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Abstract: Although there do exist a few aeroacoustic studies on harmful artificial phenom-
ena related to the usage of non-uniform Cartesian grids in lattice Boltzmann methods (LBM),
a thorough quantitative comparison between different categories of grid arrangement is
still missing in the literature. In this paper, several established schemes for hierarchical
grid refinement in lattice Boltzmann simulations are analyzed with respect to spurious
aeroacoustic emissions using a weakly compressible model based on a D3Q19 athermal
velocity set. In order to distinguish between various sources of spurious phenomena, we
deploy both the classical Bhatnagar–Gross–Krook and other more recent collision models
like the hybrid recursive-regularization operator, the latter of which is able to filter out detri-
mental non-hydrodynamic mode contributions, inherently present in the LBM dynamics.
We show by means of various benchmark simulations that a cell-centered approach, either
with a linear or uniform explosion procedure, as well as a vertex-centered direct-coupling
method, proves to be the most suitable with regards to aeroacoustics, as they produce the
least amount of spurious noise. Furthermore, it is demonstrated how simple modifications
in the selection of distribution functions to be reconstructed during the communication
step between fine and coarse grids affect spurious aeroacoustic artifacts in vertex-centered
schemes and can thus be leveraged to positively influence stability and accuracy.

Keywords: lattice Boltzmann method; local grid refinement; aeroacoustics; spurious noise

1. Introduction
With the lattice Boltzmann method (LBM) gaining ever more popularity among com-

putational fluid dynamics (CFD) and computational aeroacoustics (CAA) practitioners over
the last few decades, several techniques for local grid refinement tailored to the method
have been developed in order to satisfy the need for economical usage of computational
resources. It is well known, however, that grid transition interfaces (GTIs) exhibiting
abrupt variations in spatial resolution and various interpolation procedures, typical for
non-uniform Cartesian grids used in the LBM, act as a source of spurious numerical artifacts
accompanied by severe negative effects on the stability and accuracy of a simulation [1–5].

A widely recognized category of grid refinement techniques takes advantage of the
standard collide and stream procedure of the LBM as well as its efficient application on
Cartesian grids by hierarchically subdividing the grid cells in a quad- (2D) or octree (3D)
like manner, maintaining integer length and time scale ratios between neighboring grid
levels. Depending on the data structure and specific arrangement of coarse and fine grid
nodes relative to one another, this approach manifests itself in the form of various layouts,
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all of which generally utilize some sort of interpolation in order to reconstruct missing infor-
mation during communication between the fine and coarse grids. A schematic depiction of
established GTI layouts is shown in Figure 1 for two dimensions. Whereas vertex-centered
(vc) algorithms are characterized by grid nodes residing in cell corners and thus partially co-
located coarse and fine nodes along grid transition interfaces, cf. Figure 1a,b, cell-centered
(cc) methods apply a volumetric description without the possibility of co-location [6], cf.
Figure 1c.

In the vc framework, missing information at nodes with a co-located partner node
on the neighboring level can be transferred from this partner through rescaling of its non-
equilibrium distribution functions [7,8], while missing distribution functions at hanging
nodes—i.e., those without a co-located partner node—are reconstructed employing spatial
interpolation, usually based on cubic polynomials. Synchronization between grid levels is
ensured by temporal interpolation. Typically, a grid overlap is used [9–12], allowing for a
stability-enhancing explicit filtering of fine non-equilibrium functions to be applied during
fine-to-coarse communication [13,14]. A vertex-centered grid structure including an overlap
between grids will be referred to as vc-ov within the course of this paper.

A more recent vc algorithm proposed by Astoul et al. [4] omits overlapping and trans-
ferring complete sets of distribution functions at co-located nodes from their respective
partners. Instead, missing fine and coarse distribution functions at these nodes are recon-
structed simultaneously by requiring zeroth- and first-order non-equilibrium moments to
vanish, which is achieved by iterative determination of a consistent equilibrium function.
Distribution functions at hanging nodes are then reconstructed similarly to vc-ov. This
direct-coupling approach will be referred to as vc-dc.

(a) vc-ov (b) vc-dc

(c) cc (d) cm

Figure 1. Schematic representation of GTI variants investigated in this work, depicted in 2D for
simplicity. vc-ov: vertex-centered with grid overlap, vc-dc: vertex-centered with direct grid coupling
(no overlap), cc: cell-centered, cm: combined. Gray coarse cells indicate the extent of the grid overlap.
The two light red cells in (d) exemplarily mark the validity range of the local bubble functions. :
fine interface node (with coarse partner in case of vc), : regular fine node, : coarse interface node
(with fine partner in case of vc), : regular coarse node, : hanging node.

In order to refill fine states after streaming in cc algorithms, coarse post-collision
states are exploded onto fine interface nodes either uniformly [15] or by employing linear
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interpolation [16]. Missing coarse states are obtained by averaging fine particle densities,
which is known as coalescence and acts as an implicit filtering operation during fine-to-
coarse communication [2,17]. Since two layers of interface nodes need to be supplied with
distribution functions and are thus able to perform two subsequent fine streaming steps,
temporal interpolation becomes unnecessary. Furthermore, no rescaling of non-equilibrium
distribution functions is performed when transferring information from one grid to another.

Another type of arrangement arises when both grids are shifted relative to each other
with coarse nodes sitting in the coarse cell corners and fine nodes residing in their respective
cell centers [18,19], cf. Figure 1d. Following a previous study by the authors [5], this kind
of grid layout will be referred to as a combined approach (cm) in the remainder of this paper.
Reconstruction of missing distribution functions on both grids is achieved by gradient-
based compact spatial interpolation. Similarly to cc algorithms, no temporal interpolation
takes place. However, rescaling of non-equilibrium functions is applied, meaning that this
approach literally combines operations of both vc and cc algorithms.

Since vortical pressure and density fluctuations are typically several orders of mag-
nitude stronger than their purely acoustic counterparts, minor errors in the transmission
and reconstruction of information, as well as sudden changes in cell size over GTIs, can
lead to unphysical disturbances, which may appear unproblematic with regard to aero-
dynamic evaluation or perhaps remain undetected but would significantly distort simu-
lation results from a point of view of aeroacoustics. Such spurious acoustic artifacts have
been long known and reported in investigations utilizing classical Navier–Stokes-based
solvers [20–27] and somewhat more recently for the LBM [2–4,28,29] and are categorized
in numerical reflections of acoustic waves at GTIs as well as numerical noise generated
by vorticity passing through GTIs. A detailed and comprehensive literature review for
classical Navier–Stokes-based solvers in this regard can be found, e.g., in chapter 5 of [30]
or for the LBM in chapter 6 of [31]. Apart from the mentioned types of numerical noise,
harmful interactions between non-hydrodynamic modes inherently present in the LBM
dynamics and GTIs can act as spurious acoustic sources and lead to instabilities that render
any LBM simulation null and void [3]. Even if stability is not affected, this poses a serious
difficulty in direct aeroacoustic simulations, which can be effectively performed with the
LBM due to its ability to recover the Navier–Stokes equations in the weakly compressible
limit and thus capture both unsteady aerodynamics as well as acoustic wave propagation
simultaneously while exhibiting low dissipative properties [32–37].

Interestingly, to the best of the authors’ knowledge, direct comparisons between
LBM grid refinement algorithms in the context of spurious aeroacoustic artifacts are only
sparsely covered in the literature. This is especially the case for different interface layouts,
cf. Figure 1. In [2], Gendre et al. conducted a comparison between their directional splitting
approach and the refinement algorithm of Lagrava [13,14] in terms of an acoustic pulse and
a convected vortex crossing a refinement interface. Both of these algorithms are based on
a vertex-centered arrangement. An extensive comparison of vertex-centered algorithms
was later presented in the PhD thesis of Astoul [31]. The introduced vertex-centered direct
coupling method in combination with the hybrid-recursive regularization collision model
(HRR) [38] proved to perform superior with regards to the eradication of numerical noise.

With respect to comparisons between different types of grid layouts, only a single qual-
itative result could be identified by the authors in the literature and is included in Section 2
of [3], where Figure 2, showing a vortex passing through a refinement interface, indicates
an increased amount of artificial noise produced by the cell-centered algorithm with linear
explosion [16] compared with the Lagravas vertex-centered algorithm mentioned above.

The present paper, which is a continuation of our previous work [5], where different
grid refinement algorithms and collision operators were analyzed with respect to their
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stability and accuracy, attempts to close part of this gap by analyzing the various grid
refinement algorithms displayed in Figure 1 with regards to the amount of numerical
noise generated. For this purpose, four test cases of significance for aeroacoustics and
with increasing complexity are examined, namely a 2D Gaussian acoustic pulse, a 1D
convected acoustic wave, a 2D convected barotropic vortex, and finally a 3D jet flow. We
show that for all four numerical test cases performed, a cell-centered approach, either with
linear or uniform interpolation during the explode procedure, as well as a vertex-centered
direct-coupling method, proves to be the most suitable with regards to aeroacoustics, as
they produce the least amount of spurious noise. At this point, it should be mentioned that
we only focus on refinement methods that are based on the classical collide-and-stream
algorithm and which we consider to be representative for the majority of lattice Boltzmann
simulations with local grid refinement.

After a concise recap of the theoretical background, collision models, boundary con-
ditions, and the necessary terminology regarding the analyzed grid refinement schemes
in Section 2, we continue with a discussion of the conducted numerical tests and their
respective results in Section 3. Finally, we close this work with a summary and outlook on
future work in Section 4.

To conclude this introductory part, we would like to highlight the above-mentioned
numerical artifacts associated with the change in local grid size by an illustrative example.
Due to the existence of vortical structures with a variety of spatial and temporal scales
as well as a substantial presence of non-hydrodynamic modes, such spurious effects are
particularly noticeable in high Reynolds number turbulent flows, as relevant for many
engineering applications. Figure 2 shows a large eddy simulation of the airflow around
a generic side mirror mounted on a flat plate [39] at two different Reynolds numbers,
Re = 5.2 × 105 and Re = 1.1 × 105, and a Mach number of Ma = 0.1 using the LBM
with a D3Q19 velocity stencil and hybrid-recursive regularization collision operator. The
hybridization factor in the HRR model was set to σ = 0.98 as recommended in [31] for
high Reynolds number turbulent flows. No explicit (i.e., based on physical reasoning)
subgrid–scale stress model was used, leading to an implicit SGS formulation utilizing the
HRR model’s inherent dissipation for the treatment of underresolved scales. The spatial
discretization of the flow domain was realized by a non-uniform Cartesian grid consisting
of several levels with the highest resolution, i.e., the smallest grid size, enclosing the object
and a total number of approximately 2 × 108 grid nodes. As the highly turbulent wake
emerging from the plate and blunt body surfaces and indicated by means of contours of
the Q-criterion passes through the innermost GTI located downstream, the GTI acts as a
source of artificial acoustic waves, clearly visible as disturbances in the grayscaled velocity
divergence field. These disturbances are propagated upstream, superimposing the physical
sound field in the region around the body and thus distorting any aeroacoustic evaluation,
especially in the case of the higher Reynolds number.
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turbulent wake

flat plate + blunt body

spurious acoustic source

innermost GTI

(a) Re = 5.2 × 105, Ma = 0.1

(b) Re = 1.1 × 105, Ma = 0.1

Figure 2. Lattice Boltzmann simulation of a low Mach number airflow over a blunt body mounted on
a flat plate at two different Reynolds numbers. Spurious acoustic waves visualized as disturbances in
velocity divergence ∇ · u (grayscale) are emitted from the downstream grid transition interface (GTI).
The turbulent wake is visualized by Q-criterion and colored by velocity magnitude.

2. Overview of Methods
2.1. Lattice Boltzmann Method

The lattice Boltzmann equation (LBE) (1) describes the spatiotemporal evolution of
a discrete set of distribution functions fi representing phase-space densities of fictitious
particles, typically solved for on a Cartesian grid with spacing ∆x and involving a restriction
of velocity space such that the particles travel with a velocity ξi from one grid node to
selected neighbors during one time step ∆t. The left-hand side of the LBE reflects this node-
to-node particle transport, while the right-hand side describes local particle redistribution
by means of collision operator Ωi(x, t):

fi(x + ξi∆t, t + ∆t)− fi(x, t) = Ωi(x, t). (1)

Figure 3 shows the two common D2Q9 and D3Q19 velocity sets or lattices. The D3Q19 set
represents the basis of all numerical experiments discussed in Section 3, whereas the D2Q9
set is used for its simplicity in order to review and clarify concepts regarding the different
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grid layouts in Section 2.5. With the molecular velocity ξ̃ = ∆x
∆t , particle velocity vectors for

the D3Q19 lattice are given by

Figure 3. Discrete velocity sets for D2Q9 and D3Q19 lattices [5].

ξi =


(0, 0, 0) i = 18(
±ξ̃, 0, 0

)
,
(
0,±ξ̃, 0

)
,
(
0, 0,±ξ̃

)
i = 0, . . . , 5(

±ξ̃,±ξ̃, 0
)
,
(
±ξ̃, 0,±ξ̃

)
,
(
0,±ξ̃,±ξ̃

)
i = 6, . . . , 17.

(2)

Macroscopic physical quantities are extracted from the mesoscopic scale as moments of the
distribution function. In discretized phase space, these moments are evaluated as weighted
sums using Gauss–Hermite quadrature with discrete particle velocities as abscissae [40],
yielding M(x, t) = ∑

q−1
i=0 φ(ξi) fi, where fi = wi f (x, ξi, t). Herein, f describes a polynomial

expansion of the phase space continuous velocity distribution function [41]. For the D3Q19
lattice, the quadrature weights wi results in [42]

wi =


1
3 , i = 18
1

18 , i = 0, . . . , 5
1

36 , i = 6, . . . , 17.

(3)

The relationship between the molecular velocity ξ̃ and the isothermal speed of sound
cs = p/ρ =

√
RT is then given by ξ̃ =

√
3cs.

2.2. Bhatnagar–Gross–Krook Collision Model

The classical collision model introduced by Bhatnagar, Gross, and Krook in 1954 [43]
represents an approximation of particle collision by ΩBGK = −1/τ( f − f eq), i.e., relaxing the
velocity distribution function f towards the Maxwell–Boltzmann equilibrium distribution
f eq(ρ, u, ξ) = ρ/(2πc2

s)
3
2 exp(−(ξ−u)2/2c2

s) by means of a single relaxation time τ. Adapted to
the LBE, the discrete form of the BGK approximation is given by

ΩBGK
i = − ∆t

τ + 1
2 ∆t

(
fi − f (0)i

)
= − c2

s ∆t
ν + 1

2 c2
s ∆t

(
fi − f (0)i

)
= −ω̃ f neq

i , (4)

where fi and f (0)i replace their respective continuous equivalents f and f eq and with ω̃

being the so-called dimensionless collision frequency. Regarding the discrete equilibria
f (0)i , we rely on the following third-order Hermite polynomial expansion form:
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f (0)i = wi

[
2

∑
n=0

1
c2n

s n!
H(n)

i : A(n)
0 +

1
2c6

s

(
H(3)

i,xxy +H(3)
i,yzz

)(
A(3)

0,xxy + A(3)
0,yzz

)
+

1
2c6

s

(
H(3)

i,xxz +H(3)
i,yyz

)(
A(3)

0,xxz + A(3)
0,yyz

)
+

1
2c6

s

(
H(3)

i,xyy +H(3)
i,xzz

)(
A(3)

0,xyy + A(3)
0,xzz

)
+

1
6c6

s

(
H(3)

i,xxy −H(3)
i,yzz

)(
A(3)

0,xxy − A(3)
0,yzz

)
+

1
6c6

s

(
H(3)

i,xxz −H(3)
i,yyz

)(
A(3)

0,xxz − A(3)
0,yyz

)
+

1
6c6

s

(
H(3)

i,xyy −H(3)
i,xzz

)(
A(3)

0,xyy − A(3)
0,xzz

)]
, (5)

including orthogonalized third-order Hermite moments in order to get rid of spurious
couplings among them [38,44]. Due to its insufficient quadrature order, isotropic Hermite
tensors of the form H(3)

i,ααα or H(3)
i,αβγ have to be excluded for the D3Q19 lattice [45,46].

Hermite equilibrium expansion coefficients A(n)
0 in Equation (5) are obtained through

a projection of the Maxwell–Boltzmann equilibrium distribution onto a nth-order Hermite
polynomial basis, defined as [3]

H(n)
i =

(
−c2

s
)n

ω(ξi)
∇n

ξ ω(ξi) with ω(ξ) =
1

(2πc2
s )

3
2

exp

(
−
||ξ̃||22
2c2

s

)
, (6)

with ∇n
ξ expressing the nth-order gradient with respect to ξ. These expansion coefficients

are related to or directly coincide with equilibrium moments and are given by [46]

A(0)
0 = ρ,

A(1)
0,α = ρuα,

A(2)
0,αβ = ρuαuβ + ρc2

s δαβ,

A(3)
0,αβγ = ρuαuβuγδαβ, where δαβ =

{
1, α = β
0, α ̸= β

. (7)

2.3. Regularized Collision Models

Since the presence of non-hydrodynamic modes in the BGK model is known to cause
serious stability issues, especially due to detrimental interactions with grid interfaces [3,4],
we employ regularized collision operators to emphasize and investigate these effects.
Besides their filtering and damping capabilities regarding non-hydrodynamic modes,
regularized models offer another decisive advantage with respect to aeroacoustics in that
they do not increase bulk viscosity [31] to improve stability, as is often the case with
many common multiple-relaxation time models [2]. The core idea behind regularized
models consists of abandoning terms of order n > 1 contained within the non-equilibria in
Equation (4), i.e., approximating f neq

i = fi − f (0)i by f neq
i ≃ f (1)i and thus relying on explicit

reconstruction of the first-order non-equilibrium part f (1)i [47,48]. These abandoned terms
correspond to high-order physics, not correctly representable on standard lattices like the
D3Q19. As the target physics of such LBMs lies within the range of Navier–Stokes level
hydrodynamics (first-order truncation of the Knudsen number expansion of f ), keeping
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only the first-order non-equilibria is a reasonable approximation. The LBE then takes the
following form:

fi(x + ξi∆t, t + ∆t) = f (0)i + (1 − ω̃) f (1)i . (8)

Similar to the equilibrium functions f (0)i and f (1)i are reconstructed through Hermite series
expansion, including orthogonal third-order non-equilibrium moments in order to deal
with spurious couplings among them [38,44]:

f (1)i = wi

[
1

2c4
s
H(2)

i : A(2)
1 +

1
2c6

s

(
H(3)

i,xxy +H(3)
i,yzz

)(
A(3)

1,xxy + A(3)
1,yzz

)
+

1
2c6

s

(
H(3)

i,xxz +H(3)
i,yyz

)(
A(3)

1,xxz + A(3)
1,yyz

)
+

1
2c6

s

(
H(3)

i,xyy +H(3)
i,xzz

)(
A(3)

1,xyy + A(3)
1,xzz

)
+

1
6c6

s

(
H(3)

i,xxy −H(3)
i,yzz

)(
A(3)

1,xxy − A(3)
1,yzz

)
+

1
6c6

s

(
H(3)

i,xxz −H(3)
i,yyz

)(
A(3)

1,xxz − A(3)
1,yyz

)
+

1
6c6

s

(
H(3)

i,xyy −H(3)
i,xzz

)(
A(3)

1,xyy − A(3)
1,xzz

)]
. (9)

Notice the tensor contraction involving only second-order contributions, due to zeroth- and
first-order terms being equal to zero in our case, cf. e.g., Section 2.3 in [5]. Non-equilibrium
expansion coefficients A(2)

1 are obtained by projection of the non-equilibrium functions
onto the second-order Hermite tensor [45], cf. Equation (6), whereas higher-order terms
are calculated exploiting recurrence relations proposed in [49]. Owing to this property,
the method is known as recursive regularization (RR). With third-order Hermite tensors
expressed by means of second-order ones as H(3)

i,ααβ =
(
ξi,αξi,α − c2

s
)
ξi,β and by ruling

out isotropic tensors H(3)
i,ααα and H(3)

i,αβγ as was previously performed for f (0)i , expansion
coefficients result to

A(2)
1,αβ = ∑

i
H(2)

i,αβ

(
fi − f (0)i

)
= ∑

i

(
ξi,αξi,β − δαβc2

s

)
f neq
i , (10)

A(3)
1,ααβ = 2uα A(2)

1,αβ + uβ A(2)
1,αα. (11)

A further improvement regarding stability was achieved with the hybrid-recursive
regularized collision operator (HRR), introduced in [38]. In this method, second-order
non-equilibrium expansion coefficients A(2)

1 , which relate to the viscous stress tensor

through A(2)
1,αβ = −2Sαβρc2

s ∆t/ω̃ [45], are hybridized as follows before being utilized in the

reconstruction of f (1)i in Equation (9):

A(2)
1 = σA(2),PR

1 + (1 − σ)A(2),FD
1 , with [0 ≤ σ ≤ 1]. (12)
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A(2),PR
1 represents projection-based moments computed by Equation (10), whereas the

second term A(2),FD
1 is determined by approximating strain rates Sαβ = 1

2
(
∂βuα + ∂αuβ

)
contained within the stress tensor using central finite differences, yielding

A(2),FD
1,αβ = −ρc2

s ∆t
ω̃

(
uα

(
x + eβ∆x

)
− uα

(
x − eβ∆x

)
2∆x

+
uβ(x + eα∆x)− uβ(x − eα∆x)

2∆x

)
. (13)

The RR model is recovered by setting σ = 1 in Equation (12), where σ = 0 leads to a solely
finite difference-based reconstruction of the viscous stress tensor. Selecting σ ∈ [0, 1[, a
significant stability increase can be achieved compared with the RR model by effectively
damping non-hydrodynamic mode contributions [3,4,38,50,51].

2.4. Non-Reflecting Boundary Conditions

Common boundary conditions imposing density or velocity values at domain inlets
or outlets inevitably cause sound wave reflections for compressible flow solvers [52],
polluting the density and consequently the pressure field [53]. Since our goal is to examine
numerical noise originating exclusively from the GTI, the Gaussian acoustic pulse and
three-dimensional jet test case in Section 3 have been investigated utilizing so-called non-
reflecting characteristic Dirichlet boundary conditions (CBCs) adapted to the LBM [54].
These shall be briefly addressed in the following.

Through a diagonalization of the Euler conservation equations, a decomposition
into characteristics, typically representing acoustic waves and advective transport, is
achieved, leading to the local one-dimensional inviscid (LODI) equations [55,56]. Con-
sidering in Figure 4 an exemplary computational domain with characteristic waves
Lx,1, Lx,2, Lx,3, Lx,4, Lx,5 entering or leaving through y–z-boundary faces and prop-
agating at their respective velocities ux + cs, ux, ux, ux, ux − cs, and LODI equations are
given by

Figure 4. Amplitudes of characteristic waves at two outflow boundaries in x-direction with opposite
orientation of face normal vector [55].

∂tρ + 1
c2

s

[
Lx,2 +

1
2 (Lx,5 + Lx,1)

]
∂tux +

1
2ρcs

(Lx,5 −Lx,1)

∂tuy + Lx,3

∂tuz + Lx,4

∂t p + 1
2ρcs

(Lx,5 + L1)

 =


0
0
0
0
0

 (14)

The vector of macroscopic hydrodynamic variables g =
(
ρ, ux, uy, uz

)T, needed for the
realization of Dirichlet-type boundary conditions, is determined by ideally setting incom-
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ing wave amplitudes to zero while simultaneously leaving outgoing waves undisturbed
and solving the LODI Equation (14) numerically. As usual in the LBM, the calculated
macroscopic quantities need to be expressed in terms of mesoscopic particle distributions
to be specified at boundary nodes. For this purpose, we impose equilibrium distribution
functions f (0)i (ρ, u) computed by means of Equation (5) [37,54].

For the outflow in Figure 4 located at x = Lx, characteristic wave amplitude variations
read [55] 

Lx,1

Lx,2

Lx,3

Lx,4

Lx,5

 =


(ux − cs)

[
c2

s ∂x p − ρcs∂xux
]

ux
[
c2

s ∂xρ − ∂x p
]

ux
(
∂xuy

)
ux(∂xuz)

(ux + cs)[∂x p − ρcs∂xux]

 (15)

Here, Lx,1 represents sound propagation in the −x direction and the only wave entering
the domain through the outflow. Accordingly, Lx,5 is the acoustic wave travelling in the
+x direction. The entropy wave Lx,2 is equal to zero in the athermal case, since fluid
pressure and density are related like p = c2

s ρ. The remaining two waves, Lx,3 and Lx,4,
carry vorticity information. In order to achieve a non-reflecting pressure outflow boundary
condition, the unknown incoming wave amplitude Lx,1 is approximated by a pressure
relaxation given as [55]

Lx,1 = K1

cs

(
1 − Ma2

)
Lx

(p − p∞), (16)

with p∞ being a target pressure and Ma the maximum Mach number at the boundary.
Setting the relaxation constant K1 = 0 results in a perfectly non-reflecting boundary
condition but is generally not preferable due to strong pressure variations rendering the
method unstable [57–59]. For this reason we set K1 = 1 for the Gaussian acoustic pulse and
K1 = 1 × 10−3 for the jet flow.

The remaining amplitudes Lx,3, Lx,4, and Lx,5 for outgoing waves are calculated
according to Equation (15), with spatial derivatives of physical quantities g being approxi-
mated using one-sided second-order finite-difference quotients with a backwards stencil:

(∂αgl)(x) ≈ ∓3gl(x)± 4gl(x ± eα∆x)∓ gl(x ± eα2∆x)
2∆x

, (17)

where upper-row arithmetic operators apply to the y–z-boundary with a positive outward-
pointing normal vector at x = Lx. Finally, the LODI equations (14) can be solved by means
of a simple forward Euler step:

gl(x, t + ∆t) ≈ gl(x, t) + ∆t∂tgl(x, t), (18)

providing the hydrodynamic variables to be set at the boundary in the next time iteration.

2.5. Local Grid Refinement

A detailed overview of vc-ov, cc, and cm grid refinement algorithms is given in our
previous study [5], where the latter two of the three schemes have been adapted in order to
allow for consistent central-difference approximation of strain rates across grid interfaces
when HRR collision is employed. Regarding vc-dc, a comprehensive description can be
found in [31]. Nevertheless, we would like to provide a concise summary of each individual
method’s basics and establish the relevant nomenclature.

In order to keep descriptions vivid, we will restrict ourselves to one additional level
of refinement, thus two neighboring grid levels with spacings connected by ∆xc = 2∆x f .
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Here, superscripts c and f indicate the coarse and fine grid levels, respectively. Moreover,
we employ convective scaling to link time steps between levels as ∆tc = 2∆t f and to keep
the molecular velocity ξ̃ and, as a consequence, the isothermal speed of sound cs constant.

2.5.1. Vertex-Centered Schemes

Vertex-centered schemes are characterized by partially co-located coarse and fine
interface nodes residing in cell corners, as well as partnerless hanging nodes in

between [7,60]. Since interface nodes miss same-level neighbors in at least one direction, the
respective missing post-streaming functions must be somehow provided. If a grid overlap
is used (refer to Figure 1a), typically all functions at co-located nodes are reconstructed by
transferring information from corresponding partners as

c → f : f f
i = f (0)i +R f neq,c

i , ∀i (19)

f → c : f c
i = f (0)i +

1
R f neq, f

i , ∀i, (20)

where rescaling of f neq
i by R = ω̃c/2ω̃ f ensures consistency of the viscous stress tensor

across grid levels. This reconstruction procedure is inserted into the core algorithm after
streaming and before the collision step, following [8].

In order to remove fine scales above the Nyquist wavenumber that cannot be rep-
resented on the coarse grid, stability-enhancing filters are often explicitly applied to the
non-equilibrium functions in Equation (20) in scale-resolving simulations of turbulent
flows. To investigate the influence of these methods concerning spurious noise, we include
restrictions according to Lagrava et al. [13] and Touil et al. [14], corresponding to a simple
arithmetic mean over all lattice neighbors and an anisotropic filter, respectively, into some
of our tests in Section 3. These methods will be abbreviated as LAG and TOU throughout
this work. Given that other types of refinement schemes often perform such filtering
implicity [2], which is also the case for the cc and cm algorithms examined in this study,
incorporating the aforementioned operations yields an equal and intriguing comparison.

The direct-coupling algorithm [4] dispenses with overlapping grids (cf. Figure 1b) and
instead solves the following non-linear equation system constituting a constraint on zeroth-
and first-order non-equilibrium moments in order to establish a connection between grid
levels and reconstruct missing post-streaming distribution functions at co-located coarse

and fine interface nodes:

∑
i

ΓiΦi f neq,γi
i = ∑

i
ΓiΦi

(
f γi
i − f (0)i (ρ, u)

)
= 0, (21)

where parameters Γi and γi can take the values {1,R} and {c, f } depending on the specific
vc-dc variant and subset, as explained down below, Φi =

(
1, ξi,x, ξi,y, ξi,z

)T and u =(
ux, uy, uz

)T in 3D. The only unknown is the vector of macroscopic variables (ρ, u)T, since
all post-collision states on both grids are available. As for this reason, the choice of fi to
be used in Equation (21) is not unambiguous; two possible variants of the direct-coupling
method are introduced in [4], both of them starting from a reconstruction at the fine level.

Distribution functions are divided into subsets, comprising the subset M of missing
functions, the subset Q of functions known exclusively at either interface node, and the
subset P of functions known at both interface nodes simultaneously. If, for example, the
D2Q9 lattice definition shown in Figure 3 and the vc-dc layout in Figure 1b are taken as a
basis, these subsets result in M f = Qc = {0, 4, 7}, Q f = Mc = {2, 5, 6}, and P = {1, 3, 8}.

Summing over lattice directions i in Equation (21), missing distribution functions
obviously need to be transferred from coarse partners, whereas known fine functions must
be utilized, since Q f = Mc. It is the selection of the distributions in P that defines the
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distinctions between the two variants of the method. In the vc-dc1 algorithm, distribution
functions belonging to P are taken from the fine grid, whereas the vc-dc2 algorithm relies
on coarse functions for the determination of f (0)i (ρ, u), in order to reduce aliasing and
interpolation errors associated with functions streamed from hanging nodes . Hence,
Equation (21) can be rewritten in the following form, with Γi and γi replaced by their
corresponding values and the rescaling factor R defined as above:

∑
i∈Q f

Φi f neq, f
i + ∑

i∈M f

RΦi f neq,c
i + ∑

i∈P
Φi f neq, f

i = 0 for vc-dc1, (22)

∑
i∈Q f

Φi f neq, f
i + ∑

i∈M f

RΦi f neq,c
i + ∑

i∈P
RΦi f neq,c

i = 0 for vc-dc2. (23)

To determine the roots of the system, a Newton–Raphson method [61] is used, which will
not be discussed in depth here. A complete description is given in [4].

With the new equilibrium distributions thus obtained, Astoul et al. firstly reconstruct
f f
i , ∀i ∈ M f according to Equation (19) and then f c

i , ∀i ∈ Mc ∪ P as per Equation (20),
providing all states required for the succeeding collision step. A reconstruction of known
P functions is performed in order to ensure consistent treatment between grid levels and
avoid potential mass and momentum conservation violation [4].

Another approach examined in Section 3 of the present paper consists of first replacing
f f
i , ∀i ∈ M f ∪ P and subsequently reconstructing only f c

i , ∀i ∈ Mc, to exploit and retain
as much available coarse post-streaming information as possible. In this variant, coarse
functions belonging to the subset P need not be reconstructed since they have already
been utilized in the reconstruction of corresponding fine functions and would therefore
remain unchanged.

To distinguish between these methods in Section 3, the first approach will be indicated
by the suffix Mf McP, as missing fine and coarse, as well as coarse P functions are replaced.
Accordingly, suffix MfP Mc identifies the second variant of reconstruction.

Furthermore, we will also apply different reconstruction procedures to the vc-ov
algorithm, named in a similar manner, i.e., with reconstructed distribution functions at
either level mentioned explicitly by an appropriate suffix only in cases where not all states
are replaced. If, for example, only missing distribution functions belonging to M are
reconstructed on both grids, leaving functions in Q and P unaffected, a consistent use of
our naming convention yields vc-ov Mf Mc, whereas vc-ov MfP indicates a reconstruction
of M f and fine P distributions while replacing all coarse functions. For the standard
approach of reconstructing all functions on both interface nodes, the suffix is dropped,
giving vc-ov. A schematic representation of the different reconstruction variants is given in
Figure A2 based on vc-ov.

In all vc schemes, distribution functions at are reconstructed by applying cubic
p(x) = ∑3

α=0 aαxα [9], and in the case of additional face-centered hanging nodes occurring
in 3D, bi-cubic p(x, y) = ∑3

α=0 ∑3
β=0 aαβxαyβ [62] polynomial interpolation is used, thereby

utilizing information of co-located nodes. Only states corresponding to lattice directions
previously reconstructed at co-located nodes are also reconstructed at hanging nodes.
Synchronization of coarse and fine distributions during reconstruction at intermediate
iterations t + ∆t f is achieved by means of linear interpolation in time [63].

2.5.2. Cell-Centered Schemes

Cell-centered schemes [6] (refer to Figure 1c) employed in this work are based on two
specific grid-coupling steps. During c → f coupling, coarse post-collision distributions

⋆

f c
i



Fluids 2025, 10, 31 13 of 41

at
(

xc, t
)

traveling towards the fine grid are redistributed among fine interface nodes(
x f , t

)
contained within the same coarse parent cell either uniformly [15]:

⋆

f f
i
(
x f , t

)
=

⋆

f c
i
(
xc, t

)
, ∀i ∈ M f , (24)

or by relying on linear spatial interpolation of
⋆

f c
i along directions α parallel to the interface

as follows [16]:

⋆

f f
i
(

x f , t
)
=

⋆

f c
i
(
xc, t

)
+
(
x f − xc) ·(F i

(
xc, t

)
−

ξi
(
ξi · F i

(
xc, t

))
|ξi|2

)
, ∀i ∈ M f , (25)

Fiα
(

xc, t
)
=

⋆

f c
i
(
xc + eα∆xc, t

)
−

⋆

f c
i
(
xc − eα∆xc, t

)
2∆xc .

Accordingly, the procedures in Equations (24) and (25) are each referred to as uniform
and linear explosion in the course of this work. Since two rows of fine interface nodes are
supplied with coarse post-collision states, they remain valid for two consecutive fine time
steps, thereby omitting the need for temporal interpolation.

Concerning f → c communication, coalescence implies missing coarse densities to
be obtained by averaging fine particle densities contained within the coarse parent cell,
resulting in the following expression for three spatial dimensions:

f c
i
(
xc, t

)
=

1
8 ∑ f f

i
(
x f , t

)
, ∀i ∈ Mc. (26)

This procedure acts as implicit filtering of fine distributions, as a result of spatial equaliza-
tion of grids [17]. Even though no explicit rescaling of distributions is occurring in the cc
algorithm described here, Rohde et al. [15] assume a rescaling of the non-equilibrium part
to be implicitly present in their method.

2.5.3. Combined Schemes

The combined grid arrangement can be defined as a combination of both aforemen-
tioned layouts, with fine nodes residing in their respective cell centers and being enclosed
by regular coarse nodes sitting in the coarse parent cells corners. Similarly, coarse inter-
face nodes are surrounded by regular fine cell-centered nodes [17–19,37], as depicted
in Figure 1d, resulting in a grid overlap of two coarse cells. Thus, missing distribution
functions at interface nodes can be reconstructed by applying Equations (19) and (20) with
minor modifications. Density ρ in f (0)i as well as the non-equilibrium part f neq

i are inter-
polated trilinearly, whereas for the velocity vector u we apply the following second-order
polynomial expression as part of a compact gradient-based interpolation scheme:

uI
α (x, y, z) = aα,000 + aα,100x + aα,010y + aα,001z + aα,200x2 + aα,110xy

+ aα,101xz + aα,020y2 + aα,011yz + aα,002z2 + aα,111xyz, (27)

with α = x, y, z, and where superscript I indicates an interpolated value. For details
regarding the calculation of coefficients aα,ijk in Equation (27), please refer to appendix C
in [5].

As in the cc algorithm, no temporal interpolation is performed, since two layers of
fine interface nodes are updated simultaneously. Furthermore, the spatial interpolation of
quantities during f → c communication can be seen as a filtering procedure.

It should be mentioned that some authors classify this approach as a cell-centered
method [2,37,64], cf. Figure A1. However, such a volumetric perspective entails a small
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peculiarity in the order in which the reconstruction of missing functions at interface nodes
is carried out: coarse interface nodes must be treated before fine interface nodes ,
since the latter depend on a proper set of distribution functions of the former; cf. section 2.2
in [64]. When relying on a combined perspective, however, the order of reconstruction at
interface nodes becomes arbitrary.

3. Numerical Experiments and Results
In order to emphasize the motivation for the selection of the individual benchmarks in

Section 3, the following research questions may serve as guidance:

• Gaussian acoustic pulse: How do the individual refinement schemes compare with
regard to the produced amount of artificial noise, given a purely acoustic scenario, i.e.,
without background flow?

• Convected acoustic wave: To what extent do these methods differ in terms of inter-
actions between spurious acoustic modes and the grid refinement interface when
background flow is present?

• Convected barotropic vortex: What is the effect on grid-transition-induced spurious
artifacts when vorticity crosses the refinement interface?

• Three-dimensional jet flow: Do the conclusions drawn in all previous cases hold true
for a more demanding, high-Reynolds number flow?

3.1. Gaussian Acoustic Pulse

The Gaussian pulse is a classical benchmark for acoustic simulations and has served
as a verification tool in a number of studies in the LBM context for both uniform [65,66] and
non-uniform grids [2,4,28]. In the present paper, the target of interest comprises an acoustic
pulse at Ma = 0 that passes across a planar refinement interface, whereby a portion of the
pulse is reflected. Since spurious acoustic modes are static in such a case and therefore do
not interact with the interface, the observed reflections can be attributed solely to properties
of the grid refinement scheme as well as the sudden change in spatial resolution [3,4].

A schematic depiction of the calculation domain comprising a pseudo-2D box of
dimensions [L, L, ∆xc] with L = 3 m is shown in Figure 5. To prevent unphysical reflections
at boundaries from corrupting the analysis, characteristic pressure boundary conditions
are defined at the boundary faces. Additionally, a sponge layer including a linear increase
in viscosity up to a maximum value of ν = 19.05 m2 s−1 separates the boundaries from the
inner region. As explained in Section 2.4, we set the relaxation constant K1 = 1.

Figure 5. Schematic representation of the calculation domain for the Gaussian acoustic pulse test case.
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Since sound waves typically travel from higher to lower spatial resolution in a simula-
tion, the Gaussian pulse is initialized in the fine grid as

ρ′(r, t = 0) = ρ0ϵ exp
(
−βr2

)
ρ̄ = ρ0,

u′
x(r, t = 0) = 0 ūx = 0,

u′
y(r, t = 0) = 0 ūy = 0,

(28)

and crosses the grid transition located at the center of the domain. In Equation (28),
perturbation quantities are defined like ϕ′ = ϕ − ϕ. Furthermore, ρ0 is the base density, ϵ

the pulse amplitude, and β the shape factor, related to the standard deviation Rc through

2β = R−2
c and r =

√
(x − xc)

2 + (y − yc)
2.

Although non-hydrodynamic modes remain static here, unphysical artifacts attributed
to their presence may still appear with the BGK model, superimposing pulse reflections
and affecting the interpretation of results. For this reason, we adopt the HRR model with
a hybridization factor of σ = 0.98 for the Gaussian acoustic pulse test case, effectively
damping the aforementioned non-hydrodynamic mode impact.

The chosen value for σ is recommended in [31] for high-Reynolds number turbulent
flows, as they are generally found in industrial applications. Due to the ever-growing
significance of scale-resolving simulations in this context and with the HRR operator’s
enhanced stability properties, its choice as a basis for this simple benchmark seems natural.
Furthermore, as in our previous study, we adapted the HRR model with regard to a
consistent central-difference approximation of strain rates across cc and cm refinement
interfaces [5]; the Gaussian pulse enables us to verify our approach for acoustic scenarios.

The pulse’s spatiotemporal evolution can be expressed in terms of the following
analytical expression:

ρ′(r, t) =
ρ0ϵ

2β

∫ ∞

0
exp

(
−ξ2/4β

)
cos(cstξ)J0(ξr)ξdξ, (29)

That was determined with the help of Wolfram Mathematica for verification and is evalu-
ated along the abscissa in Figure 6 compared with an HRR solution on a uniform fine grid
that serves as a reference. In Equation (29), J0(·) represents the zeroth-order Bessel function
of the first kind. All remaining relevant simulation parameters are summarized in Table 1.

Table 1. Parameter set for the Gaussian acoustic pulse.

∆xc/m cs/m s−1 ρ0/kg m−3 ν/m2 s−1 ϵ Rc/m (xc/m, yc/m)

0.02 347.3 1.17621 1.49 × 10−5 0.01 0.06 (−8Rc, 0)

Besides a stability increase, the injected numeric viscosity within the HRR model [38],
controlled by the value of σ (cf. Figure 5.8 in [5]), leads to a significant dissipation of
spurious modes [3] and expectedly affects the attenuation of physical sound waves as
well. However, as depicted in Figure 7 at time t = 80∆t for the reference solution on a
uniform fine grid, the pulse’s amplitude decreases relative to the BGK solution only by
approximately 0.007% and 0.015% for σ = 0.99 and σ = 0.98, respectively. This aspect
underlines the suitability of the HRR collision model for aeroacoustic purposes.



Fluids 2025, 10, 31 16 of 41

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

x/m
ρ
′ ϵ
−

1 /
kg

m
−

3

t = 0 eq. (29)
HRR (σ = 0.98)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.1

0

0.1

x/m

ρ
′ ϵ
−

1 /
kg

m
−

3

t = 80∆t

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.1

0

0.1

x/m

ρ
′ ϵ
−

1 /
kg

m
−

3

t = 220∆t

Figure 6. Temporal evolution of the acoustic pulse with HRR collision on a uniform grid compared
with the analytical solution.
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Figure 7. Effect of increased numerical dissipation of the HRR model on the pulse amplitude for a
uniform grid.

Pulse reflections for different grid refinement methods are shown in Figure 8 along
the abscissa, with the GTI represented by the dashed vertical line at x = 0. First of all, it
should be noted that the excellent agreement of cc and cm schemes, including our HRR
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adaptation from [5], with the uniform fine grid on the right side of the interface indicates
an undisturbed passage of the pulse and validates the approach for acoustic applications.
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-0.0036

Figure 8. Spurious reflection of the acoustic pulse at the GTI for various refinement schemes and
HRR collision model with σ = 0.98.

Qualitatively speaking, it can be stated that cc with linear explosion (cf. Equation (25)
cm, and vc-dc2 (cf. Equation (23)) exhibit a similar amount of reflection. The cc method
with uniform explosion (cf. Equation (24)) has not shown significant differences to cc linear
for this test case.here for reasons of clarity. In agreement with [4], the vc-ov method with the
Lagrava filter produces a stronger reflection compared with vc-dc, whereby the difference
to vc-ov, i.e., without stabilizing filtering, is only marginal, as can be seen in Figure A3 in
the Appendix. Nevertheless, the reflection is an order of magnitude smaller compared with
the pulse for all methods. The phase inversion observed in the reflected waves between cc
and cm on the one side and the vc schemes on the other is possibly related to the temporal
interpolation within the latter. However, no further investigation has been carried out
in this context. The shift for cm is caused by the interface extending over 2∆xc and the
resulting difference in interface node arrangement.

A comparison between the two reconstruction variants for vc-dc discussed in
Section 2.5 illustrates a noticeable reduction in reflection when retaining a maximum
of available coarse states during grid communication, which diminishes aliasing effects
and adds numerical dissipation to the scheme. This means a reconstruction of the fine
distributions in M f and P , so that in addition to the missing distribution functions at ,
known states that originate from hanging nodes are also replaced utilizing information
from the coarse interface node . Afterwards, only coarse states belonging to Mc need to
be reconstructed, providing all necessary states for the subsequent collision step. Figure A4
shows the corresponding diagram for vc-dc1. Although the MfP Mc procedure reduces
the introduction of interpolation errors at , this effect is balanced due to P states being
reconstructed by spatial interpolation at in contrast to vc-dc Mf McP, since we rely on an
equal treatment of all fine interface nodes. A preceding investigation of the influence of
different reconstructions at , independent of , did not reveal any significant differences.

A significant reduction in reflection can be achieved for the vc-ov LAG method by an
MfP reconstruction, whereby we have tested several variants, and this one has proven to
be the most beneficial. Here, solely the known states f f

i , ∀i ∈ Q f are kept, while fine states
in M f and P are replaced with the help of the coarse partner . Furthermore, all coarse
functions are replaced using information from the fine partner node . Relying on this
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form of reconstruction, the reflection amplitude is reduced to a degree similar to that of
vc-dc2 MfP Mc, hence falling below the original vc-dc2 Mf McP algorithm.

To conclude this subsection, the following can be summarized for the Gaussian acoustic
pulse benchmark:

• For pure acoustic scenarios, i.e., without any background flow, vc-dc2, cc and cm
provide similar accuracy with regards to spurious reflections at the interface.

• A phase inversion of the reflected wave, which is possibly related to temporal inter-
polation, is observed between cc and cm schemes on the one side and vc schemes on
the other.

• Spatial filtering applied during f → c communication in vc-ov, has no significant
impact on the results.

• Partial reconstruction procedures lead to a considerable decrease of reflected pulse
amplitude in the case of vc-ov LAG and a smaller, yet noticeable reduction for vc-dc1
and vc-dc2.

3.2. Convected Acoustic Wave

The convected acoustic wave test case is suitable for investigating the interaction
between spurious acoustic modes and grid transitions, since in contrast to the Gaussian
pulse, these modes are not static and may therefore be convected across an existing interface.

Using a vc-ov LAG grid refinement scheme Astoul et al. analyzed in [3] the energy
transfer that occurs at the GTI between a spurious mode excited during initialization
(termed incident spurious mode) and physical acoustic modes if the incident spurious
mode is not properly attenuated before impinging the interface. They demonstrated that
a significant amplification of the incident spurious mode is observed for BGK and RR
collision models, which leads to subsequent generation of acoustic waves emerging from
the GTI. With HRR, no such artifacts appear since the incident spurious mode is sufficiently
damped before reaching the grid transition (cf. figures 16-C and 19-C in [3]). The subject of
the present subsection is to investigate and compare these effects for various types of grid
refinement methods, as, to the best of the authors’ knowledge, this test case has only been
examined in the above-quoted reference for one type of grid transition algorithm before.

As depicted in Figure 9, the acoustic wave is initialized in the fine grid of a pseudo-1D
periodic domain of size [L, ∆xc, ∆xc] with L = 14 m, according to

ρ′(x, t = 0) = ρ0ϵ exp
(
−β(x − xc)

2
)

ρ̄ = ρ0

u′
x(x, t = 0) = csϵ exp

(
−β(x − xc)

2
)

ūx = −u0,
(30)

passing the GTI located at x = 0 after being convected upstream against the background
flow u0. All simulation parameters are summarized in Table 2.

Figure 9. Schematic representation of the convected acoustic wave test case following [3].
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Table 2. Parameter set for the convected acoustic wave.

∆xc/m cs/m s−1 u0 ρ0/kg m−3 ν/m2 s−1 ϵ Rc/m (xc/m, yc/m)

0.01 300 0.1cs 1.17621 1.49 × 10−5 1 × 10−4 0.05 (−0.1Rc, 0)

Several distinct phenomena can be identified in this type of scenario, some of which
are indicated in Figure 10 and were described in detail by Astoul et al. in [3]. As they
determined by means of spectral analysis, the incident spurious acoustic mode has negative
group velocity and is therefore being convected upstream towards the GTI, where it is
strongly amplified. Since this numerical artifact constitutes the crucial part, we focus on
it here.
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Figure 10. Top: Spurious mode amplification leading to instability. Bottom: Stabilization of vc-ov
and vc-dc2 using MfP Mc reconstruction. The GTI is indicated by the dashed vertical line.

The top diagram in Figure 10 shows unbounded growth of the incident spurious
mode at the GTI for BGK collision with vc-dc2, including Mf McP reconstruction (original
algorithm) and vc-ov, after the physical acoustic wave has already been convected across the
grid transition, ultimately leading to instability and divergence of both simulations. Notice
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that no f → c restriction is used for vc-ov. In accordance with [3], reflections and spurious
acoustics generated at the GTI appear with negligible amplitude for this benchmark.

In the bottom part of the figure, the same situation is depicted with an alternative
partial reconstruction procedure. When utilizing MfP Mc, i.e., retaining a maximum of
known coarse states during the communication step by replacing only missing ones after
reconstructing f f

i , ∀i ∈ M f ∪ P , vc-dc2 is stabilized. Two acoustic waves are created at
the GTI, one of which propagates upstream and the other downstream. This situation
corresponds to the phenomena observed by Astoul et al. for vc-ov LAG with BGK and
RR collision (cf. top of Figure 11), with the difference that the amplitudes of the created
acoustics are reduced considerably when either vc-dc2 MfP Mc or vc-dc1 in its original
form, i.e., including Mf McP reconstruction, is used. With MfP Mc reconstruction, vc-
dc1 still exhibits a noticeable decrease in artificial acoustic wave amplitude compared
with vc-ov LAG, albeit higher than vc-dc1 Mf McP. The discrepancy between the two
reconstructions for vc-dc1 could be related to a mismatch in consistency for vc-dc1 MfP Mc
since a maximum of fine states is employed for the iterative determination of f (0)i , while,
on the other hand, a maximum of coarse states is retained during the reconstruction of
distribution functions at the interface. Yet vc-dc1 MfP Mc still leads to a reduction in the
reflection of the Gaussian pulse, as was shown in Section 3.1.

Regarding BGK vc-ov, several reconstruction strategies distributed among
Figures 10 and 11 have been examined. Generally speaking, a f → c restriction oper-
ation was only necessary for vc-ov and vc-ov MfP with BGK collision to achieve a stable
solution. All other approaches that rely on partial reconstruction of distribution functions
on either level remained stable without such filtering. However, high-frequency oscillations
emerge, especially in the coarse grid, if filtering is dispensed with and only coarse states
belonging to Mc are replaced. Furthermore, all partial reconstructions exhibited a less
pronounced amplitude of the created upstream wave and a similar or weaker downstream
wave compared with the full replacement, with the lowest amplitudes occurring for vc-ov
Mf (LAG), amounting to a reduction of ≈47.6% and ≈33.3% relative to vc-ov LAG for the
upstream and downstream wave, respectively.

Applying vc-ov together with RR collision, the results almost coincide with BGK vc-ov
LAG. The regularization filters out detrimental high-frequency oscillations even without
the use of a restriction operation. Nevertheless, the intensity of the artificial waves is
essentially determined by the refinement method if no attenuation of the incident spurious
mode is present prior to its interaction with the GTI, as it is the case with HRR.

While the cm approach leads to a similar amplitude for the created acoustics and
smooths out oscillations by means of implicit filtering of f neq

i during f → c communication
due to trilinear spatial interpolation, the cc method demonstrates substantially different
properties. With the cc algorithm, neither high-frequency oscillations nor the up- and
downstream acoustic waves are generated at the GTI for BGK collision. Regardless of the
order of explosion, no harmful interactions of the incident spurious mode with the grid
refinement interface can be observed, resulting in a behavior akin to that produced with the
HRR collision model, so that only the spurious reflection caused by the sudden resolution
change as well as some created low-amplitude spurious waves remain.
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Figure 11. Spurious acoustic waves and high-frequency fluctuations emitted from the GTI with vc
and cm algorithms due to detrimental interaction with non-hydrodynamic modes. No such numerical
noise is present for cc linear.

Our first hypothesis was that the increased numerical dissipation of the cc method
compared with vc and cm we described in our previous study [5] effectively impedes the
excessive growth of the incident spurious mode at the GTI. Another explanation can be
given by means of Figure A5, where the cc algorithm is depicted with first- and second-
order accurate explosion and tighter ordinate scaling at t = 600∆tc. Since no indication of
the interaction between the incident spurious mode and the GTI is present up to machine
epsilon, which one would not expect if numerical dissipation were responsible for its
mitigation, the scheme’s inherent mass and momentum conservation properties are likely
to explain the favorable performance of the cc algorithm in the context of the convected
acoustic wave test case. Even though the central Equation (21) of the direct-coupling
method is essentially built on the same premise [4], the required temporal and spatial
interpolations within the scheme may still violate mass and momentum conservation,
thereby inducing the observed behavior.

Concerning the cause of the additional dissipation of the cc scheme, we incorporated
the coalescence procedure—i.e., averaging of the complete velocity distribution function
fi, instead of just filtering f neq

i during f → c communication—into the cm algorithm
to see whether this would affect the results. However, no significant changes could be
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identified. This disproves the assumption we expressed in [5] and means that the root of
the dissipation is not linked to coalescence but possibly to the utilization of over-advanced
fine distribution functions in the collision step during asynchronous iterations, which is a
known source of error of the scheme [15,67]. Further research is necessary in this regard
and will be left open for future work.

To conclude this subsection, the following can be summarized for the convected
acoustic wave benchmark:

• If no restriction of fine states during f → c communication is applied in vc-ov with
classical BGK collision, divergence occurs due to incident spurious acoustic mode
growth at the grid transition interface. Similar stability problems are encountered
with BGK vc-dc2, whereas vc-dc1 remains stable.

• Relying on a partial reconstruction procedure during grid communication stabilizes
both BGK vc-ov and BGK vc-dc2. Clearly visible high-frequency oscillations are
encountered in case of vc-ov, superimposing the created up- and downstream spurious
acoustic waves.

• Utilizing a restriction operation and/or RR collision stabilizes vc-ov, damping high-
frequency oscillations, albeit showing increased amplitudes of the created up- and
downstream acoustics compared with the partial reconstruction procedure. Conse-
quently a combination of both steps is preferable with BGK collision in this case. The
combined scheme leads to a behavior akin to that of stabilized vc-ov.

• The cell-centered schemes completely suppress the incident spurious mode growth
and associated generation of the spurious up- and downstream acoustics, resulting in a
nearly undisturbed passage of the convected physical wave across the transition. This
is attributed to the scheme’s inherent mass and momentum conservation properties.
Thus, for this benchmark, a similar accuracy is achieved with the BGK collision
operator as with HRR collision (see [3]), when employing cc either with linear or
uniform explosion.

3.3. Convected Barotropic Vortex

To investigate the effect of transporting vorticity across various types of grid refine-
ment interfaces, we next consider the barotropic vortex that was introduced by Wissocq et al.
in [51] and has since been utilized in several studies on spurious aeroacoustic emissions in
lattice Boltzmann simulations on non-uniform grids [2–4].

The vortex is initialized in the fine grid of a pseudo-2D periodic box of size [L, L, ∆xc]

with L = 10 m, which is schematically depicted in Figure 12, by the relation
ρ′(x, y, t = 0) = ρ0

(
exp

[
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2c2
s
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(
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− 1
)
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ūy = 0

(31)

and convected across the GTI located in the middle of the domain. A summary of all
relevant simulation parameters is provided in Table 3.
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Figure 12. Schematic representation of the calculation domain for the convected barotropic vortex
test case following [3].

Table 3. Parameter set for the convected barotropic vortex.

∆xc/m cs/m s−1 u0 ϵ ρ0/kg m−3 ν/m2 s−1 Rc/m (xc/m, yc/m)

0.02 300 0.1cs 0.15cs 1.17621 1.49 × 10−5 0.06 (−6Rc, 0)

As can be verified directly from Equation (31), the vortex is characterized by a pertur-
bation in both the velocity and density field, thereby exciting spurious shear and acoustic
modes with a severely negative impact on stability and accuracy in the case of locally
refined grids. Similar to the convected acoustic wave test case in Section 3.2, harmful inter-
actions with the grid transition can lead to spurious mode amplification and subsequent
contamination of the flow field if these modes are not properly attenuated before reaching
the interface. Such a situation is illustrated in Figure 13. The RR collision operator does
not filter out all spurious modes excited during initialization and is thus characterized
by a greater amount of artificial noise produced for vc-ov LAG compared with the HRR
model [3] with the same refinement algorithm and a hybridization factor of σ = 0.98, i.e.,
two percent of strain-rate tensor reconstruction by means of central finite differences.

Contrary to this, with cc-linear, the divergence fields for RR and HRR appear identical,
apart from the clearly visible spurious modes for RR. Here, we again employ our HRR
adaptation for the cc algorithm introduced in [5]. The vortex crosses the interface with a
significantly less pronounced deformation relative to vc-ov LAG, attributed to the inherent
mass and momentum conservation properties of the cc scheme. Figure A6, displaying the
vorticity field, confirms similar observations for the spurious shear mode. All previously
described results also hold true for the cell-centered algorithm with uniform explosion.
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(a) RR vc-ov LAG (b) HRR (σ = 0.98) vc-ov LAG

(c) RR cc linear (d) HRR (σ = 0.98) cc linear

Figure 13. Top: Spurious acoustic mode amplification at the GTI resulting in additional artificial noise
for RR compared with HRR with vc-ov LAG at t = 600∆tc. Bottom: No such phenomena appear
with the cell-centered algorithm. Units: [x] = m, [y] = m, [∇ · u] = s−1.

For the remaining analysis, we rely on HRR collision to get rid of spurious mode
contributions and hence extract the sole effect of the various refinement schemes with their
individual interpolations and population reconstruction approaches. Figures 14 and 15
show the relative pressure field p − pref, with pref denoting the reference solution that has
been obtained on a uniform fine grid. Since a single vortex in a homogeneous flow is not
expected to emit any acoustic waves, all the appearing disturbances are of a parasitic nature
with roots in the grid refinement algorithm itself [4].

The negative influence of an additional LAG or TOU restriction of fine non-equilibrium
distributions during f → c communication is clearly recognizable compared with vc-ov
without a filter. The highest intensity in parasitic noise in both the mean and maximum
value is obtained with the cm algorithm that combines an equivalent filtering of non-
equilibria by utilization of trilinear interpolation with an increased spatial decoupling of
the fine and coarse interface nodes, since an overlap width of at least two coarse cells is
necessary. Accordingly, enlarging the distance between interface nodes to an overlap size
of two (vc-ov2) and three (vc-ov3) is accompanied by a gradual increase in the emitted
noise for the vc-ov algorithm.
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(a) vc-ov (b) vc-ov LAG

(c) cc linear (d) cc uniform

(e) vc-dc2 Mf McP (f) vc-dc2 MfP Mc

Figure 14. Relative pressure p − pref contours of the convected barotropic vortex as it passes through
the GTI for various refinement schemes at t = 400∆tc. The GTI is indicated by the dashed vertical
line at x = 0. All simulations have been carried out with the HRR collision model (σ = 0.98). Units:
[x] = m, [y] = m, [p − pref] = Pa.
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(a) vc-ov MfP Mc (b) vc-ov TOU

(c) cm (d) vc-dc1

(e) vc-ov2 (f) vc-ov3

Figure 15. Relative pressure p − pref contours of the convected barotropic vortex as it passes through
the GTI at t = 400∆tc. Units: [x] = m, [y] = m, [p − pref] = Pa.

In accordance with the observations described for the preceding test cases, the cell-
centered and vertex-centered direct-coupling schemes qualitatively produce the least dis-
turbed pressure fields. Furthermore, a substantial improvement with regards to the emis-
sion of parasitic noise is obtained in the case of the vc-ov algorithm with a partial MfP Mc
reconstruction, meaning retaining a maximum of available coarse information by replacing
only missing coarse functions as well as fine functions belonging to the P and M f subsets.
For a more precise delimitation of the perceptible differences between the various schemes,
32 pressure probes have been placed equidistantly in the far field of the vortex at a radial
distance of 2 m relative to the center. Data are collected at these probes until t = 700∆tc

to produce directivity maps together with azimuthally averaged and maximum values of
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the Overall Sound Pressure Level defined as OASPL = 20 log10( p̂/p0) with RMS pressure p̂
and a reference value of p0 = 20 µPa. The corresponding results are shown in Figure 16.
Recalling that an increase of the sound pressure level by 3 dB is equivalent to doubling
the sound pressure [31], the strong attenuation of the parasitic noise with vc-ov MfP Mc
becomes evident. By relying on partial population reconstruction, we are able to reduce
the mean OASPL by 3.93 dB and the peak value by 4.2 dB, with the emission pattern being
altered mainly in the fine grid and along a direction parallel to the interface. The algorithm
of Lagrava results in a deterioration of 6.5 dB and 6.05 dB relative to vc-ov in the mean and
maximum value, respectively, whereby the parasitic emission can be marginally decreased
with the anisotropic Touil filter.

Figure 16. Directivity maps and corresponding mean and maximum values of OASPL of spurious
pressure waves for the convected barotropic vortex measured in the far field following [4]. All
simulations have been carried out with the HRR collision model (σ = 0.98). The GTI is indicated by
the dashed vertical line.



Fluids 2025, 10, 31 28 of 41

As for the cc scheme, the linear interpolation of coarse post-collision states achieves
a significant improvement of 3.26 dB and 3.18 dB in the mean and maximum OASPL,
respectively, compared with uniform explosion and the lowest average sound level of all
analyzed refinement algorithms. In the maximum value, only vc-dc2 in its original Mf
McP reconstruction form produces less artificial noise, being 0.25 dB below cc linear. Our
partial reconstruction alternative of vc-dc2 MfP Mc turns out to be slightly worse than the
original form with OASPLmean = 61.58 dB and OASPLmax = 66.81 dB, but still performs
better than cc uniform.

To conclude this subsection, the following can be summarized for the barotropic
convected vortex benchmark:

• If the HRR collision operator is employed to filter out non-hydrodynamic modes, cc
linear and vc-dc2 Mf McP demonstrate the most advantageous properties in terms of
suppressing spurious artifacts.

• In the case of the RR collision operator, cell-centered approaches are found to be the
only schemes examined in this study that are able to prevent disturbances identified
with harmful interactions between spurious shear and acoustic modes convected
across the grid transition and the refinement interface.

• Use of a restriction operation during f → c communication has a negative impact
on the spurious noise emission of vc-ov, whereby an anisotropic Touil filter performs
slightly better than the arithmetic averaging of Lagrava.

• The emission characteristics of the vc-ov algorithm can be significantly improved by
partial reconstruction and shifted towards the range of cc uniform.

3.4. Three-Dimensional Jet Flow

To conclude this work, we consider a three-dimensional jet test case, which represents
a particular challenge for a grid refinement scheme. As schematically depicted in Figure 17,
the jet enters the calculation domain of size

[
Lx = 2.6 m, Ly = 1.8 m, Lz = 1.8 m

]
into the

fine grid through an orifice and orthogonally impinges the grid transition at a high Reynolds
number of Re = u0d/ν ≈ 1 × 106. To ensure a stable solution under these demanding
conditions, we utilize the HRR collision model with the hybridization parameter set to
σ = 0.98.

Figure 17. Schematic representation of the calculation domain for the 3D jet flow test case.
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In order to prevent pressure wave reflections at the lateral boundaries and the outflow,
we employ a combination of sponge layers with linearly increasing viscosity as well as the
characteristic pressure conditions described in Section 2.4 and set the relaxation constant for
the entering wave amplitude to K1 = 1 × 10−3. A summary of all other relevant simulation
parameters is provided in Table 4.

Table 4. Parameter set for the jet flow.

∆xc/m Ma u0/m s−1 ρ0/kg m−3 ν/m2 s−1 d/m xg/m
(

xp/m, yp/m
)

0.01 0.1 80 1.225 1.39 × 10−5 0.18 1.0 (0.8, 0.6)

The inflow boundary is separated from the surrounding characteristic pressure bound-
aries by a simple bounce-back no-slip condition to avoid instability. We understand that
reflections from this wall will alter the results in absolute terms. However, since we are
interested exclusively in a comparison of the individual refinement variants and use this
setup in the same form for all methods, this is a systematic error that does not significantly
affect the acquired findings.

Qualitative results are given in Figure 18, representing the time instant at t = 4000∆tc

when the jet just barely passed through the grid transition with the frontmost part. The jet
itself is visualized by means of contours of the Q-criterion with Q = 5 × 105, colored by
velocity magnitude. In the background, parasitic noise is displayed as disturbances in the
velocity divergence field.

First of all, it can be stated that the jet tip is structurally influenced only to a minor
extent by the presence of the interface and thus appears similar for all schemes. Compared
with the reference solution obtained on a uniform fine grid, high-intensity spurious waves
are generated at the GTI and spread radially outward for the three depicted vc-ov variations
and the cm algorithm. The difference in the shape of the disturbances emerging for
cm compared with vc-ov is likely caused by the spatial separation of interface nodes
extending over a width of two coarse cells in the former scheme. In accordance with the
convected acoustic wave and convected barotropic vortex test cases, an increase in spurious
noise is noticed with the LAG restriction for vc-ov, although not as pronounced as in the
aforementioned benchmarks. Moreover, relying on a partial MfP Mc reconstruction, a
noticeable reduction in the spurious wave intensity is achieved. With this reconstruction
procedure, all available and valid coarse post-streaming distribution functions are retained
instead of being reconstructed using information from the fine grid. This adds dissipation
to the scheme and mitigates aliasing errors since the amount of scales not resolvable on the
coarse grid is decreased. However, the spurious source remains clearly visible for vc-ov
MfP Mc.

Again, the cell-centered and vertex-centered direct-coupling schemes prove to exhibit
the most favorable properties in terms of aeroacoustics of all investigated schemes. For
uniform explosion as well as vc-dc1 no significant differences have been identified to the cc
linear and vc-dc2, respectively. Despite some remaining artifacts, such as high-frequency
oscillations appearing in the fine grid, no high-intensity spurious wave source is present
for either of these methods.

Quantitative results are summarized in Figure 19 in terms of Power Spectral Density
(PSD) estimates Ŝp of pressure fluctuations evaluated at the probe position marked in
Figure 17. From the moment the jet impinged the transition, time series data have been
collected over a period of 0.1 s, corresponding to approximately 1.4 × 104 samples. In
order to mitigate frequency leakage, we partitioned the data into eight segments with 50%
overlap and applied the flattop window function before calculating the PSD by means of
Welch’s method. As a reference, the uniform fine grid solution is once again included.
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(a) uniform fine grid (b) cc linear

(c) vc-ov LAG (d) cm

(e) vc-ov (f) vc-ov MfP Mc

(g) vc-dc2 Mf McP (h) vc-dc2 MfP Mc

Figure 18. Spurious noise caused by the jet passing through the GTI after t = 4000∆tc. The jet is
visualized using Q-contours with Q = 5 × 105 colored by velocity magnitude. The GTI is indicated
by the red vertical line.
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Figure 19. PSD of pressure fluctuations at the probe position for various grid refinement algorithms.

The major qualitative differences previously described are clearly reflected between
the individual methods in the mid-to-high frequency range, where three distinct groups
can be identified, separated by approximately one to two orders of PSD magnitude. The
first one consisting of the cm scheme as well as the vc-ov methods, with the influences of
filtering and partial reconstruction described above being evident. The second group is
formed by the vc-dc methods, which demonstrate a significant improvement in PSD. A
slight downward shift can be seen with vc-dc2 MfP Mc compared with Mf McP, despite the
obvious high-frequency perturbations in the fine grid in Figure 18.

Notwithstanding the similar qualitative results, there is another substantial leap to
the third and final group, the cc schemes, which in turn show no recognizable differences
between one another and prove the most suitable in the case of the jet. Although it remains
to be emphasized that none of the methods can be completely free of artificial noise, this
test once again highlights the essential importance of the cc scheme’s inherent mass and
momentum conservation properties for the mitigation of grid-induced noise.

To conclude this subsection, the following can be summarized for the three-
dimensional jet benchmark:

• In accordance with observations obtained in the previous benchmark simulations,
cell-centered schemes show the most favorable properties in terms of grid-induced
noise, exhibiting a substantial leap in PSD spectra over the mid- to high-frequency
range compared with all other investigated methods for the jet flow.

• For vertex-centered methods, a significant improvement is achieved by the direct-
coupling approach.

4. Summary and Outlook
In this study, established hierarchical grid refinement techniques for the lattice Boltz-

mann method have been examined in the context of spurious aeroacoustic emissions.
Particular attention was devoted to a juxtaposition of different classes of grid structures
comprising vertex-centered (vc), cell-centered (cc), and combined methods (cm), since a
corresponding quantitative analysis has been lacking in the literature to date. Furthermore,
various existing variations of vertex-centered and cell-centered methods were included in
the study.

With regards to vertex-centered methods, the widespread algorithm of Lagrava served
as a foundation (vc-ov LAG). We analyzed the effects of a more sophisticated anisotropic
filter during fine-to-coarse communication proposed by Touil et al. (vc-ov TOU) and of
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omitting the restriction operation entirely (vc-ov). A more recent vertex-centered direct-
coupling algorithm (vc-dc) was considered that dispenses with a grid overlap and has been
proven to exhibit favorable characteristics for aeroacoustics due to improved conservation
properties. For both the vc-ov and vc-dc schemes, alternative formulations differing in the
particle sets to be reconstructed at interface nodes have been studied.

Concerning cell-centered approaches, uniform explosion as well as linear interpolation
of coarse post-streaming functions during the explode procedure were looked at. In addi-
tion to the classical Bhatnagar–Gross–Krook (BGK) collision operator, we also considered
the more advanced recursive regularized (RR) and hybrid-recursive regularized (HRR) col-
lision models to be able to distinguish between multiple sources of parasitic noise. Within
the HRR model, the hybridization parameter that determines the proportion of strain-rate
tensor reconstruction by means of finite differences was set to σ = 0.98 in all cases, since
this value is recommended in the literature for industrially relevant flow scenarios.

Four test cases with increasing complexity and significance for aeroacoustic applica-
tions have been investigated, the first of which comprised a Gaussian acoustic pulse in
Section 3.1 that spread across a grid transition interface (GTI). An alteration in numerical
properties between the coarse and fine grid due to the sudden resolution change as well as
interpolations utilized in the individual refinement methods inevitably causes a spurious
reflection of the pulse. In this purely acoustic scenario, the most pronounced reflection
amplitude—albeit still being very small relative to the physical pulse—was present for
vc-ov, independent of whether a restriction operation was included, while no significant
differences have been identified between the cc and vc-dc schemes. Through an alternative
reconstruction approach during the grid communication step based on retaining as much
information from the coarse interface node as possible, we were able to achieve a noticeable
reduction in the pulse amplitude for vc-dc1 and vc-dc2. Referring to the nomenclature
introduced in Section 2.5, this MfP Mc termed variant first reconstructs fine distribution
functions belonging to subsets M f and P and afterwards only missing coarse functions
in Mc, in contrast to the original vc-dc formulation, where a Mf McP reconstruction is
employed. Moreover, among many tested variations, a partial MfP reconstruction strategy
displayed the strongest attenuation of the pulse reflection for the vc-ov LAG algorithm. In
this variation, all coarse states are replaced, and valid available post-streaming states are
kept. The agreement of the physical pulse with the reference solution for a uniform fine
grid shows that the HRR adaptation for cc and cm is applicable for acoustics.

The second test case consisted of a convected acoustic wave. In accordance with the
literature, an incident spurious acoustic mode is excited that is amplified at the GTI. With
the BGK collision model, severe instabilities arise for vc-ov and vc-dc2 due to this process,
which can be dealt with in several ways. Using our proposed MfP Mc reconstruction ap-
proach leads to a mitigation of the incident spurious mode amplification, thereby rendering
a stable solution. For vc-ov, several partial reconstruction methods achieved a similar effect.
Albeit a subsequent generation of up- and downstream acoustic waves was noticed that
have been described in the literature before for vc-ov LAG, the amplitudes of these waves
have been reduced considerably compared with the Lagravas algorithm.

The cell-centered methods not only provided a stable solution with BGK, but, besides
very-low-amplitude spurious waves, together with the unavoidable reflection of the physi-
cal wave, did not generate any of the previously described acoustic waves at the interface.
Since no indication of these parasitic phenomena has been found up to machine epsilon, it
was concluded that the inherent mass and momentum conservation properties of the cc
methods are responsible for this observation.

In the convected barotropic vortex test case, the transport of vorticity across the GTI
was investigated qualitatively and quantitatively. The analysis was conducted in two steps.



Fluids 2025, 10, 31 33 of 41

First, the effect of spurious mode amplification at the GTI was examined by comparison
between RR and HRR collision for vc-ov LAG and cc linear. With the HRR collision
operator, spurious modes are effectively dampened before reaching the GTI, thus the
observed parasitic noise is solely rooted in the refinement algorithm itself. For the vc-ov
LAG algorithm, significant differences appeared between RR and HRR in the vorticity and
divergence fields, indicating the effect of spurious shear and acoustic modes. Similar to
the convected acoustic wave test case, the cell-centered method showed no sign of such
artifacts. Even though spurious modes were clearly present, no interaction with the GTI
took place.

In the second step, we relied on the HRR operator to filter out detrimental non-
hydrodynamic modes in order to isolate the influence of the various refinement algorithms.
For cc and cm schemes, again our adaptation has been utilized. Pressure probes were placed
in the far field of the vortex in order to measure Overall Sound Pressure Levels (OASPL) of
the parasitic noise and provide corresponding directivity maps. A significant reduction
in the azimuthally averaged and maximum OASPL of 3.9 dB and 4.2 dB, respectively, was
found with a partial MfP Mc reconstruction for vc-ov compared with a full replacement of
interface distribution functions. The cell-centered scheme with linear explosion showed
an improvement of 3.26 dB and 3.18 dB in the mean and maximum OASPL, respectively,
relative to the version including uniform explosion, and performed very similarly to vc-dc2
Mf McP (original form), being slightly better in the mean but worse in the maximum value
by 0.25 dB. Our vc-dc2 MfP Mc alternative exhibited OASPL levels in between vc-dc2 Mf
McP, cc linear, and cc uniform.

To conclude this paper, a high-energy jet flow impinging a planar, vertical GTI at a
Reynolds number of Re = 1 × 106 was simulated. In order to guarantee a stable solution,
this test was performed using the HRR collision model. Even though a partial MfP Mc
reconstruction was able to recognizably weaken the emerging parasitic sound wave for
vc-ov, its intensity remained comparatively high. Out of all methods, again the cell-centered
and vertex-centered direct-coupling algorithms generated the least amount of spurious
noise. Despite their similar qualitative results, Power Spectral Density (PSD) estimates
revealed an offset of approximately two orders of PSD magnitude in favor of the cc schemes,
which conversely demonstrated no significant differences among each other.

The insights gained in this work highlight the importance of mass and momentum
conservation at grid transition interfaces for the reduction in spurious emissions in aeroa-
coustic simulations with the lattice Boltzmann method and provide a reference for the
selection of suitable refinement algorithms in this context. Despite the vertex-centered
direct-coupling algorithms being built on this premise, spatial and temporal interpolations
may still alter its conservation properties and explain the differences observed relative to
inherently conservative cell-centered schemes.

In this study, we focused on planar, vertical grid transitions. However, inclined,
stepped interfaces can exhibit deteriorating effects in vc methods due to the involved
spatial interpolations at hanging nodes. Recently, Berezin et al. [68] proposed a new grid
refinement method based on conversions between LBM stencils for BGK collision to provide
a recalibration of populations and hence an interpolation-free algorithm. Although the
barotropic vortex is part of the validation, no detailed analysis with regards to spurious
emissions is given. An evaluation of this algorithm’s performance in relation to the research
subject presented here, together with an in-depth study including inclined grid transitions,
will be left open for future work.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics
CAA Computational aeroacoustics
GTI Grid transition interface
LBM Lattice Boltzmann method
LBE Lattice Boltzmann equation
BGK Bhatnagar–Gross–Krook (collision operator)
RR Recursive regularized
HRR Hybrid-recursive regularized
FD Finite difference
PR Projection(-based)
LODI Local one-dimensional inviscid (equations)
CBC Characteristic boundary condition
OASPL Overall sound pressure level
PSD Power spectral density
vc Vertex-centered
cc Cell-centered
cm Combined
ov Overlap
dc Direct-coupling
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Appendix A

Figure A1. Cell-centered layout utilized e.g., in [64]: Since the validity ranges of the bubble functions
overlap, states at coarse interface nodes need to be reconstructed prior to fine states at in
order to provide valid information during spatial interpolation.(Remember: : regular fine node, :
regular coarse node).

Appendix B

(a) vc-ov (b) vc-ov Mf Mc

(c) vc-ov MfP Mc (d) vc-ov MfP

(e) vc-ov Mf (f) vc-ov Mc

Figure A2. Schematic depiction of partial reconstruction variants based on the vc-ov grid interface.
Opaque arrows: Distribution functions reconstructed during the grid communication step. Transparent
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arrows: Known functions, retained during grid communication. Dashed arrow lines: Fine distribution
functions. Solid arrow lines: Coarse distribution functions.

Appendix C
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Figure A3. Gaussian acoustic pulse test case: Spurious reflection of the pulse at the GTI for vc-ov
with and without LAG filter.
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Figure A4. Spurious reflection of the Gaussian pulse at the GTI for vc-dc1. Retaining a maximum of
coarse information during reconstruction at interface nodes noticeably reduces the reflection amplitude.
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Appendix D
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Figure A5. Convected acoustic wave test case: No up- and downstream acoustic waves are generated
at the GTI due to the cc scheme’s mass conservation properties. The upper and lower diagrams differ
in ordinate scaling.
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Appendix E

(a) RR vc-ov LAG (b) HRR (σ = 0.98) vc-ov LAG

(c) RR cc linear (d) HRR (σ = 0.98) cc linear

Figure A6. Top: Spurious shear mode amplification at the GTI resulting in strong deformation of the
convected barotropic vortex for RR compared with HRR with vc-ov LAG at t = 600∆tc. Bottom: No
such phenomena appear with the cell-centered algorithm. Units: [x] = m, [y] = m, [(∇× u)z] = s−1.
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