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Abstract: Coastal defense structures play a crucial role in mitigating wave impacts; yet, 
existing breakwater designs often face challenges in balancing wave reflection, energy 
dissipation, and structural stability. This study leverages machine learning (ML) to pre-
dict the optimal 2D dimensions of rectangular breakwaters in two configurations: sub-
merged at the bottom of a wave tank and positioned at the free surface. Further, the ob-
jective is to achieve controlled wave reflection allowing a specific wave run-up and opti-
mized energy dissipation, while ensuring maritime stability. Thus, we used an analytical 
equation modeling the reflection coefficient versus relative water depth (KH), for different 
immersion ratios of obstacle (h/H), and relative length (l/H). Two datasets of 32,000 data 
points were generated for underwater and free-surface breakwaters, with an additional 
10,000 data points for validation, totaling 42,000 data points per case. Five ML algo-
rithms—Random Forest, Support Vector Regression, Artificial Neural Network, Decision 
Tree, and Gaussian Process—were applied and evaluated. Results demonstrated that Ran-
dom Forest and Decision Tree balanced accuracy with computational efficiency, while the 
Gaussian Process closely matched analytical results but demanded higher computational 
resources. These findings support ML as a powerful tool to optimize breakwater design, 
complementing traditional methods and contributing to more sustainable and resilient 
coastal defense systems. 

Keywords: machine learning (ML); breakwater design; wave reflection; maritime engi-
neering; coastal defense 
 

1. Introduction 
Artificial intelligence (AI) has emerged as a transformative technology, revolutioniz-

ing multiple sectors by processing large datasets, recognizing patterns, and making data-
driven decisions with minimal human intervention [1–4]. In the medical field, AI im-
proves diagnostic accuracy and treatment plans through advancements such as medical 
image analysis [5], while deep learning techniques in computational hemodynamics ena-
ble non-invasive diagnostic methods and treatments for vascular conditions [6]. AI appli-
cations extend beyond healthcare and engineering, finding use in industrial optimization 
through computational fluid dynamics and numerical techniques to enhance efficiency 
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and reduce environmental impact in glass manufacturing [7]. Moreover, it supports pipe-
line integrity management by employing transient test techniques to detect partial block-
ages in pressurized systems [8] and facilitates the prediction of ionic liquid properties us-
ing machine learning approaches, offering a data-driven alternative to experimental pro-
cedures and molecular simulations [9]. In education, intelligent tutoring systems offer per-
sonalized learning experiences [10]. The maritime industry has seen significant advance-
ments through AI, enhancing safety, efficiency, and sustainability [11]. AI-powered Au-
tonomous Surface Vehicles (ASVs) use machine learning algorithms for real-time route 
optimization, collision avoidance, and obstacle detection, reducing human error [12–14]. 
Predictive maintenance systems analyze sensor data to forecast equipment failures, min-
imizing downtime and maintenance costs [15]. For instance, reduced-order CFD models 
have been developed to support wind turbine maintenance by accurately assessing the 
impact of leading-edge erosion on blade performance, enabling precise maintenance plan-
ning [16]. Additionally, AI-driven weather routing systems optimize fuel usage and con-
tribute to eco-friendly shipping practices [17]. As AI continues to evolve, its potential for 
transforming maritime operations and other industries remains substantial, positioning it 
as a critical tool for addressing complex challenges and driving innovation. 

The focus of our scientific work is to leverage machine learning (ML) to predict the 
optimal 2D dimensions of rectangular breakwaters. Two cases are treated in this work: 
underwater breakwater and free-surface breakwater. For the sake of clarity, accurate pre-
diction of breakwater dimensions is crucial for balancing and controlling wave reflection, 
energy dissipation, and structural stability. By modeling these interactions using machine 
learning, the researchers and engineers will be able to optimize the structure’s perfor-
mance in terms of energy dissipation, ensuring the desired outcomes of wave behavior. 
For more clarity, this is a continuation of our research work cited in the reference [18]. 

Extensive research has been conducted on various types of breakwaters. However, 
due to the complex operating conditions of breakwaters, further studies are needed to 
address existing knowledge gaps. A brief summary of past work is provided here. Dean 
[19] explored how wave amplitudes affect the reflection of surface waves by a submerged 
flat barrier. Takano [20] examined the effect of waves passing beneath a rectangular break-
water. Patarapanich [21] investigated wave reflection and transmission using the finite 
element method (FEM) on a submerged thin horizontal plate. Liu and Jiankng [22] used 
the matched asymptotic method to study wave transmission through a submerged slit on 
a vertical barrier. Stamos et al. [23] employed parametric experiments to compare reflec-
tion and transmission coefficients from waves interacting with different submerged wa-
ter-filled breakwater models of hemi-cylindrical and rectangular shapes. Molin et al. [24] 
conducted lab experiments on wave interaction with a rigid vertical plate, followed by 
Lui et al. [25], who studied Bragg reflections caused by waves on multiple submerged 
semi-circular breakwaters. 

The submerged rectangular step is commonly used as a breakwater to shield shore-
lines, mitigate wave damage, reduce coastal erosion, and protect coastal structures [26]. 
Recently, submerged rectangular breakwaters have gained more attention than traditional 
emerged structures due to their esthetic appeal, ability to promote water circulation, and 
allow fish passage. Numerous experimental, analytical, and numerical studies have in-
vestigated wave reflection and transmission in relation to these structures. Mei and Black 
[27] used the variational method to study the scattering properties of bottom and surface 
obstacles. Massel [28] analyzed wave interaction with rectangular submerged breakwa-
ters of infinite and finite lengths. Andrew et al. [29] conducted experimental and numeri-
cal research using the boundary element method (BEM) to explore wave propagation over 
a submerged rectangular impermeable obstacle. More recently, Szmidt [30] used the finite 
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difference method (FDM) to numerically assess wave interaction with a rectangular break-
water fixed to the bottom of a numerical wave tank, evaluating its effectiveness in protect-
ing coastal shelf zones from open sea waves. 

Nowadays, the application of artificial intelligence (AI) to predict optimal breakwa-
ter dimensions has gained significant attention. Machine learning (ML) models have been 
used to predict wave reflection and transmission based on varying breakwater geome-
tries. For example, in [31,32], the authors applied Artificial Neural Network (ANN) to 
model wave-structure interactions, allowing the prediction of optimal breakwater dimen-
sions with minimal computational effort. Similarly, the work by MAO et al. demonstrated 
the use of genetic algorithms to optimize the geometry of submerged breakwaters, effec-
tively reducing wave energy [33]. These AI-driven approaches provide a more efficient 
and accurate way to determine the optimal breakwater dimensions for desired wave re-
flection and transmission coefficients, offering a powerful tool for engineers working on 
maritime structure design. 

The cited articles, while innovative, exhibit several limitations that open the door for 
further research and improvement. For instance, the authors in [31,32] focused primarily 
on neural networks but did not extensively explore the generalization capabilities of their 
model to different wave conditions or more complex breakwater shapes. The model’s pre-
dictive accuracy under non-regular or irregular waves remains under-explored, which 
could limit its application in real-world, unpredictable maritime environments. Moreover, 
MAO et al. used genetic algorithms to optimize submerged breakwater geometries, but 
their method faced challenges in terms of computational complexity and convergence 
speed [33]. The algorithm’s efficiency in handling high-dimensional design spaces or in-
corporating multiple environmental factors simultaneously is still an area of concern. 
These limitations highlight the need for more robust, scalable, and flexible AI models ca-
pable of handling a broader range of scenarios, including varying wave conditions and 
more complex geometries, which will be the focus of the work presented in this paper. 

In addition, while previous works primarily focused on single algorithms or optimi-
zation techniques, our research aims to overcome this by presenting and comparing five 
different machine learning algorithms to predict the optimal dimensions of the breakwa-
ter. This approach allows for a more comprehensive evaluation and deeper comparison, 
helping to identify the most suitable algorithm for this specific problem. By doing so, we 
address the need for a more flexible and accurate predictive model that can adapt to var-
ying wave conditions and geometric complexities, ultimately improving the reliability 
and efficiency of breakwater design in real-world scenarios. 

This paper is structured as follows: Section 2 outlines the problem formulation and 
the adopted methodology, providing the foundation for the analysis. Section 3 presents 
the results and discusses their implications, highlighting key findings. Finally, Section 4 
concludes the study, summarizing the main contributions and offering directions for fu-
ture research. 

2. Problem Formulation and Methodology 
This section presents the analytical formulation of reflection coefficients for the inter-

actions of regular waves with a rectangular obstacle positioned at the bottom of the wave 
tank [18], as well as the interaction between water waves and a rectangular obstacle lo-
cated at the free surface.  

Based on this theoretical framework, we focus on the application of artificial intelli-
gence (AI) to further analyze wave-structure interactions. Our strategy is to integrate these 
theoretical models with AI-driven methods to automate and optimize problem-solving 
processes (see Figure 1 below). 
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Figure 1. AI-driven optimization cycle. 

For more clarity, we aim to use five machine-learning methods to investigate effective 
techniques for analyzing wave-structure interactions. Additionally, the datasets utilized 
in these machine-learning methods are derived from a theoretical approach that has al-
ready been validated in our latest research [18]. By training AI models on datasets gener-
ated from various wave conditions and breakwater configurations, we can identify pat-
terns and relationships that may not be immediately apparent through traditional analyt-
ical methods. This approach not only enhances our understanding of wave dynamics but 
also enables us to predict performance outcomes for different design scenarios. 

Furthermore, we will explore artificial intelligence (AI) techniques to refine breakwa-
ter design parameters, identifying optimal configurations that maximize wave attenuation 
while minimizing material costs and environmental impacts. 

The theoretical formulation is divided into two parts. The first part addresses the 
expression of the reflection coefficient based on the conservation of flow rate and the con-
tinuity of velocity potential for wave-structure interactions cited at the bottom of the wave 
tank. The second part focuses on expressing the reflection coefficient for wave-structure 
interactions at the free surface. 

2.1. Part 1: Wave-Structure Interactions Cited at the Bottom of Wave Tank 

To theoretically analyze the interactions of waves with a rectangular structure lo-
cated at the bottom of the wave tank (Figure 2 below), we establish an analytical formula-
tion based on the conservation of flow rate and the continuity of velocity potential to ex-
press the reflection coefficient. 

 

Figure 2. Configuration of bottom submerged breakwater (for analytical calculation). 
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The velocity potential for each subdomain is expressed as follows: 
• At the subdomain D1, 𝜙ଵ = 𝑎ൣ𝑒𝑥𝑝൫−𝑗𝑘ሺ𝑥 + 𝑙/2ሻ൯ + R௕𝑒𝑥𝑝൫𝑗𝑘ሺ𝑥 + 𝑙/2ሻ൯൧𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯,   (1)

• At the subdomain D2, 𝜙ଶ = 𝑎𝑇௕𝑒𝑥𝑝൫−𝑗𝑘ሺ𝑥 − 𝑙/2ሻ൯𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯,   (2)

• At the subdomain D3, 𝜙ଷ = 𝑎ሾ𝐶𝑒𝑥𝑝ሺ−𝑗𝜎𝑥ሻ + 𝐷𝑒𝑥𝑝ሺ𝑗𝜎𝑥ሻሿ𝑐ℎ൫𝜎ሺ𝑦 + ℎሻ൯.   (3)

The continuity flow rate conservation is defined at x = −l/2 and x = l/2 as follows: 
• At the position x = −l/2, ׬ 𝜙ଵሺ−𝑙/2,𝑦ሻ𝑐ℎ൫𝜎ሺ𝑦 + ℎሻ൯଴ି௛ 𝑑𝑦 = ׬ 𝜙ଷሺ−𝑙/2,𝑦ሻ𝑐ℎ൫𝜎ሺ𝑦 + ℎሻ൯଴ି௛ 𝑑𝑦   (4)

׬ థభሺି௟/ଶ,௬ሻడ௫ 𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯଴ି௛ 𝑑𝑦 = ׬ பமయሺି୪/ଶ,୷ሻப୶ 𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯଴ି୦ 𝑑𝑦,   (5)

• At the position x = l/2, ׬ 𝜙ଵሺ𝑙/2,𝑦ሻ𝑐ℎ൫𝜎ሺ𝑦 + ℎሻ൯଴ି௛ 𝑑𝑦 = ׬ 𝜙ଷሺ𝑙/2,𝑦ሻ𝑐ℎ൫𝜎ሺ𝑦 + ℎሻ൯଴ି௛ 𝑑𝑦,    (6)

׬ பథభሺ௟/ଶ,௬ሻப୶ 𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯଴ି௛ 𝑑𝑦 = ׬ பథయሺ௟/ଶ,௬ሻப୶ 𝑐ℎ൫𝑘ሺ𝑦 + 𝐻ሻ൯଴ି௛ 𝑑𝑦,   (7)

Following the expression of the boundary conditions at the positions x = l/2 and x = −l/2, 
we obtain an algebraic system represented as follows: 

⎩⎨
⎧     𝐼ଵሺ1 + 𝑅ሻ = 𝐼ଶሺ𝐶𝑧 + 𝐷𝑧̅ሻ𝐼ଵ𝑇௥ = 𝐼ଶሺ𝐶𝑧̅ + 𝐷𝑧ሻ𝑘𝐼ଷሺ1 − 𝑅ሻ = 𝜎𝐼ଵሺ𝐶𝑧 − 𝐷𝑧̅ሻ𝑘𝐼ଷ𝑇௥ = 𝜎𝐼ଵሺ𝐶𝑧̅ − 𝐷𝑧ሻ   (8)

The system of Equation (8) is written in matrix form as follows: ቂA BB Aቃ ቂ𝑇௕0 ቃ = ൤𝑧ଶതതത 00 𝑧ଶ൨ ቂA BB Aቃ ൤ 1R௕൨   (9)

Then, the reflection and coefficients are expressed as follows: R௕ = ௭మି௭మതതതത௭మതതതത୆ ୅⁄ ି௭మ୅ ୆⁄ ,    (10)

where A = ூభூమ + ௞ூయఙூభ    (11)

   𝐵 = ூభூమ − ௞ூయఙூభ.   (12)

𝐼ଵ = ׬ 𝑐ℎ൫𝑘ሺ𝑦 + 𝑑ሻ൯଴ି௛ 𝑐ℎ൫𝜎ሺ𝑦 + 𝑑ሻ൯𝑑𝑦,   (13)

𝐼ଶ = ׬ 𝑐ℎଶ൫𝜎ሺ𝑦 + ℎሻ൯𝑑𝑦,଴ି௛     (14)

𝐼ଷ = ׬ 𝑐ℎଶ൫𝑘ሺ𝑦 + 𝐻ሻ൯𝑑𝑦,଴ି௛     (15)

2.2. Part 2: Wave-Structure Interactions Cited at the Free Surface of Wave Tank 

To conduct a theoretical analysis of the interactions between waves and a rectangular 
structure positioned at the free surface of the wave tank (Figure 3 below), we develop an 
analytical formulation based on the conservation of flow rate and the continuity of veloc-
ity potential to determine the reflection coefficient. 
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Figure 3. Configuration of free-surface submerged breakwater (for analytical calculation). 

The velocity potential for each subdomain is expressed as follows: 
• At the subdomain D1, 𝜑′ଵሺ𝑥,𝑦, 𝑡ሻ = 𝑎. ቀ𝑒𝑥𝑝൫−𝑗𝑘ሺ𝑥 + 𝑙ሻ൯ + 𝑅′. 𝑒𝑥𝑝൫𝑗𝑘ሺ𝑥 + 𝑙ሻ൯ቁ . 𝑐ℎሺ𝑘𝑦ሻ. 𝑒𝑥𝑝ሺ𝑗𝜔𝑡ሻ (16)

𝜑′ଶሺ𝑥,𝑦, 𝑡ሻ = ቀாᇱଶ + ிᇱଶ௟ . 𝑥ቁ . 𝑒𝑥𝑝ሺ𝑗𝜔𝑡ሻ      (17)𝜑′ଷሺ𝑥,𝑦, 𝑡ሻ = 𝑎.𝑇′. 𝑒𝑥𝑝൫−𝑗𝑘ሺ𝑥 − 𝑙ሻ൯. 𝑐ℎሺ𝑘𝑦ሻ. 𝑒𝑥𝑝ሺ𝑗𝜔𝑡ሻ (18)

Next, we express the continuity of potentials at x = −l as follows: 𝜑′ଵሺ−𝑙,𝑦ሻ = 𝜑′ଶሺ−𝑙,𝑦ሻ    (19)׬ 𝜑′ଵሺ−𝑙,𝑦ሻ଴ୢ 𝑑𝑦 = ׬ 𝜑′ଶሺ−𝑙,𝑦ሻ଴ୢ 𝑑𝑦     (20)

ሺ1 + 𝑅′ሻ ׬ 𝑐ℎሺ𝑘𝑦ሻ.଴ୢ 𝑑𝑦 = ଵଶ ሺ𝐸′ − 𝐹′ሻ ׬ 𝑑𝑦଴ୢ    (21)

𝐸′ − 𝐹′ = 2ሺ1 + 𝑅′ሻ ூᇱభூᇱᇱమ    (22)

The flow rate conservation is expressed as follows: ׬ பఝᇱభሺି௟,௬ሻడ௫ୌ଴ 𝑑𝑦 = ׬ பఝᇱమሺି௟,௬ሻడ௫଴ୢ 𝑑𝑦    (23)

𝑗𝑘ሺ−1 + 𝑅′ሻ ׬ 𝑐ℎሺ𝑘𝑦ሻ.ୌ଴ 𝑑𝑦 = ிᇱଶ௟ ׬ 𝑑𝑦଴ୢ    (24)

𝑗𝑘ሺ−1 + 𝑅′ሻ𝐼′ଷ = ிଶ௟ 𝐼′ଶ    (25)

Further, we express the continuity of potentials at x = l as follows: 𝜑′ଷሺ𝑙,𝑦ሻ = 𝜑′ଶሺ𝑙,𝑦ሻ   (26)׬ 𝜑′ଶሺ𝑙,𝑦ሻ଴ୢ 𝑑𝑦 = ׬ 𝜑′ଷሺ𝑙,𝑦ሻ଴ୢ 𝑑𝑦   (27)

ଵଶ ሺ𝐸′ + 𝐹′ሻ ׬ 𝑑𝑦଴ୢ = 𝑇′ ׬ 𝑐ℎሺ𝑘𝑦ሻ.଴ୢ 𝑑𝑦    (28)

𝐸′ + 𝐹′ = 2𝑇′ ூᇱభூᇱమ        (29)

The flow rate conservation is expressed as follows: ׬ பఝᇱయሺ௟,௬ሻడ௫ୌ଴ 𝑑𝑦 = ׬ பఝᇱమሺ௟,௬ሻడ௫଴ୢ 𝑑𝑦   (30)

ிᇱଶ௟ ׬ 𝑑𝑦଴ୢ = −𝑗𝑘𝑇′ ׬ 𝑐ℎሺ𝑘𝑦ሻ.ୌ଴ 𝑑𝑦    (31)

ிᇱଶ௟ 𝐼′ଶ = −𝑗𝑘𝑇′𝐼′ଷ    (32)
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Then, we obtain a system of equation as follows: 

⎩⎪⎪⎨
⎪⎪⎧𝐸′ − 𝐹′ = 2ሺ1 + 𝑅′ሻ ூᇱభூᇱమ𝐸′ + 𝐹′ = 2𝑇′ ூᇱభூᇱమ𝑗𝑘ሺ−1 + 𝑅′ሻ𝐼′ଷ = ிᇱଶ௟ 𝐼′ଶிଶ௟ 𝐼′ଶ = −𝑗𝑘𝑇′𝐼′ଷ

   (33)

where 𝐼′ଵ = ׬ 𝑐ℎሺ𝑘𝑦ሻ.଴ୢ 𝑑𝑦 = ୱ୧୬୦ (௞ு(ଵି௛/ு))௞    (34)

𝐼′ଶ = ׬ 𝑑𝑦଴ୢ      (35)

𝐼′ଷ = ׬ 𝑐ℎ(𝑘𝑦).ୌ଴ 𝑑𝑦 = ୱ୧୬୦ (௞ு)௞    (36)

Finally, by combining the system of Equations (33), we obtain the reflection coeffi-
cient as follows: 𝑅ᇱ = ଵଵି௜౩౟౤౞൫ೖ(ಹష೓)൯ೖ.೗.౩౟౤౞(಼ಹ) = ଵଵି௜౩౟౤౞൫ೖ಼(భష೓/ಹ)൯ೖಹ.(೗/೓).౩౟౤౞(಼ಹ)    (37)

Our study is structured into three key phases: (1) predicting the wave reflection co-
efficient based on the dimensions of a breakwater; (2) identifying the optimal height–
width pair to achieve a desired level of reflection; and (3) extending this approach to a 
breakwater located at the free surface. 

a. Data and Training Dataset Generation 

To achieve these objectives, we used an analytical equation that models the reflection 
coefficient based on several parameters: 
• KH: the relative water depth; 
• h/H: the immersion ratio; 
• l/H: the relative length; 
• R௕: the reflection coefficient in the case of underwater breakwater; 
• 𝑅ᇱ: the reflection coefficient in the case of free-surface breakwater. 

Based on this equation, we generated two primary datasets, each consisting of 32,000 
data points: 
• Underwater Breakwater: data representing various configurations of an obstacle sub-

merged at the bottom of the wave tank; 
• Free-Surface Breakwater: data for an obstacle located at the water’s free surface, us-

ing similar parameters (h/H and l/H). 
Each dataset was divided into 80% for training and 20% for testing. Additionally, 

10,000 new data points were generated for a rigorous validation test, providing a total of 
42,000 annotated data points for each case (underwater and free surface). 

b. Choice and Justification of AI Algorithms 

To model wave-structure interactions for both underwater and free-surface scenar-
ios, we selected five AI algorithms based on their complementary features and suitability 
to the problem: 
• Random Forest (RF) [34]: It was chosen for its ability to handle complex, nonlinear 

relationships between design parameters and the reflection coefficient. RF also pro-
vides variable importance, offering valuable insights into the influence of geometric 
parameters; 
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• Support Vector Regression (SVR) [35]: It is well-suited for multidimensional regres-
sion tasks, providing high accuracy in capturing the nuances of wave-structure in-
teractions, even in complex configurations; 

• Artificial Neural Network (ANN) [36]: Neural networks are well-suited for modeling 
nonlinear relationships, enabling the capture of subtle interactions between varia-
bles, essential for predicting wave reflection behavior; 

• Decision Tree [37]: Its speed and interpretability make it an excellent choice for initial 
exploratory analysis. This model allows direct visualization of the impact of each pa-
rameter on the reflection coefficient; 

• Gaussian Process (GP)[38]: This probabilistic model not only provides predictions 
but also confidence intervals, allowing the evaluation of result reliability—a valuable 
advantage in a maritime environment with variable conditions. 
This diversity of algorithms allows us to cover a wide range of techniques, ensuring 

a thorough and accurate performance evaluation for each configuration. 

c. Modeling Process and Performance Evaluation 

The modeling process was carried out in two distinct steps: 
i. Prediction of the Reflection Coefficient: In this first phase, the algorithms were 

trained to predict the reflection coefficients based on the parameters of the breakwa-
ter, including the submersion-to-height ratio (h/H), width (l/H), and relative water 
depth (KH). This phase validated the algorithms’ ability to replicate the results of the 
analytical equation and accurately model wave-obstacle interactions; 

ii. Prediction of the Optimal Height–Width Pair for a Given Reflection: In the second 
phase, the selected algorithm was used to reverse the initial reflection calculation and 
identify the optimal height–width pair (h/H, l/H) that met target reflection coeffi-
cients, effectively creating a “reciprocal function” of the analytical equation. 
Each model configuration was carefully selected to optimize predictive accuracy and 

efficiency: 
• Random Forest Regressor was configured with 100 estimators (Decision Tree) and a 

fixed random state of 42, ensuring reproducibility and robustness by averaging mul-
tiple decision tree outputs; 

• Support Vector Regressor (SVR) used its default configuration to model complex, 
nonlinear relationships between input parameters and the reflection coefficient; 

• Artificial Neural Network (ANN) was structured with two hidden layers of 50 neu-
rons each and a maximum of 1000 iterations. ReLU activation was applied, along 
with a transformation to prevent negative outputs, ensuring the network accurately 
modeled the relationships while stabilizing training; 

• Decision Tree Regressor was initialized with a random state of 42, allowing a single-
tree model to capture relationships without ensembling, which makes the approach 
simpler and faster to train; 

• Gaussian Process Regressor was employed to provide probabilistic predictions, mod-
eling uncertainties in the reflection coefficient by assuming a Gaussian distribution 
of outputs. 
Each model’s performance was assessed based on Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), R2, training duration, and pre-
diction duration as mentioned in the Results Section. This rigorous approach, applied 
across both underwater and free-surface configurations, ensured robust and reliable opti-
mization of breakwater dimensions under varying maritime conditions. 
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3. Results and Discussions 
In this section, we present the performance of each artificial intelligence model used 

to predict the wave reflection coefficient and optimize the breakwater dimensions. The 
models were evaluated using several performance metrics to measure prediction accu-
racy, computational efficiency, and each model’s ability to generalize under varying con-
ditions. These metrics include Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), and the training 
and prediction durations. These parameters provide a comprehensive assessment of 
model quality, with each metric playing a specific role in judging the algorithms’ suitabil-
ity for accuracy and robustness in maritime environments. 

3.1. Definitions and Utility of Performance Metrics 

Each model’s performance was assessed based on performance metrics below: 
• Mean Squared Error (MSE): MSE calculates the average of the squared differences 

between predicted and actual values, penalizing larger errors more heavily. See 
Equation (38) below: 𝑀𝑆𝐸 = ଵ௡෌ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ   (38)

where 
o 𝑦௜ : actual value of the i-th data point; 
o 𝑦ො௜ : predicted value of the i-th data point; 
o 𝑛 : number of data points. 

In this study, MSE is used to evaluate each model’s overall accuracy, particularly to 
identify those that minimize prediction errors. 
• Root Mean Squared Error (RMSE): It is the square root of MSE. Using RMSE along-

side MSE provides complementary insights into model performance. See Equation 
(39) below: 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸   (39)

• Mean Absolute Error (MAE): MAE measures the average absolute difference be-
tween predictions and actual values (see Equation (40) below). 𝑀𝐴𝐸 =  ଵ௡ ∑ |𝑦௜ − 𝑦ො௜|௡௜ୀଵ    (40)

While MSE gives more weight to larger errors, making it useful when large devia-
tions are particularly undesirable, MAE offers a straightforward and robust alterna-
tive for assessing the average error magnitude without overemphasizing outliers. 

• Coefficient of Determination (R2): This score measures how well the predictions 
match the actual values, relative to the variance in the data. It is defined as follows: 𝑅ଶ = 1 −෌ (௬೔ି௬ො೔)మ೙೔సభ෌ (௬೔ିȳ)మ೙೔సభ   (41)

where ȳ is the mean of the actual values. 
While MSE and MAE measure the magnitude of errors, R2 adds value by providing 

a relative understanding of model performance compared to a baseline, such as always 
predicting the mean. R2 is easier to interpret as it quantifies how much of the variation in 
the target variable is explained by the model. Additionally, it allows for comparison across 
datasets and helps detect overfitting when evaluated on different data splits. 
• Training Time (TT): It refers to the duration required to train the model. It is meas-

ured as follows: 𝑇𝑇 =  𝑡௘௡ௗ − 𝑡௦௧௔௥௧  (42)
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where 𝑡௦௧௔௥௧ and 𝑡௘௡ௗ are the timestamps indicating when training begins and ends, re-
spectively. 

This metric is important in our study as it determines whether a model can be quickly 
recalibrated when new data become available, a valuable asset in dynamic maritime ap-
plications. 
• Prediction Time (PT): It refers to the time required to make predictions on new data. 

For a single input, it can be expressed as follows: 𝑃𝑇 =  𝑡௘௡ௗ − 𝑡௦௧௔௥௧    (43)

where 𝑡௦௧௔௥௧ and 𝑡௘௡ௗ are the timestamps indicating when prediction begins and ends, 
respectively. 

This measure is crucial for real-time applications, where rapid predictions are neces-
sary to adjust breakwater parameters in response to changing wave conditions. 

By combining all these metrics, we obtain an overview of each model’s performance, 
considering both accuracy and operational efficiency. This approach allows us to identify 
the models best suited for precise and fast predictions in a maritime environment. 

3.2. Reflection Prediction 

In this phase, we present the performance results of our proposed AI models for 
wave reflection prediction in underwater and free-surface breakwater. 

Table 1 below shows the performance comparison of AI models for wave reflection 
prediction in underwater breakwater. 

Table 1. Performance comparison of AI models for wave reflection prediction in underwater break-
water. 

Model MSE RMSE MAE R2 TT (s) PT (s) 
RF 6.25 × 10ି଼ 0.00025002 0.00011301 0.99999531 3.2104 0.1852 

SVR 4.43 × 10ିଷ 0.06658152 0.05894506 0.66763488 2.446 0.3195 
ANN 8.11 × 10ିହ 0.00900543 0.00536504 0.99391981 2.9037 0.0079 

DT 1.02 × 10ି଻ 0.00032000 0.00018931 0.99999232 0.083 0.005 
GP 1.49 × 10ିହ 0.00386001 0.00235702 0.99888291 215.006 60.685 

In predicting wave reflection for underwater breakwaters, Random Forest (RF) and 
Decision Tree (DT) models provided the best balance of accuracy and efficiency. Both 
models achieved near-perfect fit, with extremely low error metrics (MSE, RMSE, and 
MAE) and high R2 scores, indicating excellent predictive capability. Decision Tree further 
stood out with the fastest training and prediction times, making it highly efficient and 
suitable for real-time applications. 

The Artificial Neural Network (ANN) also showed high accuracy, with the fastest 
prediction times among all models, making it ideal for scenarios requiring rapid predic-
tions. However, it exhibited a slight overestimation near peak values, which may benefit 
from further tuning. 

Gaussian Process (GP) was highly accurate but suffered from long training and pre-
diction times, limiting its practicality to small datasets or offline analysis where computa-
tional time is less critical. 

Support Vector Regressor (SVR) showed the weakest accuracy, with relatively high 
errors and lower R2, making it unsuitable without further optimization. In summary, Ran-
dom Forest, Decision Tree, and ANN are the most effective models for wave reflection 
prediction in underwater breakwater settings, balancing high accuracy with practical 
computational efficiency. 
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Moving from underwater to free-surface conditions, we next evaluate the perfor-
mance of these AI models for wave reflection prediction in a free-surface breakwater con-
text. 

Table 2 below shows the performance comparison of AI models for wave reflection 
prediction in free-surface breakwater. 

Table 2. Performance comparison of AI models for wave reflection prediction in free-surface break-
water. 

Model MSE RMSE MAE R2 TT (s) PT (s) 
RF 9.07 × 10ି଼ 0.00030116 0.00010446 0.999996963 3.5724 0.1968 

SVR 4.30 × 10ିଷ 0.06560362 0.05871522 0.855901961 0.7296 0.0282 
ANN 6.11 × 10ିହ 0.00781446 0.00471538 0.997955438 3.6293 0.0115 

DT 1.97 × 10ି଻ 0.00044414 0.00019752 0.999993396 0.0949 0.0055 
GP 1.48 × 10ି଻ 0.00038483 0.00019241 0.999995042 212.3107 60.3129 

Based on these results, we can observe that Random Forest, Decision Tree, and ANN 
maintain consistent performance across both breakwater settings, making them reliable 
choices for wave reflection prediction. SVR performs slightly better and faster in the free-
surface environment, while the Gaussian Process remains accurate but computationally 
expensive in both. 

These results suggest that while model accuracy remains largely stable across envi-
ronments, computational efficiency may vary slightly, particularly for SVR and ANN in 
the free-surface context. 

To visually reinforce these performance results, we present comparison curves that 
highlight the predictive accuracy of each AI model across varying values of the dimen-
sionless parameter KH. Each curve represents the predictions from one of the five AI mod-
els—Random Forest, Support Vector Regressor (SVR), Artificial Neural Network (ANN), 
Decision Tree, and Gaussian Process—alongside the theoretical model. 

These comparisons were based on a test dataset of 10,000 data points reserved spe-
cifically for validation. This extensive test set allows for a robust assessment of each 
model’s ability to approximate the theoretical reflection behavior, providing a clear visual 
representation of each model’s strengths and limitations relative to the analytical solution. 

The graphs below show a validation test for underwater reflection, comparing theo-
retical model values (from an analytical equation) with predictions from various AI algo-
rithms—Random Forest, SVR (Support Vector Regression), ANN (Artificial Neural Net-
work), Decision Tree, and Gaussian Process. This test uses fixed values which were not 
present during the training or performance testing. It emphasizes the importance of model 
selection, particularly when extrapolating previously unseen data. 

Here are the plots comparing the analytical reflection values with the predictions 
from each AI algorithm for different obstacle dimensions (h/H and L). See Figure 4 below 
(plots from a to d). 
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(a) h/H = 0.3, and l/H = 1.5 (b) h/H = 0.3, and l/H = 2.5 

 
(c) h/H = 0.6, and l/H = 1.5       (d) h/H = 0.6, and l/H = 2.5 

Figure 4. Plots comparing the analytical reflection values with the predictions from AI algorithms 
for different obstacle dimensions (h/H and l/H). 

The discussion across all scenarios highlights consistent performance trends among 
the models evaluated for underwater reflection. Decision Tree (DT) and Random Forest 
(RF) capture the overall trend of reflection R effectively, particularly in the first harmonic 
(low KH), but struggle to model complex oscillations in intermediate and higher harmon-
ics. Their rigid, “step-like” predictions show increasing deviations from the analytical 
equation as KH increases, with RF’s lack of diversity in trees limiting its potential ad-
vantage over DT. Similarly, Support Vector Regression (SVR) captures the general trend 
but exhibits rigidity and produces non-physical negative values in some regions (h/H = 
0.6, L1.5 and KH > 1.5, or h/H = 0.6 L = 2.5 and KH > 2.5) which was corrected using abso-
lute values. These corrections ensured realistic outputs but introduced distortions in the 
oscillation structure. Artificial Neural Network (ANN) effectively models simple trends 
but fails to align peaks and troughs in more complex oscillations, sometimes producing 
artificial or misaligned variations due to suboptimal architecture or training. 

Gaussian Process (GP) consistently outperforms all other models, offering high accu-
racy and fidelity across the scenarios tested in this study. It closely follows the analytical 
curve in all harmonics, capturing both global trends and fine oscillations, even in regions 
with rapid and dynamic variations. GP’s flexibility allows it to model continuous transi-
tions and complex interactions between waves and obstacles, with only minor deviations 
in extreme cases observed within the scope of the test conditions. This makes it the most 
reliable model for wave-obstacle interactions within the limits of this study, whereas the 
other models, although suitable for capturing general trends, require significant adjust-
ments to handle complex and oscillatory behaviors effectively. 

In the other case, Figure 5 shows a validation test for free-surface reflection, compar-
ing theoretical model values (from an analytical equation) with predictions from various 
AI algorithms (RF, DT, SVR, GP, and ANN). See Figure 5 below (plots from a to d). 
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(a) h/H = 0.3, and l/H = 1.5  (b) h/H = 0.3, and l/H = 2.5 

(c) h/H = 0.6, and l/H = 1.5  (d) h/H = 0.6, and l/H = 2.5 

Figure 5. Plots comparing the analytical reflection values with the predictions from AI algorithms 
for different obstacle dimensions (h/H and l/H). 

Across the four scenarios, the performance of the predictive models in replicating the 
analytical reference for wave reflection varies significantly. Decision Tree (DT) and Ran-
dom Forest (RF) consistently capture general trends but exhibit notable deviations in re-
gions with rapid variations in the reflection coefficient R, particularly for KH < 1.5 or in 
regions of complex relationships. Their comparable performances suggest limitations in 
the RF model’s optimization or training data coverage. Gaussian Process (GP) demon-
strates strong alignment in areas with gradual R variations and dense data coverage, but 
its predictions falter in regions with complex nonlinearities or sparse data. Notably, GP 
frequently exceeds the physical limit R = 1 in several scenarios, indicating the need for 
constraints to enforce physical consistency. 

Support Vector Regression (SVR) exhibits acceptable predictions in some regions but 
shows significant deviations in others, often exceeding R = 1 or failing to generalize well 
for KH > 1.7. Its sensitivity to hyperparameters and lack of inherent physical constraints 
hinder its reliability. In contrast, the Artificial Neural Network (ANN) consistently 
emerges as the most robust and reliable model across all scenarios, maintaining minimal 
deviations and a strong alignment with the analytical reference throughout the entire 
range of KH. While some models benefit from improvements in hyperparameters, data 
enrichment, and kernel or architecture selection, ANN stands out as the most effective 
approach for accurately modeling wave reflection, combining flexibility with physical co-
herence. 
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3.3. Dimensions Prediction 

In this phase, we present the performance results of our proposed AI models for the 
prediction of obstacle dimensions in underwater and free-surface cases. 

Table 3 below shows the performance comparison of AI models for the prediction of 
obstacle dimensions in the underwater case. 

Table 3. Performance comparison of AI models for the prediction of obstacle dimensions for under-
water breakwater. 

Model Target MSE RMSE MAE R2 TT (s) PT (s) 

RF h/H 0.002955 0.054363 0.017301 0.928489 3.271199 0.077791 
l/H 0.092398 0.30397 0.110707 0.861997 4.188477 0.093852 

DT 
h/H 0.006158 0.078474 0.016343 0.850993 0.04668 0.002157 
l/H 0.165272 0.406537 0.109399 0.753153 0.062463 0.002334 

SVR h/H 0.025798 0.160617 0.129903 0.375774 26.310649 3.836463 
l/H 0.607661 0.779526 0.653736 0.092411 34.439204 5.889853 

GP h/H 0.022301 0.149336 0.117598 0.460379 244.665434 68.324839 
l/H 0.449268 0.670274 0.555867 0.328984 239.60938 68.330051 

ANN 
h/H 0.021895 0.147971 0.113052 0.470201 11.363988 0.013058 
l/H 0.414486 0.643806 0.51954 0.380934 195.429634 0.03317 

The results show that Random Forest (RF) is the best-performing model, combining 
high accuracy (R2 = 0.928 for h/H and 0.862 for L) with reasonable computational effi-
ciency. Decision Tree (DT), while less accurate (R2 = 0.851 for h/H), is highly efficient and 
serves as a viable alternative when resources are limited. In contrast, Support Vector Re-
gression (SVR) and Gaussian Process (GP) deliver poor accuracy and are computationally 
expensive, making them unsuitable. Artificial Neural Network (ANN) shows moderate 
accuracy but higher computational demands, limiting its practicality. 

Moving from underwater to free-surface conditions, we next evaluate the perfor-
mance of these AI models for obstacle dimension prediction in a free-surface context. 

Table 4 below shows the performance comparison of AI Models for the prediction of 
obstacle dimensions in a free-surface case. 

Table 4. Performance comparison of AI models for the prediction of obstacle dimensions in a free-
surface case. 

Model Target MSE RMSE MAE R2 TT (s) PT (s) 

RF h/H 0.001825 0.042724 0.012152 0.956379 3.781168 0.072074 
l/H 0.029419 0.171519 0.049657 0.95551 3.681144 0.073746 

DT h/H 0.003793 0.061584 0.013919 0.909367 0.058323 0.002116 
l/H 0.059431 0.243784 0.052862 0.910123 0.054024 0.002139 

SVR 
h/H 0.026049 0.161396 0.138118 0.377508 31.094358 4.719603 
l/H 0.422047 0.649651 0.526329 0.361739 36.449994 6.32239 

GP 
h/H 0.013696 0.117029 0.086317 0.672708 270.447472 68.376187 
l/H 0.371135 0.609208 0.48067 0.438733 247.67819 68.148208 

ANN h/H 0.017425 0.132003 0.103471 0.583595 20.12097 0.014777 
l/H 0.395293 0.628723 0.515053 0.402199 24.952677 0.015778 

In free-surface conditions, Random Forest (RF) remains the best-performing model, 
achieving the highest accuracy (R2 = 0.956 for both h/H and L) with reasonable computa-
tion times. Decision Tree (DT) offers a good trade-off between accuracy (R2 = 0.909) and 
efficiency, making it ideal for resource-limited scenarios. In contrast, Support Vector Re-
gression (SVR) and Gaussian Process (GP) perform poorly with low accuracy and high 
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computational costs, while Artificial Neural Network (ANN) provides moderate accuracy 
but is less practical due to higher training times. 

4. Conclusions 
This paper investigates the interaction between waves and two types of wave atten-

uators: a free-surface breakwater and an underwater breakwater fixed to the bottom of a 
channel. The focus of the study is the variation in the reflection coefficient as a function of 
the dimensionless parameter KH. Our findings indicate that the free-surface breakwater 
acts as a low-pass filter, with its reflective power increasing as its length grows and its 
immersion decreases. In contrast, the underwater breakwater exhibits a reflection curve 
that peaks before decreasing for shorter wavelengths, functioning as a band-pass filter. 
The study further reveals that the reflective power of the underwater breakwater intensi-
fies with its length, with its most effective wave attenuation occurring at shallow immer-
sion depths. 

Additionally, this research highlights the transformative potential of machine learn-
ing (ML) in optimizing the design of both submerged and free-surface rectangular break-
waters. Utilizing five AI algorithms—Random Forest, Support Vector Regression, Artifi-
cial Neural Network, Decision Tree, and Gaussian Process—we successfully predicted 
wave reflection coefficients and determined optimal dimension ratios (h/H and L) for 
achieving specific wave behavior targets. The results demonstrate that Random Forest 
and Decision Tree offer a favorable balance between accuracy and computational effi-
ciency, while Gaussian Process, though highly accurate, requires more computational re-
sources. These findings emphasize the potential of AI to complement traditional ap-
proaches, offering a robust framework for addressing complex maritime engineering chal-
lenges. Future research should aim to refine these models, integrate additional environ-
mental factors, and explore hybrid methodologies that combine multiple algorithms, ulti-
mately improving predictive accuracy and enhancing the design of sustainable, cost-ef-
fective coastal defense systems. 
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Nomenclature 𝑎 The amplitude of the incident wave 𝑅௕ The reflection coefficient in the case of bottom breakwater 𝑅′ The reflection coefficient in the case of free-surface breakwater 𝑇௕ The transmission coefficient in the case of bottom breakwater 
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𝜙 Velocity potential in the case of bottom breakwater study   𝜑′ Velocity potential in the case of free-surface breakwater study   
d = H − h The height under the obstacle in the case of free-surface breakwater   𝑇′ The transmission coefficient 
H The water depth at Dଵ and Dଶ locations 
h/H The immersion ratio 
l/H The relative length 
KH The relative water depth 𝑘 The wave number that verifies the dispersion relation னమ୥ = kth(kH) 

𝜎  
The wave number above of the obstacle that verifies the dispersion relation னమ୥ = σ th(σh) 
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