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Abstract: Miscible gas flooding improves oil displacement through mass exchange between
oil and gas phases. It is one of the most efficient enhanced oil recovery methods for interme-
diate density oil reservoirs. In this work, analytical solutions for saturation, concentration
and pressure are derived for oil displacement by a partially miscible gas injection at a
constant rate. The mathematical model considers two-phase, three-component fluid flow in
a one-dimensional homogeneous reservoir initially saturated by a single oil phase. Phase
saturations and component concentrations are described by a 2 × 2 hyperbolic system of
partial differential equations, which is solved by the method of characteristics. Once this
Goursat–Riemann problem is solved, the pressure drop between two points in the porous
media is obtained by the integration of Darcy’s law. The solution of this problem may
present three different fluid regions depending on the rock–fluid parameters: a single-phase
gas region near the injection point, followed by a two-phase region where mass transfer
takes place and a single-phase oil region. We considered the single-phase gas and the
two-phase gas/oil regions as incompressible, while the single-phase oil region may be
incompressible or slightly compressible. The solutions derived in this work are applied for
a specific set of rock and fluid properties. For this data set, the two-phase region displays
rarefaction waves, shock waves and constant states. The pressure behavior depends on
the physical model (incompressible, compressible and finite or infinite porous media). In
all cases, the injection pressure is the result of the sum of two terms: one represents the
effect of the mobility contrast between phases and the other represents the single-phase oil
solution. The solutions obtained in this work are compared to an equivalent immiscible
solution, which shows that the miscible displacement is more efficient.

Keywords: enhanced oil recovery; miscible methods; gas flooding; wellbore pressure;
injectivity test

1. Introduction
The main objective of enhanced oil recovery (EOR) is the increase in hydrocarbon

recovery by the injection of fluids and/or materials not initially present in the porous
media [1]. EOR processes may be classified according to their main physical–chemical
drive mechanism: thermal, chemical or miscible [1]. Gas flooding is the second most used
secondary recovery technique [2], which has been applied to the field as early as 1917 [3].
The first field applications were pressure maintenance only, but around 1950, projects of oil
displacement by miscible gas flooding appeared.

Mathematical models that consider mass transfer between phases have been presented
in the literature since the 1960s. Some of these models may be used to predict oil displace-
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ment efficiency by miscible gas injection. The fluid flow in porous media with mass transfer
can be represented by a system of first-order hyperbolic partial differential equations if
second-order effects (such as capillary pressure, gravity and dispersion) are neglected.
These equations represent the overall mass conservation of each component [4].

The estimation of the minimum solvent volume required to completely recover
the reservoir oil volume was presented in Johnson and Welge [5] and Welge et al. [6].
These authors considered oil displaced by solvent injection in a one-dimensional ho-
mogeneous reservoir initially saturated by oil. Based on the Buckley–Leverett frontal-
advance theory [7], Wachmann [8] presented a solution for oil displacement by solvent
injection for a three-component system (oil/water/alcohol). The mathematical model was
also one-dimensional, dispersion and capillary pressure were neglected and the vapor–
liquid phase equilibria were modeled using geometric thermodynamic variables. The
2 × 2 hyperbolic system was solved by the method of characteristics (MOC). Posteri-
orly, Larson [9], Hirasaki [10], Hirasaki [11] and Dumore et al. [12] extended the work
of Wachmann [8] for different types of fluids and reservoir boundary conditions.

Helfferich [13] generalized the theory of displacement in porous media with mass
transfer for multicomponent multiphase systems. In his work, the developed theory was
applied for ternary systems only.

The first solutions for quaternary systems were reported by Monroe et al. [14]. The
cross tie-line concept, introduced in their work, was used to build a unique solution path
connecting the initial and the boundary conditions. However, only solutions composed of
shocks were presented. Detailed investigations of four-component system behavior with
and without change in the volume of mixing were presented later [15–17].

Johns and Orr Jr. [18] analyzed the application of the two-phase displacement theory of
oil by gas with mass transfer to a system with n-components. The solutions were obtained
by the method of characteristics, and the thermodynamic equilibrium was represented
from a series of quaternary diagrams. Next, several approaches for the construction of
analytical solutions for n-component systems were presented [19,20].

Three-phase flow may appear in different enhanced oil recovery processes. LaForce
and Johns [21] modeled a partially miscible one-dimensional three-phase three-component
flow. The solutions were obtained for different initial and injection conditions and were
compared to the results of a finite-difference numerical simulator. Barros et al. [22] ex-
tended the one-dimensional three-phase solutions for concave relative permeability curves,
showing how these relative permeability curves affect the characteristic propagation in the
hyperbolic system.

Enhanced oil recovery project management heavily depends on reliable reservoir data.
A valuable source of dynamic information comes from well tests. A pressure transient
analysis (PTA) provides estimates for several reservoir and well properties, such as the
permeability, reservoir average pressure, presence of flow barriers, near-wellbore formation
damage and productivity and injectivity indexes. Parameter estimation from a PTA requires
analytical or numerical solutions that model the physical phenomena taking place at the
wellbore–reservoir interface and at the porous media far away from the well.

There are several analytical models in the literature that describe the pressure behavior
during water injection into oil reservoirs. Abbaszadeh and Kamal [23] presented analytical
solutions for both injectivity and falloff tests for vertical wells in an oil reservoir under
waterflooding. Their solutions were obtained by superimposing pressure-transient effects
on a water saturation profile calculated beforehand by the Buckley–Leverett frontal-advance
equations. Bratvold and Horne [24] also relied on the Buckley–Leverett theory to obtain an
analytical solution for water injectivity tests in oil reservoirs by means of the Boltzmann
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self-similar transform. They also derived a falloff semi-analytical solution by discretization
of the spatial domain into several concentric rings.

Thompson and Reynolds [25] presented a theory for multiphase flow in radially
heterogeneous reservoirs. They observed that, for typical reservoir and fluid properties, the
saturation front is always within a steady-state-like region that continuously propagates
into the reservoir during the injection period. If the saturation profile is known, a pressure
solution can be obtained by the integration of the multiphase Darcy’s law over the radial
coordinate. Several papers were published based on their hindsight to solve more complex
problems. Peres and Reynolds [26] presented an analytical solution for the wellbore pressure
behavior during water injectivity tests for both horizontal and vertical wells. Their solution
also models water injection into damaged reservoirs that results in a very distinct wellbore
pressure behavior. Boughrara et al. [27] extended the injectivity solution of Peres and
Reynolds to restricted-entry vertical wells and to horizontal wells in anisotropic reservoirs.

Miscible gas flooding, and other EOR methods as well, lead to more complex math-
ematical models. There is a lack of published articles that address the wellbore pressure
behavior for multicomponent, multiphase flow in porous media.

Habte et al. [28] derived a semi-analytical pressure solution for injectivity and falloff
tests for immiscible gas injection following water injection in an oil reservoir. Their pro-
cedure first solves the hyperbolic equations for saturation numerically assuming the gas
phase as incompressible. Then, the pressure solution is calculated solving a matrix problem
formed by the spatial discretization. Machado et al. [29] presented analytical solutions for
the two-phase radial flow of oil displacement by carbonated water injection. Concentration
and saturation profiles were found using the method of characteristics.

An analytical solution for the pressure behavior during miscible gas injection in an oil
reservoir for constant wellbore pressure injection was presented by Mu et al. [30]. In their
paper, the effects of miscibility on the relative permeability curves and phase viscosities
were modeled by correlations. The saturation profile was obtained by applying the Buckley–
Leverett theory, and once this profile was determined, Darcy’s law was integrated to
calculate the pressure profile.

Cantagesso et al. [31] presented results for the saturation, component concentrations
and pressure behavior of a two-phase multicomponent incompressible system, which
models miscible gas injection into a one-dimensional homogeneous oil reservoir. The vapor–
liquid phase equilibria were modeled using geometric thermodynamic variables. The
phase saturation and component concentrations were solved by the MOC, and the pressure
solution was obtained by the integration of Darcy’s law. Their solution considers that the
fluids are incompressible in both single- and two-phase regions. The validity of Darcy’s
law in homogeneous one-dimensional flow was discussed in Nichele and Teixeira [32],
showing that this hypothesis is valid in regions with low inertial effects, i.e., low-velocity,
typical for low or slightly low compressibility fluid flow in porous media.

There are different experimental techniques applied to describe miscible multiphase
flow in porous media. Core-flooding experiments are performed through the controlled
displacement of oil in linear rock plugs, both in immiscible and miscible conditions, and
the results can be matched with numerical and analytical results (Hustad and Holt [33]).
So, it is possible to investigate the influence of miscible injection in the oil viscosity and
its impact in the recovery factor (Dyer and Farouq Ali [34]) and the impact of rock–fluid
interaction parameters on oil displacement [35–37]. Another very useful experimental
technique is the injection in micro-models, where rock plugs are replaced by synthetic
porous media with controlled geometry (Zhang et al. [38], Yang et al. [39], Zou et al. [40]).
The results of these experiments can be validated by different numerical experiments
(Irannezhad et al. [41,42], Li et al. [43]).
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Another very useful technique to understand multiphase flows is numerical reservoir
simulation. By using compositional models, it is possible to have an accurate description of
thermodynamic and hydrodynamic effects, combined with a complex geological and geo-
metrical reservoir description (Christensen et al. [44]). Numerical simulation is also useful
to analyze the mass transfer effects between the injected fluid and the oil in place and its im-
pact on the oil recovery factor (Li et al. [45], Chen et al. [46], Ren et al. [47], Zhu et al. [48]).
This effect is specially important for CO2 injection in low-temperature reservoirs, which
leads to complex thermodynamic effects.

In this paper, we extend the solution of Cantagesso et al. [31] to a mixed incompressible–
slightly compressible fluid system. The saturation solution shows that, after the gas
injection starts, three different fluid regions may appear: a single-phase gas region near the
injection (inlet) point, followed by a two-phase gas/oil region where mass transfer takes
place and a single-phase oil zone that extends to the porous media outlet as in Figure 1).
The first two regions are considered incompressible, while the oil region is taken as slightly
compressible. Darcy’s law integration over the spatial domain is used to find the pressure
profile. This paper improves the current state of the art in the following topics:

• The application of the Thompson and Reynolds conjecture (Peres and Reynolds [26])
for miscible flooding, splitting the solution for different zones, where the last one is a
single-phase compressible region.

• The development of the pressure solution for the miscible three-component displace-
ment problem, considering infinite and finite reservoirs.

q

Region 1 Region 2
Region 3

inj.

Oil

Oil

Gas

Gas

Single-phase

Two-phase

Single-phase
+

Figure 1. Three-region scheme.

The next section states the problem, the hypotheses used and the mathematical formu-
lation. Then, the solutions for the saturation, component concentrations and pressure are
presented. After that, the results for an example based on typical rock–fluid data are shown.

2. Physical and Mathematical Model
This work analyzes the saturation and pressure behavior of one-dimensional isother-

mal oil displacement by miscible gasflooding at a constant injection rate. The reservoir
is considered homogeneous with a constant cross-sectional area and initially filled with
oil. Our model considers a two-phase flow of a three-component fluid with instantaneous
phase equilibrium. The additional hypotheses are as follows: (1) there are no adsorp-
tion and chemical reactions; (2) the pure component density is independent of the phase;
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(3) gravitational, dispersion and capillary effects are neglected; and (4) Amagat and Darcy’s
laws are valid.

The mass conservation for an n-component system under these hypotheses is given by
the following:

∂

∂t

(
ϕ

Np

∑
j=1

ρjsjwij

)
+

∂

∂x

( Np

∑
j=1

ρjwijuj

)
= 0, i = 1, 2, . . . , Nc, (1)

where Np is the number of phases, Nc is the number of components, t is time, x is the
spatial variable, ρj is the density of phase j, sj is the saturation of phase j, uj is the velocity
of phase j, wij is the mass fraction of component i in phase j and ϕ is the porosity.

If the pure component density is the same for all phases, the mass conservation
equation for component i as a function of its volume fraction in phase j can be rewritten
using the following relationship:

ρjwij = ρicij, (2)

where cij is the volume fraction of component i in phase j and ρi is the pure component
density at the system pressure (p) and temperature (T).

The macroscopic phase velocity can be expressed in terms of the fractional flow
function

(
f j
)

by the following:

f j =
uj

uT
⇔ uj = f juT , (3)

where the total velocity uT is given by the following:

uT(x, t) = −k

[ Np

∑
j=1

krj(sj)

µj(C⃗)

]
∂p
∂x

, (4)

and k is the absolute permeability, krj is the relative permeability of phase j, µj is the
viscosity of phase j, C⃗ is the concentration vector and p is the pressure.

The term inside the brackets in Equation (4) is the total mobility (λT); so, this equation
can be written as follows:

uT = −λT(sj, C⃗)k
∂p
∂x

. (5)

Applying Equations (2) and (3) in Equation (1), the mass conservation for the i-
component becomes the following:

ϕ
∂

∂t

(
Np

∑
j=1

ρisjcij

)
+

∂

∂x

(
Np

∑
j=1

ρicijuT f j

)
= 0, i = 1, 2, . . . , Nc. (6)

When the cross-sectional area open to flow is constant, the total velocity is a function
of time only. In addition to that, as it is considered that the density of a pure component is
constant in all phases, Equation (6) can be rewritten as follows:

ϕ
∂

∂t

(
Np

∑
j=1

sjcij

)
+ uT

∂

∂x

(
Np

∑
j=1

cij f j

)
= 0, i = 1, 2, . . . , Nc. (7)

The total concentration (Ci) and total flow (Fi) of component i are given by the fol-
lowing:

Ci =
Np

∑
j=1

sjcij, (8)
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and

Fi =
Np

∑
j=1

f jcij. (9)

With these definitions, the hyperbolic system that governs the multiphase multicom-
ponent flow in porous media becomes the following:

∂Ci
∂t

+
uT
ϕ

∂Fi
∂x

= 0, i = 1, 2, . . . , Nc. (10)

From the constitutive relations ∑Nc
i=1 Ci=∑Nc

i=1 Fi = 1, the number of equations is re-
duced to Nc − 1. Therefore, the hyperbolic system for two-phase three-component flow is
reduced to the following system of two equations:

∂C2

∂t
+

uT
ϕ

∂F2

∂x
= 0,

∂C3

∂t
+

uT
ϕ

∂F3

∂x
= 0.

(11)

3. Solution of the Problem
The solution procedure for phase saturations, concentration and pressure are devel-

oped in this section. First, we introduce two auxiliary variables to represent the thermo-
dynamic equilibria. Next, the hyperbolic system is rewritten as a function of these new
variables and recast in dimensionless spatial and time variables. Finally, the hyperbolic
problem is solved by the method of characteristics.

The solution of the hyperbolic system given by Equation (11) depends on the phase
equilibrium conditions at the system pressure and temperature. In this case, it is modeled
by a ternary phase diagram [49]. The lines connecting the bubble and dew points in a
ternary diagram define the vapor (V) and liquid (L) phase composition at equilibrium.
Those lines are known as tie-lines [4] and can be parameterized by two thermodynamic
geometric variables α and β (Figure 2), which are given by the following:

α =
c2o − c2g

c3o − c3g
(12)

and
β = c2g − αc3g. (13)

The subscripts o and g denote the oil and the gas phases, respectively. The variable α

represents the tie-line slope, whereas the β values are the intercept of the tie-line extrap-
olation with a vertical axis. The tie-lines never intercept each other inside the two-phase
region and they can be uniquely identified by a single parameter. In this work, we chose
the β variable to represent all the tie-lines.

Using thermodynamic variables, we rewrite the total concentration and total flow of
the second component as follows:

C2 = αC3 + β (14)

and
F2 = αF3 + β. (15)
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Applying Equations (14) and (15) in Equation (11), we obtain the following:
∂C3

∂t
+

uT
ϕ

∂F3

∂x
= 0,

∂(αC3 + β)

∂t
+

uT
ϕ

∂(αF3 + β)

∂x
= 0.

(16)

The dimensionless time (tD) and spatial coordinate (xD) variables are defined by the
following:

xD =
x

LC
(17)

and

tD =

∫ t
0 uT(τ)dτ

ϕLC
, (18)

where LC is a reservoir characteristic dimension. If the reservoir is finite, LC corresponds to
the reservoir length, i.e., LC = L. If the reservoir is assumed infinite, LC takes the value of
the reservoir width, i.e., LC = W.

Tie-Line

Bubble

D
e
w

Plait Point

Figure 2. Schematic ternary diagram with thermodynamic geometric variables.

Applying Equations (17) and (18) in Equation (16), the dimensionless hyperbolic
system for a three-component two-phase system is as follows:

∂C3

∂tD
+

∂F3

∂xD
= 0,

∂(αC3 + β)

∂tD
+

∂(αF3 + β)

∂xD
= 0,

(19)

where F3 = F3(C3, β) and α = α(β). The initial and boundary conditions are given by
the following: C3(xD, tD = 0) = C(I)

3 , β(xD, tD = 0) = β(I),

C3(xD = 0, tD) = C(J)
3 , β(xD = 0, tD) = β(J),

(20)
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where C(I)
3 and β(I) denote, respectively, the total concentration of the third component and

the tie-line intercept of the fluid that initially saturates the porous media. The third compo-
nent total concentration and the tie-line intercept of the injected gas at the inlet point are
represented by C(J)

3 and β(J), respectively.
Expanding Equation (19) leads to the following:

∂C3

∂tD
+

∂F3

∂C3

∂C3

∂xD
+

∂F3

∂β

∂β

∂xD
= 0,

∂β

∂tD
+


∂α

∂β
F3 + 1

∂α

∂β
C3 + 1

 ∂β

∂xD
= 0.

(21)

The hyperbolic system can be recast as follows:

∂u
∂tD

+ A
∂u

∂xD
, (22)

where the vector u and the 2 × 2 matrix A are given, respectively, by the following:

u =

(
C3

β

)
(23)

and

A =



∂F3

∂C3

∂F3

∂β

0
F3

∂α

∂β
+ 1

C3
∂α

∂β
+ 1

. (24)

The main diagonal elements of the upper triangular matrix A are the eigenvalues of
the hyperbolic system, with eigenpairs given by the following:

λC =
∂F3

∂C3
, rC =

(
1
0

)
, (25)

λβ =

F3
∂α

∂β
+ 1

C3
∂α

∂β
+ 1

, rβ =


−∂F3

∂β

∂F3

∂C3
−

F3
∂α

∂β
+ 1

C3
∂α

∂β
+ 1

. (26)

The Riemman invariants of the problem are as follows:

RC = F3 −
∫  F3

∂α

∂β
+ 1

C3
∂α

∂β
+ 1

− ∂F3

∂C3

dC3, Rβ = β. (27)

Rarefaction waves calculated from the right eigenvectors are given by the following:

dβ

dC3
= 0 ⇒ β = Rβ (28)
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and

dβ

dC3
=

 F3
∂α

∂β
+ 1

C3
∂α

∂β
+ 1

− ∂F3

∂C3

 ⇒ β =
∫  F3

∂α

∂β
+ 1

C3
∂α

∂β
+ 1

− ∂F3

∂C3

dC3 + RC. (29)

The total concentration C3 changes while the tie-line geometric variable β remains
constant along the first rarefaction wave (tie-line path). In the second rarefaction family,
both β and C3 vary (non-tie-line path).

The shock expressions for this problem are found by applying the Rankine–Hugoniot
conditions in Equation (19): [C3]D = [F3]

[αC3 + β]D = [αF3 + β]
, (30)

where the notation [B] = B+ − B− is used to represent the jump between the right and the
left states of the shock of the dummy variable B. Thus, [B] represents the jump of the [C3],
[F3] and [β] variables.

When β is equal in both sides of the shock, i.e., only the concentration changes, the
shock wave speed is as follows:

DC =
[F3]

[C3]
, (31)

whereas if β changes across the shock, the shock speed is given by the following:

Dβ =

F+
3 +

[β]

[C3]

C+
3 +

[β]

[C3]

=

F−
3 +

[β]

[C3]

C−
3 +

[β]

[C3]

. (32)

The solution of the hyperbolic system for an injection fluid with fixed composition
and initial constant composition for a given fractional flow curve yields the saturation and
phase composition profiles along the porous media. From this solution, the total mobility
λT spatial profile can be calculated for any dimensionless time. Then, the pressure drop
across the porous media can be obtained by a straightforward integration of Darcy’s law
over the spatial coordinate [26].

For the constant gas injection flow rate at the inlet point (x = 0), the inner boundary
condition is given by the following:

A
kksor

rg

µ
(J)
g,i

∂p
∂x

∣∣∣∣
x=0

= −qg,scBg,i, (33)

where A = Wh is the cross-sectional area, sor is the residual oil saturation and µ
(J)
g,i and Bg,i

represent, respectively, the gas viscosity and the gas formation volume factor evaluated
with injected gas properties at the system initial pressure. The term qg,sc denotes a constant
volumetric gas injection rate at standard conditions. In this work, qg,sc > 0 indicates
gas injection.

The external boundary condition is defined as pressure maintenance at the point
(x = L), expressed by the following:

p(x = L, t) = pi. (34)
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For an infinite porous media, the external boundary condition is as follows:

lim
x→∞

p(x, t) = pi, (35)

where pi is the initial pressure. Integrating Equation (5) from a given position x to the
external boundary xs leads to the following:

∫ xs

x

∂p(x
′
, t)

∂x′ dx
′
= −

∫ xs

x

qT(x
′
, t)

k(x′)A(x′)

1
λT(x′ , t)

dx
′
, (36)

where xs = L if the reservoir is finite and xs → ∞ if the reservoir is infinite. The term qT

represents the total volumetric flow rate at a given (x, t).
For a homogeneous reservoir with a constant cross-sectional area, and using the exter-

nal boundary condition (either Equation (34) or (35)), Equation (36) becomes the following:

p(x, t)− pi =
1

kA

∫ xs

x

qT(x
′
, t)

λT(x′ , t)
dx

′
. (37)

The dimensionless pressure variable is defined by the following:

pD =
kkswi

ro A
qg,scBg,iµo,iLC

∆p, (38)

where ∆p = p(x, t) − pi, swi denotes the irreducible water saturation and µo,i is the oil
viscosity at initial pressure.

In dimensionless variables, Equation (37) becomes the following:

pD(xD, tD) =
∫ xDs

xD

qD(x
′
D, tD)

λTD(x′
D, tD)

dx
′
D, (39)

where xDs = 1 if the reservoir is finite and xDs → ∞ if the reservoir is infinite. In
Equation (39), qD represents the dimensionless volumetric flow rate given by the following:

qD(xD, tD) =
qT(x, t)
qg,scBg,i

, (40)

whereas λTD is the dimensionless total mobility defined as follows:

λTD(xD, tD) =

(
kro(so)

µo(C⃗)
+

krg(so)

µg(C⃗)

)
µo,i

kswi
ro

. (41)

Note that Equation (39) is general, and no assumptions were made about the na-
ture of the mass transfer (miscible or immiscible) between the injected and the original
reservoir fluid.

4. Example
This section presents an application of the solution described in the previous section

for a specific set of rock and fluid properties (Table 1). The molar fractions (z), critical
properties (pressure pc and temperature Tc), molecular mass (Mw) and acentric factors (w)

of the components present in the fluid are given in Table 2 and the fluid concentration at
the initial and injection states is shown in Table 3.
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Table 1. Rock and fluid physical properties.

Property Symbol Value Unit

System pressure p 200 bar
System temperature T 338 K

Oil viscosity at initial conditions µo,i 2.75 cp
Residual oil saturation sor 0.2 -

Irreducible water saturation swi 0.0 -
Oil phase endpoint relative permeability kswi

ro 1.0 -
Corey’s exponent for the oil phase no 1.8 -

Gas viscosity at injection conditions µ
(J)
g,i

0.0402 cp

Critical gas saturation sgc 0.0 -
Gas phase endpoint relative permeability ksor

rg 0.8 -
Corey’s exponent for the gas phase ng 2.2 -

Table 2. Component thermodynamic properties.

Component z Tc (K) pc (bar) Mw (g/mol) ω

Comp. 1 0.5645 4.1659 × 102 4.5929 × 101 2.2116 × 101 4.4540 × 10−2

Comp. 2 0.3093 9.8297 × 102 3.0173 × 101 1.0361 × 102 3.3989 × 10−1

Comp. 3 0.1262 1.4952 × 103 1.3663 × 101 3.4442 × 102 1.0164 × 100

Table 3. Molar composition of the initial and injected fluids.

Comp. 1 Comp. 2 Comp. 3 C3 β

Initial Fluid 0.0000 0.0982 0.9018 0.9650 0.0071
Injected Fluid 0.9899 0.0101 0.0000 0.0000 0.0128

To determine the thermodynamic equilibrium of the component system parameterized
by the geometric variables (α, β), it is necessary to construct the binodal curve for a fixed
temperature and pressure pair. The volumetric fractions of the liquid (l) and gas (g) phases
at equilibrium for a given global composition (z) are obtained through a series of flash
calculations, varying the composition while keeping the temperature and pressure constant.

In this example, the thermodynamic equilibrium was calculated using the Peng–
Robinson equation of state [50]. Figure 3 shows the binodal curve obtained for 200 bar and
338 K. The tie-line equation was found through a polynomial fit of the calculated geometric
variable pairs (α, β):

α(β) = 44.057β2 + 3.2102β. (42)

The relative permeability curves were calculated using Corey’s model [51]:kro = kswi
ro

(
so−sor

1−swi−sor

)no

krg = ksor
rg

(
sg−sgc

1−swi−sor

)ng , (43)

where kswi
ro and ksor

rg are the oil and gas relative permeability endpoints, so and sg are the oil
and gas saturations and no and ng are Corey’s exponent of each phase. Figure 4 shows the
gas and oil phase relative permeability curves for the data presented in Table 1.
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Figure 3. Ternary diagram for the fluid at 200 bar and 338 K.

Figure 4. Relative permeability curves for the data shown in Table 1.

The system given by Equation (21) was solved by the method of characteristics for
saturation and concentration. The solution path is shown in Figure 5 and is given by
(J) → (1) − (2) → (3) − (F) → (I), where the symbols → and − denote, respectively, the
shock and rarefaction waves and (1), (2), (3) and (F) represent the intermediate states be-
tween the injection and initial conditions. The solution path begins at injection conditions (J),
which corresponds to single-phase gas (region 1), which is connected to point (1) in the two-
phase region (region 2) through a concentration shock. As shown by Bedrikovetsky [52],
the transition from single phase to two phase or from two phase to single phase is always
made by a concentration shock. From point (1), there is a concentration rarefaction up
to point (2). Next, there is a concentration and β shock linking points (2) and (3). From



Fluids 2025, 10, 21 13 of 30

(3), there is another concentration rarefaction wave up to (F), which is connected to initial
condition (I) through a concentration shock. The solution is given by the following:

C3(xD, tD)

β(xD, tD)

sg(xD, tD)

=



C(J)
3 , β(J), s(J)

g , 0 < xD
tD

< DC = 6.594E − 3,

C(1R)
3 , β(J), s(1R)

g , DC < xD
tD

< Dβ = 0.420,

C(1)
3 = 0.470, β(I), s(1)g = 0.272, Dβ < xD

tD
< F

′ (1)
C = 0.764,

C(2R)
3 , β(I), s(2R)

g , F
′ (1)
C < xD

tD
< DBL = 1.882,

C(I)
3 , β(I), s(I)

g , xD
tD

> DBL = 1.882,

(44)

where F
′ (1)
C =

(
∂F3
∂C3

)(1)
and the BL subscript represent a Buckley–Leverett shock type [7].

Furthermore, C(iR)
3 and s(iR) represent the concentration and saturation changes along the

i-th concentration rarefaction wave. The solution path can be seen in Figure 5 and the
concentration, saturation and β profiles in Figure 6.

The miscible solution just described is compared to an equivalent immiscible problem
for the same rock and fluid properties, given by the following:

sg(xD, tD) =


s(J)

g , xD
tD

= 0,

s(1R)
g , 0 < xD

tD
< DBL(immis.) = 4.472,

s(I)
g , DBL(immis.) <

xD
tD

,

(45)

where s(1R)
g represents the gas saturation along the immiscible rarefaction wave. The gas

saturation profiles for miscible and immiscible solutions are compared in Figure 7. Note
that the gas front of the miscible solution is slower than the immiscible one.

Equation (39) can be used to compute the dimensionless pressure at the injection
point (xD = 0) for any dimensionless time once the saturation and concentration profiles
are calculated. As the single-phase gas region 1 is very small, it can be neglected; thus,
Equation (39) yields the following:

pD(xD = 0, tD) = pwD(tD) =
∫ DβtD

0

qD(x
′
D, tD)

λ
(2a)
TD (x′

D, tD)
dx

′
D

+
∫ xDF

DβtD

qD(x
′
D, tD)

λ
(2b)
TD (x′

D, tD)
dx

′
D +

∫ DBLtD

xDF

qD(x
′
D, tD)

λ
(2c)
TD (x′

D, tD)
dx

′
D

+
∫ xDs

DBLtD

qD(x
′
D, tD)

λ
(3)
TD(x′

D, tD)
dx

′
D. (46)

where xDF = F
′ (1)
C tD. The superscript in the dimensionless total mobility variable λTD

denotes the saturation region. Note that the integration is split according to the rarefac-
tion and constant states: the two-phase region (0 < xD < DBLtD) is sub-divided into a
rarefaction-region 2a

(
0 < xD < DβtD

)
, a constant-state region 2b

(
DβtD < xD < xDF

)
and

a rarefaction-region 2c (xDF < xD < DBLtD).
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Figure 5. The initial and injection tie-lines and the fractional flow plot.
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Figure 6. C3 volumetric concentration, gas saturation and β profiles.

Miscible

Immiscible

Figure 7. Saturation profile comparison between miscible and immiscible displacements.

We add and subtract the following term:

∫ DBLtD

0

qD(x
′
D, tD)

λ
(3)
TD(x′

D, tD)
dx

′
D,
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Equation (46) becomes the following:

pwD(tD) =
∫ DβtD

0
qD(x

′
D, tD)

(
1

λ
(2a)
TD (x′

D, tD)
− 1

λ
(3)
TD(x′

D, tD)

)
dx

′
D

+
∫ xDF

DβtD

qD(x
′
D, tD)

(
1

λ
(2b)
TD (x′

D, tD)
− 1

λ
(3)
TD(x′

D, tD)

)
dx

′
D

+
∫ DBLtD

xDF

qD(x
′
D, tD)

(
1

λ
(2c)
TD (x′

D, tD)
− 1

λ
(3)
TD(x′

D, tD)

)
dx

′
D +

∫ xDs

0

qD(x
′
D, tD)

λ
(3)
TD(x′

D, tD)
dx

′
D. (47)

Assuming that the two-phase region is located within the steady-state region, we have
qD(xD, tD) = 1 for xD ≤ DBLtD. Thus, Equation (47) simplifies to

pwD(tD) =
∫ DβtD

0

(
1

λ
(2a)
TD (x′

D, tD)
− 1

)
dx

′
D

+

(
1

λ
(2b)
TD

− 1

)(
xDF − DβtD

)
+
∫ DBLtD

xDF

(
1

λ
(2c)
TD (x′

D, tD)
− 1

)
dx

′
D +

∫ xDs

0
qD(x

′
D, tD)dx

′
D, (48)

It was also used that the total mobility in region 2b (λ
(2b)
TD ) is constant and that, in

region 3, λ
(3)
TD is equal to 1.

The first three terms in Equation (48) represent the pressure drop due to the mobility
contrast between the injected fluid and the original reservoir fluid. The last term represents
the slightly compressible single-phase oil solution, which depends on the external boundary
condition, either an infinite or a finite reservoir.

4.1. Infinite-Reservoir Case

It can be shown that the single-phase dimensionless pressure for slightly compressible
fluids at xD = 0 (pwDo) for an infinite reservoir (xDs → ∞) is given by the following:

pwDo(tD) =

√
4tD
πγL

, (49)

where γL is a dimensionless parameter defined by the following:

γL =
µo,ict,iLCqg,scBg,i

kkswi
ro A

. (50)

and ct,i is the total compressibility evaluated at the initial pressure. Note that γL is directly
proportional to the injection rate and thus represents the impact of the flow rate on the
saturation and pressure behavior. The pressure derivative taken with respect to the natural
logarithm of time, introduced by Bourdet et al. [53], is a useful technique to reveal and
diagnose the pressure behavior with time. Thus, the pressure derivative of Equation (49)
with respect to the natural logarithm of time yields

p
′
wDo(tD) =

1
2

√
4tD
πγL

. (51)
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Equations (49) and (51) show that, in a log–log plot, the single-phase solution and its

logarithmic-derivative curves appear as two parallel straight lines with the slope
1
2

and are
displaced by a constant equal to log 2. This is a characteristic feature of the single-phase
flow of a slightly compressible fluid in a linear infinite reservoir.

Substituting Equation (49) in the last term of Equation (48), we obtain

pwD(tD) =
∫ DβtD

0

(
1

λ
(2a)
TD (x′

D, tD)
− 1

)
dx

′
D

+

(
1

λ
(2b)
TD

− 1

)(
xDF − DβtD

)
+
∫ DBLtD

xDF

(
1

λ
(2c)
TD (x′

D, tD)
− 1

)
dx

′
D +

√
4tD
πγL

. (52)

Figure 8 shows the pressure evolution at the inlet point calculated by Equation (52)
for the data presented earlier for γL = 0.01848. For comparison purposes, the single-phase
slightly compressible (oil) solution is also plotted in this figure. This plot shows that the
injection–solution curve runs below the single-phase solution for all times. This happens
for mobility ratios much greater than one, as the displacing fluid mobility (gas) is higher
than the displaced fluid (oil). Therefore, the pressure drop at a given time becomes smaller
than the pressure drop for a single-phase flow for the same injection rate.

Single-Phase

Miscible

Figure 8. Pressure behavior comparison: single-phase slightly compressible fluid solution (pwDo)

and partially miscible solution (pwD) for an infinite reservoir for γL = 0.01848.

The pressure derivative can be very helpful to understand the injectivity problem
considered here. A convenient expression is obtained if Equation (52) is rewritten using
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the self-similar variable y = xD/tD, and then the resulting expression with respect to the
natural logarithm of time is derived:

p
′
wD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)

+ tD

∫ DBL

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
+

1
2

√
4tD
πγL

. (53)

The first three terms in Equation (53) represent the effect on the derivative caused by
the mobility contrast within the two-phase flow region. Figure 9 shows a log–log plot of
the dimensionless pressure and its logarithmic derivative with respect to dimensionless
time for both injectivity and single-phase solutions for γL = 0.01848. As mentioned before,
the single-phase oil solution and its derivative display a straight line with a half slope in a
log–log plot. The injectivity test solution and its derivative continuously deviate from their
single-phase counterpart. As the mobility ratio is unfavorable in this example (M̂ ≈ 55),
the first three terms in Equations (52) and (53) are negative; thus, the injectivity test solution
becomes increasingly smaller than the single-phase liquid solution. This implies that if one
analyzes this injectivity test data with single-phase equations, the reservoir permeability
would be overestimated.

Single-Phase

Miscible

Figure 9. Dimensionless pressure pwD and its derivative p′wD for an infinite reservoir for γL = 0.01848.

Figure 10 shows a dimensionless pressure comparison between miscible and immisci-
ble displacements for the same data of Table 1. The miscible and immiscible solutions show
similar behavior; however, the pressure drop for a miscible displacement is greater than
the one required by an immiscible displacement for the same injection rate.
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Miscible

Immiscible

Figure 10. Pressure behavior comparison: miscible and immiscible displacements for an infinite
reservoir for γL = 0.01848.

To evaluate the effect of the injection rate on the pressure solution, it is convenient to
rewrite (52) using the self-similar variable y = xD/tD, that is,

pwD(t̃D, γL) = γL t̃D

{∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+

(
1

λ
(2b)
TD

− 1

)(
F
′(1)
C − Dβ

)
+
∫ DBL

F
′(1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
}
+

√
4t̃D
π

, (54)

where t̃D =
tD
γL

=
kkswi

ro t
µo,iϕct,iL2

C
, and LC ≡ W.

Figure 11 presents the dimensionless injection solution pwD versus the dimensionless
time t̃D for three values of the dimensionless parameter γL shown in Table 4. This parameter
can be regarded as a dimensionless injection rate. This figure shows that the higher the
injection rate, the lower the dimensionless pressure drop for a given dimensionless time t̃D,
which is consistent with Equation (54). For the unfavorable displacement case considered
here (M̂ ≈ 55), the three terms inside the braces in Equation (54) are negative for all t̃D. As
these terms are multiplied by γL, the pwD solution grows slower for higher γL values.

Table 4. Dimensionless parameter γL.

γL Value

γL1 0.00924
γL2 0.01848
γL3 0.03696
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Figure 11. Pressure behavior with respect to the dimensionless parameter γL for an infinite reservoir
(γL1 < γL2 < γL3).

In this work, the injectivity pressure solution is derived under the assumption that the
flood front is always within a steady-state-like region. According to Peres and Reynolds [26],
the steady-state region boundary is defined as the position at which the total flow rate
changes more rapidly with time. With this definition, the boundary of the steady-state
region for one-dimensional linear flow is given by the following:

xD,ss =

√
2tD
γL

, (55)

where xD,ss denotes the steady-state boundary position at a given time.
Thus, we must have the following:

xD,ss > DBLtD. (56)

Combining Equations (55) and (56), the pressure solution derived is valid for

tD <
2

γL(DBL)
2 . (57)

For the γL values used in this work shown in Table 4, namely, γL1 = 0.00924,
γL2 = 0.01848 and γL3 = 0.03696, Equation (57) predicts that the dimensionless pres-
sure solution given by Equation (52) is valid for dimensionless times smaller than 61.1,
30.6 and 15.3, respectively. So, the results presented in Figures 8–11 satisfy the above
time criteria.
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4.2. Finite-Reservoir Case

The single-phase oil dimensionless solution at xD = 0 (pwDo) for a finite reservoir
(xDs = 1) is as follows:

pwDo(tD) = 1 − 8
π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
. (58)

So, the inlet pressure solution for this case is as follows:

pwD(tD) =
∫ DβtD

0

(
1

λ
(2a)
TD (x′

D, tD)
− 1

)
dx

′
D +

(
1

λ
(2b)
TD

− 1

)(
xDF − DβtD

)
+
∫ DBLtD

xDF

(
1

λ
(2c)
TD (x′

D, tD)
− 1

)
dx

′
D

+ 1 − 8
π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
. (59)

Equation (59) is valid only for tD <
1

DBL
, that is, the above solution holds until the

injected gas breaks through at x = L. The solutions for longer times are given in Appendix A.
The single-phase slightly compressible solution and injection pressure evolution with

time at the inlet point for γL = 0.01848 are shown by Figure 12. Initially, the injection
pressure behavior is dominated by the single-phase solution pwDo, and, as a consequence,
the pressure increases continuously and reaches a maximum value at tD ≈ 0.031. Equa-
tion (58) shows that pwDo(tD) tends to 1 at long times. For the data used in this example, the
first three terms in Equation (59) are negative; thus, the injection pressure pwD eventually
decreases. After the maximum pressure is reached, the pressure declines sharply until the
breakthrough (tD ≈ 0.53). After that, the pressure solution decreases slowly with three

different rates, determined by the F
′ (1)
C point and the β shock (Dβ). At long times, the

pressure curve flattens out as the gas saturation increases at the outlet.

Single-Phase

Miscible

Figure 12. Pressure behavior comparison: single-phase and miscible displacement solutions for a
finite reservoir for γL = 0.01848.
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The injection pressure derivative with respect to the logarithm of time written as a
function of the self-similar variable y is as follows:

p
′
wD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)
+ tD

∫ DBL

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
+

2tD
γL

∞

∑
n=0

[
exp

(
−(2n + 1)2π2tD

4γL

)]
. (60)

Note that Equation (60) holds for tD <
1

DBL
. Expressions for longer times can be

found in Appendix A.
Figure 13 shows the derivative versus time behavior. The single-phase solution

becomes a constant at tD = 0.07 and has no effect on the derivative thereafter. From this
time until breakthrough (tD ≈ 0.53), the pressure derivative becomes a constant. After the
breakthrough, the derivative increases due to the arrival of the Buckley–Leverett shock at
the outlet.

Figure 13. Wellbore dimensionless pressure derivative for a finite reservoir for γL = 0.01848.

Figure 14 shows the pressure solution for the immiscible case for the same data in
Table 1. In the immiscible solution, the breakthrough is earlier. Note that the miscible
displacement–pressure curve presents more features caused by the different flood fronts
arriving at the reservoir outlet.

The effect of the injection rate on the pressure behavior for three γL values (Table 4) is
shown in Figure 15. As the displacement is not favorable to oil (M̂ >> 1), the higher the
injection rate, the lower the pressure at a given t̃D. The dimensionless pressure maxima
occurs earlier for higher rates.

The solution for finite reservoirs derived here (Equation (59) and in Appendix A) are
valid when the criteria given by Equation (57) are satisfied. However, it is necessary to
check it for times before the steady-state region reaches the reservoir outlet only. From
Equation (55), note that xD,ss = 1 for tD = γL/2. Using this tD value for xD,ss = 1 in
Equation (56) yields

γL <
2

DBL
(61)

Thus, when Equation (61) is satisfied, the pwD solutions for finite reservoirs are valid
for all times. From Equation (44), we see that DBL = 1.882, so all γL values used in this
work (Table 4) satisfy this criteria.
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Miscible

Immiscible

Figure 14. Pressure behavior comparison: miscible and immiscible displacements for a finite reservoir
for γL = 0.01848.

Figure 15. Pressure behavior with respect to the dimensionless parameter γL for a finite reservoir
(γL1 < γL2 < γL3).

5. Conclusions
This work presents an analytical solution for one-dimensional oil displacement by

miscible gas injection at a constant rate of a three-component fluid system in a homo-
geneous reservoir. The Goursat–Riemann problem for phase saturation and component
concentration is given by a system of two hyperbolic equations that is solved by the method
of characteristics. The transient pressure solution is obtained by integrating Darcy’s law
over the spatial domain once the saturation, composition and total mobility are calculated.
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The results for a chosen data set are presented. For this data set, which represents an unfa-
vorable displacement case, the saturation solution shows a two-phase region composed of
two rarefaction waves separated by a constant state.

We considered two kinds of external boundary conditions: an infinite reservoir and
a finite reservoir with constant external pressure. The first case is representative of an
injectivity test conducted in a hydraulically fractured well at the early stages of an EOR
project. The second one can be used for screening an improved recovery method for a
direct-line-drive pattern. In either case, the pressure solution is given by the sum of two
parts: the first one reflects the effect of the mobility contrast between the injected gas and
the original reservoir oil; the second term represents the single-phase pressure solution.
The injection pressure solution is derived under the assumption that the two-phase region
near the injection point is located within a steady-state-like region. We present simple
expressions to check the validity of the solutions.

For the infinite-reservoir case, the injection pressure increases continuously with time
but is smaller than the correspondent single-phase pressure solution due to the unfavorable
mobility ratio. For the example given in this paper, the pressure derivative does not present
a straight line with a 1/2 slope in a log–log plot. Thus, if such injectivity test data are
analyzed by single-phase theory, the absolute permeability would be overestimated. For a
finite reservoir, the pressure behavior changes as the flood fronts reach the reservoir outlet.
At early times, the single-phase solution dominates the pressure behavior at the injection
point. At later times, before the injected gas breaks through, the single-phase pressure
grows less rapidly as it asymptotically approaches the external pressure, while the term
related to the mobility contrast between the fluids becomes increasingly negative. As a
result, the injection pressure eventually begins to decrease with time, as expected for an
unfavorable displacement. This paper also compares the displacement efficiency and the
injection pressure behavior to an equivalent immiscible gas injection.

We also suggest the following points for future research:

• An extension for an n-component system, with the application of the theory described
in Pires et al. [19].

• An introduction of the variable injection flow-rate velocity, with the application of
Duhamel’s principle.

• A sensitivity evaluation of the miscibility effects on Thompson Reynold’s conjecture.
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Nomenclature

A Porous media cross-sectional area; matrix of the hyperbolic system
Bg,i Gas formation volume factor at initial pressure
−→
C Concentration vector
cij Volume fraction of component i in phase j
Ci Total volumetric concentration of component i
ct,i Total compressibility at initial conditions
D Shock velocity
Fi Total flow of component i
f j Fractional flow of phase j
k Porous media absolute permeability
krj Relative permeability of phase j
ksor

rg Gas relative permeability at residual oil saturation
kswi

ro Oil relative permeability at irreducible water saturation
LC Reservoir characteristic length
L Reservoir length
M̂ Endpoint mobility ratio; M̂ = [ksor

rg /µg,i]/
[
kk

swi
ro /µo,i

]
Mw Molecular weight
Nc Number of components
Np Number of phases
nj Corey’s exponent of phase j
pc Critical pressure
p System pressure
pi Initial pressure
pwD Wellbore dimensionless injection pressure
pwDo Wellbore dimensionless injection pressure of the single-phase oil region
qg,sc Constant volumetric gas injection rate at standard conditions
qT Total volumetric flow rate
r Right eigenvector
R Riemman invariant
sj Saturation of phase j
sgc Critical gas saturation
sor Residual oil saturation
swi Irreducible water saturation
T Temperature
t Time coordinate
Tc Critical temperature
u Vector of C and β

uj Velocity of phase j
uT Total velocity
x Space coordinate
xs Porous media external boundary
xDs Dimensionless porous media external boundary
xD,ss Dimensionless steady-state boundary
W Porous media width
wij Mass fraction of component i in phase j
z Molar fraction

Greek characters
α, β Thermodynamic geometric variable
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γL Dimensionless parameter
λ Characteristic velocities (eigenvalues)
λT Total mobility
µj Viscosity of phase j
µ
(J)
g,i Gas viscosity injection at the system initial pressure

µo,i Oil viscosity at the system initial pressure
ρi Pure component density at P and T
ρj Density of phase j
ϕ Porous media porosity
ω Acentric factor

Subscripts
1, 2, 3 Components
BL Buckley–Leverett shock
D Dimensionless variable
g Gas phase
i Component index
j Phase index
o Oil phase

Superscript
(i − R) i − th rarefaction wave
(I) Initial condition
(J) Injection condition
− Upstream shock state
+ Downstream shock state

Appendix A. Dimensionless Solutions for Finite Reservoirs
In this Appendix, the complete solutions for finite reservoirs are presented. Note that

the terms in the two-phase regions 2a, 2b and 2c are written as a function of the self-similar
variable y = xD/tD.

Appendix A.1. Before Breakthrough: tD <
1

DBL

pwD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)
+ tD

∫ DBL

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
+ 1 − 8

π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
(A1)

p
′
wD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)
+ tD

∫ DBL

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
+

2tD
γL

∞

∑
n=0

[
exp

(
−(2n + 1)2π2tD

4γL

)]
. (A2)
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Appendix A.2. Before Zone 2b Breaks Through:
1

DBL
< tD <

1

F
′ (1)
c

pwD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)

+ tD

∫ 1
tD

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′
+ 1 − 8

π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
(A3)

p
′
wD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
F
′ (1)
C − Dβ

)

+ tD

∫ 1
tD

F
′ (1)
C

(
1

λ
(2c)
TD (y′)

− 1

)
dy

′ −

 1

λ
(2c)
TD (y′ =

1
tD

)
− 1


+

2tD
γL

∞

∑
n=0

[
exp

(
−(2n + 1)2π2tD

4γL

)]
. (A4)

The variable λ
(2c)
TD (y

′
=

1
tD

) denotes the total mobility at the outlet at time tD.

Appendix A.3. Before Zone 2a Breaks Through:
1

F
′ (1)
c

< tD <
1

Dβ

pwD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′
+ tD

(
1

λ
(2b)
TD

− 1

)(
1

tD
− Dβ

)

+ 1 − 8
π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
(A5)

p
′
wD(tD) = tD

∫ Dβ

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′ − tDDβ

(
1

λ
(2b)
TD

− 1

)

+
2tD
γL

∞

∑
n=0

[
exp

(
−(2n + 1)2π2tD

4γL

)]
(A6)

Appendix A.4. After Zone 2a Breaks Through: tD >
1

Dβ

pwD(tD) = tD

∫ 1
tD

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′

+ 1 − 8
π2

∞

∑
n=0

[
1

(2n + 1)2 exp

(
−(2n + 1)2π2tD

4γL

)]
(A7)
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p
′
wD(tD) = tD

∫ 1
tD

0

(
1

λ
(2a)
TD (y′)

− 1

)
dy

′ −

 1

λ
(2a)
TD (y′ =

1
tD

)
− 1


+

2tD
γL

∞

∑
n=0

[
exp

(
−(2n + 1)2π2tD

4γL

)]
. (A8)
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