on results
obtained in [1] and [4], respectively. Here, t∗ = tU∞/D is the dimensionless time. The dashed line
shows the average frequency of the broadband interval fkh/ fvs = 28.9 for Re = 130,000.

4.5. Lyapunov Metric

In this section, an attempt is made to quantitatively and qualitatively estimate the
difference between the two dynamic systems, AF32 and AF64, using the Lyapunov metric.
The modified procedure, proposed by Nastak et al. [66] and later adapted by Lysenko [3],
is used for the LES of the flow over a circular cylinder.

To solve the problem, the same numerical methodology and computational grid
(similar to AF32-dTKE and AF64-dTKE) are utilized. Two scenarios are investigated. In
the first case, single-precision arithmetic is used, while in the second, double-precision
arithmetic is employed. The simulations start at the same time t0. Both solutions are
initialized with statistically converged data after reaching the convective time τconv = 4.
Figure 11 compares the difference in phase trajectories obtained for two solutions, AF32
and AF64. To calculate the divergence, the L2-norm is used, and it is assumed that the
process is ergodic (the Lyapunov exponent does not depend on the initial conditions when
the level of initial perturbations is sufficiently small: ϵ ≪ 1 [67]). In this case, the initial
perturbations are the loss of accuracy due to round-off errors when going from DP to
SP, i.e., for the C and C++ programming languages (in which both numerical platforms
are implemented), ϵ ≈ ∥2−52 − 2−23∥. The presented time evolution of the separation is
similar to the work of Nastak et al. [66] and contains two domains: the linear region and the
saturation region. It can be noted that the divergence increases with time when the velocity
fields first diverge from small structures to larger homogeneous isotropic structures over
time [3,66]. Also, in Figure 11c, there is a well-defined region of the so-called initial pulse
(the initial response region) [66] which is absent in the phase trajectories for the streamwise
and vertical velocities.
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Figure 11. Divergence in streamwise (a), vertical (b), and spanwise (c) velocities between two
solutions obtained using single-precision (AF32) and double-precision (AF64) arithmetic for the flow
over a circular cylinder at Re = 130, 000. The time scale is normalized using the convective time, τconv.
The dashed lines represent the linear region, and the dash-dotted lines represent the saturation region.

The Lyapunov exponent is estimated from the slope of the separation curve in the
logarithmic region and is shown as dashed lines in Figure 11. The slope of the Lyapunov
exponent is related to the predictability time [66], which corresponds to tp∼1.5τconv. In
practice, the predictability time shows how quickly a dynamic system will transit from one
state to another [3]. According to [66], the predictability time and the Lyapunov exponent
can be used as quantitative information about the time horizon over which the phase
transition can be modeled. The Lyapunov metric can also be used to study the stability of
dynamic systems. Thus, an important conclusion and a direct consequence of Figure 11 is
that the dynamic system AF32 is stable by Lyapunov [68]. From Figure 11, it is clearly seen
that after reaching the predictability time, saturation occurs, since the divergence of phase
trajectories reaches an asymptotic: a statistically stationary state of both systems is reached.

Under some considerations, it can be assumed that the concepts of turbulence and
chaos are closely related [3,69,70]. Thus, the concept of an attractor for nonlinear dynamic
systems from the chaos theory can be applied to the analysis of turbulent flows described
by the Navier–Stokes equations. To reconstruct attractors, i.e., states of the phase space or
the evolution of the system from the initial conditions, one can use a three-dimensional
time signal of the computed norm of the dimension p, ∥Lp∥ ≡

(
1/V

∫
V(·)

pdV
)1/p (where

V is the volume of the computational domain) using the Takens embedding method [71]
in the same spirit as Alberti et al. [70] and Lysenko [3]. In practice, the second-order
norm can be used to examine the behavior of the attractor in the phase space: Θ(t) =[

d∥Ux∥
dt , d∥Uy∥

dt , d∥Uz∥
dt

]
(here, the symbol t denotes time). Figure 12 shows the evolution of the

AF32 and AF64 attractors in the three-dimensional space as well as the results obtained by
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Lysenko [3] for Re = 3900. It is evident that the results for Re = 3900 and Re = 130,000 are
quite consistent, and the dimension of the attractors for Re = 130,000 significantly exceed
the case for Re = 3900. Similarly to Lysenko [3], all systems are limited to simple geometric
figures, ellipsoids.

Figure 12. Attractors of nonlinear systems AF32-dTKE and AF64-dTKE for the flow over a circular
cylinder at Re = 130,000, as well as their bounding ellipsoids, in the three-dimensional space. For the
sake of completeness, similar results for Re = 3900 [3] are presented.

5. Discussion
Large-eddy simulations of the flow over a circular cylinder at Re = 130,000 were

carried out in order to assess the following goals and objectives:

• Further validation and verification of LES for the external aerodynamics and turbulent
separated flows. Previously, the turbulent flows over circular (Re = 3900 [1–3] and
Re = 20,000 [4]), semi-circular (Re = 50,000 [7]), and triangular (Re = 45,000 [5,6])
cylinders were studied in detail. The differential sub-grid scale k-model (with con-
stants Ck = 0.07 and Cϵ = 1.048) and its dynamic modification were tested. In the
present work, the Reynolds number was increased by almost an order of magnitude to
Re = 130,000. Also, in addition to OF, numerical simulations was extended to use the
commercial CFD code AF.

• Investigation of LES and related numerical methods using single-precision arithmetic,
which is also due to several factors. The most important is the possibility of the more
efficient use of computational resources: on the one hand, numerical methods using SP
arithmetic use less RAM and, as a rule, provide a small performance gain (≈10–20%)
when using classical CPUs. On the other hand, they allow for achieving significant
acceleration on graphics accelerators, which are usually optimized for single-precision
calculations, as well as on hybrid CPU–GPU systems.
As mentioned above, OF provides the ability to perform simulations using mixed-
precision arithmetic, SPDP. To test it, another special run (OFm-dTKE) was performed
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using the O-type grid. In this case, the problem was set up as closely as possible to
match the AF32-dTKE and AF64-dTKE runs. On the one hand, the predicted integral
flow characteristics (Table 2) converge with a small variation to the data obtained
by AF32-dTKE and AF64-dTKE, which indicates the reasonable consistency of the
two numerical platforms. On the other hand, the numerical method implemented in
OF, even for the SPDP case, has a smaller numerical diffusion, which is clearly seen
in Figure 13, where the one-dimensional energy spectra are compared. Numerical
dissipation is clearly visible for the AF32-dTKE and AF64-dTKE runs. It should
be noted that it was not possible to obtain a final physical solution using OF with
single-precision arithmetic (similarly to Brogi et al. [32]). Most likely, this is due to
the fact that the linear algebra algorithms implemented in OF are more sensitive to
high-frequency perturbations due to round-off errors. It is also worth emphasizing
that in the present work, the dynamic differential sub-grid scale model for the kinetic
energy was used, which is strictly dissipative under the condition that the turbulent
viscosity is positive [35], i.e., it makes a certain contribution to the suppression of
high-frequency oscillations, which, together with the algebraic multigrid method
implemented in AF, allows for the effective simulation of the turbulent flows with
single precision.

• Qualitative and quantitative testing of LES implemented in two numerical platforms,
AF and OF, using coarse and medium-sized computational grids (10–25 M cells) for the
Reynolds number of practical interest (Re = 130,000). Curved, orthogonal O-type (OM)
and unstructured, hexahedral (HM) meshes, with several levels of computational
adaptation, are used.

In general, the present LES reproduced the physics of the flow over a cylinder, consist-
ing of several important mechanisms. First of all are the occurrence of the Kelvin–Heimholtz
instability in the separated shear layers, further growth and development of disturbances
on the discontinuity interface and the subsequent laminar–turbulent transition, and the de-
velopment of vortex cores and their convection downstream (asymmetric vortex formation
or Benard/von Kármán instability). The vortex dynamics in the wake, characterized by the
Strouhal number, are in satisfactory agreement with the available data. Since it was not
possible to find any values for the Kelvin–Heimholtz instability for the Reynolds number
Re = 130,000, the values obtained in this work are difficult to quantify. Qualitatively, they
are well approximated by the value n = 0.65 for the power law dependence proposed by
Bloor [54]. The root-mean-square values of lift pulsations are in good agreement with the
available LES and experimental data. The predicted drag coefficients are within the range
of values presented in the literature. Another important parameter is the length of the
separation zone. The present work shows quite large discrepancies between simulations
and measurements. Other authors also show significant scatter. It should be noted that for
a given Reynolds number, there is only one experiment [14]. A wide variety of factors influ-
ence the quality of LES (computational grids and their dimensions, boundary conditions,
convective schemes, sub-grid scale models, numerical methods, etc.), and it is difficult to
single out several fundamental ones that influence the prediction of Cd and Lr.
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Figure 13. One -dimensional energy spectra of the vertical velocity in the near wake of a circular
cylinder (a) and shear layer instability (b) for the flow over a circular cylinder at Re = 130,000. Signals
measured at points x/D = 1.5, y/D = 0 (a) and x/D = 0.15, y/D = 0.5 (b).

Despite the fact that, in general, satisfactory agreement has been achieved for a number
of integral and local parameters, the found deviations for Cd and Lr indicate that this test
case for Re = 130,000 is still a ’challenge’ problem for the large-eddy simulations. This
is primarily due to limited computational resources, which are usually bounded by the
following factors:

• The overall performance of the computing system, which is usually limited by the
execution time (the time per step per grid node, which is now effectively fixed, since
the processor clock rate does not increase) and the number of effective MPI nodes,
which depends on the problem size and the network communication rate. Parallel
efficiency is also usually limited to about 70% of the theoretical one in the case when
pressure-based algorithms are used and the stability condition (CFL < 1) is imposed
by the computational grid and the boundary layer resolution (y+ < 1);

• The final period of time integration (the total number of time integration steps), con-
sisting of the interval required to obtain a statistically converged flow field (reaching
the self-oscillatory regime, on the order of several τconv) and the time segment required
to get time-averaged data (usually several tens of Nvs).

It is important to note that in Breuer’s pioneering work [9] (published about
twenty-five years ago), high-performance computing (HPC) systems like NEC SX-4
and VP300/VP700 (included in the TOP500 list at that time (https://www.top500.org/
accessed on 12 December 2024) were used for LES. The results obtained by Lysenko
et al. [1] for Re = 3900 (published about twelve years ago) were performed on the
Stallo (HPC) using 256 cores, when a typical simulation took about two weeks. For
the runs performed by Lysenko et al. [5–7] for Re = 45,000–50,000, the Vilje (https:
//www.sigma2.no/hpc-and-storage-systems accessed on 12 December 2024) HPC was
used with 128–256 cores in parallel, and the typical simulation time was also about two
weeks. Thus, the forecast about LES applications for the Reynolds numbers of practical

https://www.top500.org/
https://www.sigma2.no/hpc-and-storage-systems
https://www.sigma2.no/hpc-and-storage-systems
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interest made by Breuer [9] about two and a half decades ago is confirmed yet. In the
present study, the simulations were performed on work stations with Intel Gold 6142
(32 cores) and I9-13900 (32 cores) CPUs with the typical time of about two weeks as well.

A detailed analysis and comparison of the results calculated using SP and DP re-
vealed minimal discrepancies for both integral and local characteristics, as well as for
one-dimensional spectra between AF32-dTKE and AF64-dTKE runs, respectively. It is also
important that the AF32-dTKE calculation is stable by Lyapunov, and the properties of its
attractor in the phase space are the same as for AF64-dTKE. Of course, these are strictly pre-
liminary, but quite important results for machine learning problems in aerodynamics [72].

Critical Remark on the Grid Dependence

The grid dependence study is one of the most critical parts of any numerical simulation.
The effects of the sub-grid scaling modeling are of interest as well but were not investigated
in the present work, leaving plenty of room for future research. Here, we concentrate only
on the dynamic k-equation SGS model and the standard numerical platform (the finite-
volume method of the second order in space and time). In order to provide cross-validation
of the results, two additional runs were performed. At this stage, the unstructured mesh
HM was modified by the truncation of its span length to Lz = π × D, the same as for the
O-type mesh, but keeping the original resolution of the HM mesh (hereafter, this mesh has
the abbreviation HTM). Two large-eddy simulations using the AF technology were carried
out using SP and DP within the similar mathematical framework (boundary conditions and
numerical method) as for the AF32-dTKE and AF64-dTKE cases. These runs have indexes
as T-AF32-dTKE and T-AF64-dTKE, respectively.

The main results in terms of the prime integral parameters and local distributions of
the Reynolds stresses are summarized in Table 2 and Figures 14 and 15. One can see that
both integral characteristics obtained by AF64-dTKE and T-AF64-dTKE using the OM and T
meshes were converged reasonably well. The same conclusion is made for the simulations
AF32-dTKE and T-AF32-dTKE, computed with single-precision arithmetic. The local radial
distributions of the mean Reynolds stresses ⟨U′

xU′
u⟩ are shown in Figure 14, where all the

curves have collapsed fairly well, with small deviations of a few percentages.

Figure 14. Radial profiles of the mean Reynolds stresses ⟨U′
xU′

u⟩ in the near wake (x/D = 1.0, 1.5, 2.0)
for the flow over a circular cylinder at Re = 130,000.
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Figure 15. The mean drag (a), lift (b), fluctuating lift (c) coefficients, separation angle (d), mean base
pressure coefficient (e), and Strouhal number (f) as functions of the Reynolds number for the flow
over a circular cylinder.

Finally, Figure 15 displays distributions of several parameters like the mean lift, drag
and pressure-base coefficients, separation angle, and Strouhal number within the Reynolds
number range, 10,000 ≤ Re ≤ 1,000,000, collected based on different experimental studies:
the drag and lift coefficients [16,18,22,29,30], the fluctuations of the lift coefficient [22,24,26],
the mean separation angle [14,17,19–21,31], the mean pressure-base coefficient [17,18,23,25]
and the Strouhal number [15,18,22,28,30]. Figure 15 is also supplemented with LES results
available for the specific numbers Re = 130,000–140,000, and interesting conclusions can
be drawn. On the one hand, some parameters like ⟨Cl⟩, ⟨θs⟩, and St, computed by LES
and physically measured, are quite dense on the graphs. On the other hand, the large
dispersion of about 20% is observed for the mean drag coefficient, and distributions of the
fluctuating lift suggest the existence of the flow bifurcation or its earlier transition to the
critical regime. The latest observation is supported by the numerous LES data obtained
for the pressure-base coefficient. Another interesting observation from Figure 15 is the
negative and positive mean lift coefficients experimentally predicted by Bearman [18]
and Schewe [22] at the transition Reynolds numbers. The high-end simulations of the
flow transition from a sub-critical to critical regime will definitely be an interesting and
challenging topic for future research.
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6. Conclusions
In this paper, the testing of the large-eddy simulation implemented on two numer-

ical platforms, Ansys Fluent and OpenFOAM, for the flow over a circular cylinder at
Re = 130,000, was continued. The priority was to examine the ability of LES to reproduce
complex physical phenomena of the flow at a given Reynolds number using medium-sized
computational grids (10–25 million cells), which is of practical interest for engineering
applications. The second key aspect was to validate LES using single-precision arithmetic
and further evaluate the results using the Lyapunov stability theory.

In practice, it was found that:

• The present LES (finite-volume method and the dynamic k-equation sub-grid scale
model) successfully reproduced the complex physics of the turbulent flow over a
circular cylinder, including the Kelvin–Helmholtz and Benard/von Kármán instabili-
ties, the laminar–turbulent transition, development of vortex cores, their downstream
convection, and vortex dynamics in the wake.

• In general, satisfactory agreement between LES results obtained using Ansys Fluent
and OpenFOAM and experimental data was observed. Discrepancies between them
can be attributed to the specifics of numerical simulations (e.g., various computational
grids, convective schemes, sub-grid scale models, algorithms, and methods to solve
the Navier–Stokes equations) and the techniques used for collecting physical measure-
ments. The location of the laminar–turbulent transition, which is very sensitive to the
turbulence intensity of the incoming flow, is critically important.

• The present LES results showed that it is possible to capture complex flow physics
for this particular Reynolds number using medium-sized computational grids (up to
25 million cells) generated by different refinement strategies (O-type versus unstructured).

• Differences between LES results computed using single- and double-precision arith-
metic implemented in Ansys Fluent were negligible for all integral, local, and spectral
characteristics of the turbulent flow. A special run using the concept of mixed-precision
arithmetic implemented in OpenFOAM showed satisfactory convergence with the re-
sults predicted by Ansys Fluent, indicating a significant degree of consistency between
these numerical platforms.

• It is worth noting that an attempt to use OpenFOAM with single-precision arith-
metic to predict this turbulent flow failed. It seems that the linear algebra solvers
implemented in OpenFOAM are more sensitive to round-off errors and related high-
frequency noise.

• Lyapunov stability theory and its metrics were applied to analyze the large-eddy
simulation technique using single-precision arithmetic. The numerical methodology
using single-precision arithmetic was shown to be stable by Lyapunov.

• Under some considerations, LES solutions can be treated as dynamical systems. Their
time evolution can be visualized by reconstructed attractors, which can be bounded
by simple ellipsoids in three-dimensional space.

The next important step in continuing this work involves the further testing of the
numerical methods for the critical and post-critical flow regimes as well as increasing the
Mach number to study compressibility effects. It is also essential to analyze the turbulent
flow bifurcation and the earlier transition from the sub-critical to critical regimes. This is
supported by the observed large dispersion in experimental results for the drag and fluctu-
ating lift coefficients. Additionally, investigating the negative and positive lift coefficients
experimentally predicted at transitional Reynolds numbers is of significant importance.
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Abbreviations
The following abbreviations are used in this manuscript:

AF Ansys Fluent
AMG Algebraic Multigrid Method
BDF Backward Differencing Formula
CDS Central Differencing Scheme
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CWT Continuous Wavelet Transform
DP Double-Precision
FFT Fast Fourier Transform
FVM Finite Volume Method
GAMG Geometric Multigrid Method
GPU Graphics Processing Unit
HPC High-Performance Computing
LES Large-Eddy Simulation
KH Kelvin–Helmholtz Instability
OF OpenFOAM
PDF Probability Density Distribution
RAM Random-Access Memory
SOU Second-Order Upwind Scheme
SP Single-Precision
SPDP Mixed-Precision
TKE Turbulence Kinetic Energy
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