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Abstract: A two-phase bubbly flow is often found in the process industry. For the efficient operation of
such devices, it is important to know the details of the flow. The paper presents a numerical simulation
of the rising bubble in a stagnant liquid column. The interFOAM solver from the open source
Computational Fluid Dynamics (CFD) toolbox OpenFOAM was used to obtain the necessary data.
The constant and dynamic computational grids were used in the numerical simulation. The results of
the calculation were compared with the measured values. As expected, by using the dynamic mesh,
the bubble trajectory was closer to the experimental results due to the more detailed description of
the gas–liquid interface.

Keywords: two-phase flow; free-rising bubble; CFD; volume of fluid (VOF); constant and
dynamic mesh

1. Introduction

Buoyancy-driven bubbly flow represents very demanding two-phase time-dependent
three-dimensional flow, which is found in many natural and technological processes. Good knowledge
of such flow is extremely important for the chemical and pharmaceutical industries where mixing
vessels [1], bubble columns [2,3], and gas-lift reactors [4] can be found. In order to control the
chemical reactions in these devices, the knowledge of the contact area between liquid and gas is crucial.
The interfacial area depends on the flow regime or bubble size distribution. Another very important
application of bubbly flow is in the field of heat transfer. Free-rising bubbles can cause the mixing of
water layers with a temperature gradient, which is the so-called destratification [5], or increase heat
transfer in heat exchanging devices by breaking the thermal boundary layer along the wall [6].

The complexity of the bubble flow represents a major challenge for theoretical, experimental,
and numerical research. Sometimes it is very difficult to provide control over the experimental process
and thus, obtaining accurate data due to the interference between the measuring probe and fluid flow
can be challenging. Therefore, numerical simulation is increasingly used as a tool for the analysis of
the bubbly flow [7–9].

The velocity fields of the two-phase flow can be significantly modified by the interfacial
interactions, meaning that they must be taken into account through adequate closure laws.
The determination of the interface depends on the considered problem. There are two approaches
to describe the development of the interface. One is the interface tracking method [10] (Lagrangian),
which is based on the use of markers on the interface. Another one is the interface capturing (Eulerian)
method, which uses fixed mesh to solve the transport equation of the scalar quantity. Level-Set [11,12],
Volume of Fluid (VOF) [13,14] and Euler–Euler [15,16] methods are representatives of this approach.
When the bubble is substantially larger than the cell size of the computational grid, the VOF method is
most commonly used. The drawback of this method is that we obtain a smearing interface when using
the interpolation schemes of the lower order and the numerical oscillations when using higher order
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interpolation schemes. A possible solution involves the refinement of the computational mesh, but this
requires a significant increase in computer resources (memory, computational time). This can be
avoided by using the "Adaptive Mesh Refinement" (AMR) technique [17], in which the computational
grid is refined only in the range of rapid changes in physical quantities (e.g., cells near the gas–liquid
interface) and therefore, the computational mesh is dynamically changing as the refined mesh follows
the movement of the bubble.

We have presented the numerical simulation of free-rising air bubble in a stagnant water column
using constant (CM) and dynamic (DM) computational mesh in the following sections. The results are
compared with experimental data obtained in the Laboratory for Fluid Dynamics and Thermodynamics
during 1980–1992. The paper is organized as follows. In Section 2, the numerical model is described.
The numerical simulation is presented in Section 3. In Section 4, the results of the simulation are
presented and discussed. Finally, the conclusions are drawn in Section 5.

2. Numerical Model

2.1. Governing Equations

To determine the gas–liquid interface, we used the VOF method. The surface tension force was
taken into account using the Continuum Surface Force (CSF) model [18]. Due to a low Reynolds
number, the conditions were considered to be laminar. The time-dependent laminar incompressible
two-phase flow can be described with the solution of the conservation equations:

• continuity
∂α

∂t
+

∂

∂xi
(αui) = 0, (1)

• momentum transport

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xj
+

∂σij

∂xj
+ ρgi + σκ

∂α

∂xi
, (2)

where α is the liquid volume fraction, ui is the velocity vector, p is the pressure, σij is the
stress tensor due to the molecular viscosity, gi is the gravity acceleration vector, σ is the surface
tension coefficient and κ is the gas–liquid interface curvature. Equation (1) and Equation (2) are
connected through material properties. The mixture density ρ and mixture dynamic viscosity µ
are determined by the following equations:

ρ = (1− α)ρg + αρl , (3)

µ = (1− α)µg + αµl , (4)

where ρl and ρg are the liquid and gas density, whereas µl and µg are liquid and gas dynamic
viscosity. The system of Equations (1)–(4) was solved within the OpenFOAM [19,20] toolkit,
which has proven to be an effective tool for solving such problems [21].

Table 1 shows the material properties for air–water two-phase system, which was considered in
our case.

Table 1. Material properties.

$ (kg/m3) µ (Pas) σ (N/m)

water 998.2 1.003 × 10−3
0.072air 1.225 1.790 × 10−5
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2.2. Discrete Model

The computational domain is represented by a hexahedron with dimensions Lx = 40 mm,
Ly = 80 mm and Lz = 290 mm (Figure 1). The domain is discretized with the structured computational
grid. The number of cells in x, y and z coordinate directions is Nx = 100, Ny = 200 and Nz = 725.
The total number of cells is 14.5 million and the size of individual cell is 0.4 mm. This mesh resolution
is a consequence of the VOF two-phase flow simulation practice that there should be at least 15 cells
per bubble diameter [5,22]. This recommendation applies in the case of constant computational mesh
(Figure 2a). In the case of the dynamic mesh, the cell size varies in the part of computational domain
according to the prescribed condition (e.g., 0.001 ≤ α ≤ 0.999). This means that cell is near gas–liquid
interface (Figure 2b). The number of cells varied between 14.79 and 16.09 million.

As an initial condition, we put a spherical bubble with a diameter of 5.8 mm at the bottom of the
domain. The bubble center is located at coordinates x0 = 20 mm, y0 = 40 mm and z0 = 10 mm. The free
surface occurs at the height H = 280 mm.
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3. Numerical Simulation

The combination of the Pressure Implicit with Splitting of Operator (PISO) and Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE), which is the so-called PIMPLE algorithm, was used
for velocity–pressure coupling [19,23]. The volume fraction, momentum and turbulence equations
were solved with smoothSolver using symGaussSeidel smoother. For the pressure equation, we used
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Geometric Agglomerated Algebraic Multigrid (GAMG) solver with the Diagonal Incomplete-Cholesky
(DIC) preconditioner for symmetric matrices.

The discretization schemes were:

• Euler explicit for the time derivative,
• Gauss linear for the gradient operator,
• Gauss upwind for the divergence operator
• Gauss linear corrected for the Laplacian operator.

We used the adjustable time step. This means that ∆t was changed so that the Courant number did
not exceed the prescribed value. In our simulation, we used the following maximum parameter values
max(Co) = maxAlpha(Co) = 0.5 and consequently, the time step was varied between 1.2 × 10−3 s and
2.6 × 10−5 s with a constant mesh and 1.2 × 10−4 s and 7.0 × 10−6 s in the case of a dynamic mesh.
The bubble reached the free surface in approximately 1.2 s. The velocity, pressure and volume fraction
fields were saved every 0.02 s for post-processing purposes.

The calculations were carried out on Supermicro workstation (AMD Opteron 6136 2.4 GHz,
2 processors, 16 cores, 64 GB RAM, 8 TB disk). The "wall clock" time for a constant mesh was 3.2 days
(8118 time steps) and for a dynamic mesh of 86 days (49210 time steps).

The difference is very large, but it is necessary to take two things into account:

1. The division of computational cells increases the number of equations considerably.
2. The ∆t decreases due to the small cells and consequently increases the number of time steps.

4. Results and Discussion

Figure 3 shows the trajectory of the bubble center or precisely the deviation sx = xc − xc and
sy = yc − yc from the average value in x and y direction, respectively.
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Initially, the stationary spherical bubble begins to move upwards due to the buoyancy force.
As the bubble velocity rises, surface waves appear as a result of viscous friction and surface tension
forces, which destroy symmetry and cause its shape to change from spherical to ellipsoidal. The bubble
begins to wobble and travel along the spiral path, leaving behind the characteristic decaying vorticity
structures [24], which is the so-called ‘horseshoe’ vortex (Figure 4), which further deforms its shape.Fluids 2019, 4, x FOR PEER REVIEW 5 of 9 

. 

Figure 4. Bubble path and vorticity structures for |ωሬሬ⃗ | = 25 𝑠ିଵ. 

The bubble mean lateral displacement is defined by: 𝑠ஶ = ଵே ∑ ඥ(𝑠 − �̅�)ଶேୀଵ , (5)

where sj is the bubble center deviation from initial position: 𝑠 = ඥ(𝑥(𝑡) − 𝑥)ଶ + (𝑦(𝑡) − 𝑦)ଶ, (6)

where tj is the time and N is the number of saved time steps. The bubble mean lateral displacement 
is s∞ = 2.26 mm in the case of a constant mesh and s∞ = 1.42 in the case of a dynamic mesh. The 
comparison of these two values with the experiment [25] is shown in Figure 5. As we can see, the 
dynamic mesh value is closer to the measured trend-line than the constant mesh result. 

The bubble terminal rise speed is defined by: 

𝑣ஶ = 1𝑁  |𝑣(𝑡)|ே
ୀଵ . (7)

For a constant mesh, the bubble terminal velocity is v∞ = 22.56 cm/s and for a dynamic mesh, this 
is v∞ = 22.59 cm/s. Both values match well with the experimental data (Figure 6). 

By using the Fast Fourier Transformation (FFT) for the time series of the bubble center 
coordinates, we calculate the mean oscillation frequency in the bubble wobbling motion. The result 
is f∞ = 5.21 Hz for a constant mesh and f∞ = 4.55 Hz for a dynamic mesh. The latter value is closer to 
the measured trend line (Figure 7). 

The non-dimensional Weber number We = ρ𝑣ஶଶ 𝑑 σ⁄  represents the ratio of inertial force and 
surface tension force. The dependence of the Weber number on the bubble equivalent sphere 
diameter is shown in Figure 8. For the bubble with de = 5.8 mm, the calculated value for a constant 
mesh is We = 4.05 and We = 4.07 for a dynamic mesh. Both values are slightly lower than the measured 
ones. This means that the contribution of the inertial force is lower than the actual one in the 
numerical simulation. 

Figure 4. Bubble path and vorticity structures for |→ω| = 25 s−1.

The bubble mean lateral displacement is defined by:

s∞ =
1
N

N

∑
j = 1

√(
sj − s

)2, (5)

where sj is the bubble center deviation from initial position:

sj =
√(

xc
(
tj
)
− x0

)2
+
(
yc
(
tj
)
− y0

)2, (6)

where tj is the time and N is the number of saved time steps. The bubble mean lateral displacement
is s∞ = 2.26 mm in the case of a constant mesh and s∞ = 1.42 in the case of a dynamic mesh.
The comparison of these two values with the experiment [25] is shown in Figure 5. As we can
see, the dynamic mesh value is closer to the measured trend-line than the constant mesh result.

The bubble terminal rise speed is defined by:

v∞ =
1
N

N

∑
j = 1

∣∣v(tj
)∣∣. (7)

For a constant mesh, the bubble terminal velocity is v∞ = 22.56 cm/s and for a dynamic mesh,
this is v∞ = 22.59 cm/s. Both values match well with the experimental data (Figure 6).
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By using the Fast Fourier Transformation (FFT) for the time series of the bubble center coordinates,
we calculate the mean oscillation frequency in the bubble wobbling motion. The result is f ∞ = 5.21 Hz
for a constant mesh and f ∞ = 4.55 Hz for a dynamic mesh. The latter value is closer to the measured
trend line (Figure 7).

The non-dimensional Weber number We = ρlv2
∞de/σ represents the ratio of inertial force

and surface tension force. The dependence of the Weber number on the bubble equivalent sphere
diameter is shown in Figure 8. For the bubble with de = 5.8 mm, the calculated value for a constant
mesh is We = 4.05 and We = 4.07 for a dynamic mesh. Both values are slightly lower than the
measured ones. This means that the contribution of the inertial force is lower than the actual one in the
numerical simulation.Fluids 2019, 4, x FOR PEER REVIEW 6 of 9 
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The spherical bubble equivalent diameter de = 3
√

6VB/π = 5.8 mm, where VB is the volume
of the bubble, is calculated using the Gauss’s theorem for closed iso-surface α = 0.5, which
represents the gas–liquid interface. The free-rising bubble mode can be determined with the help
of Grace’s diagram [26], which connects the bubble Eötvos (Eo), Reynolds (Re) and Morton (Mo)
dimensionless numbers:

Eo =
g
(
ρl − ρg

)
d2

e

σ
= 4.5, (8)

Re =
ρldev∞

µl
= 1.3× 103, (9)

Mo =
gµ4

l

(
ρl − ρg

)
ρ2

l σ
3

= 2.7× 10−11, (10)

According to the Grace’s diagram, the bubble from the present case is in the wobbling mode.
Figure 9 shows the bubble shape at the time t = 1 s. It is in the region of the wobbling mode (time
changing) shape with dynamic mesh, while it is closer to ellipsoidal mode shape with constant mesh.
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5. Conclusions

The numerical simulation of the free-rising air bubble in a stationary water column was performed
by using the open source CFD toolbox OpenFOAM. The constant and dynamic computational meshes
were used and the results of the calculation were compared with the experimental data. The interFoam
solver was used for the case with time-constant mesh and the interDymFoam for the case with
time-varying mesh.

A bigger difference between the calculations is evident in the bubble trajectory. In the case of
a constant mesh, the deviation amplitude of the helical path is much smaller than in the case of a
dynamic mesh due to a poorer description of the gas–liquid interface.

The bubble terminal velocity and the average frequency of oscillation of the bubble movement fits
well with the experimental regression curve in both cases, but the matching is slightly better with the
dynamic mesh. The Weber numbers partially deviate from the measured value. The wobbling bubble
flow regime, which is obtained by the dynamic mesh, closely matches the Grace’s diagram, while the
bubble shape is closer to the ellipsoidal flow regime in the case of the constant mesh.

From the above-mentioned points, we can conclude that the VOF method is suitable for describing
and analyzing the two-phase flow with large (according to the size of the computational cells) bubbles.
A more detailed description of the gas–liquid interface is obtained by using a dynamic computational
mesh, but we must be aware that this means a significant increase in computing time.
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