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Abstract: We investigate the flow structure and dynamics of moderate-Rayleigh-number (Ra) thermal
convection in a two-dimensional inclined porous layer. High-resolution numerical simulations
confirm the emergence of O(1) aspect-ratio large-scale convective rolls, with one ‘natural’ roll rotating
in the counterclockwise direction and one ‘antinatural’ roll rotating in the clockwise direction. As the
inclination angle φ is increased, the background mean shear flow intensifies the natural-roll motion,
while suppressing the antinatural-roll motion. Our numerical simulations also reveal—for the first
time in single-species porous medium convection—the existence of spatially-localized convective states
at large φ, which we suggest are enabled by subcritical instability of the base state at sufficiently
large inclination angles. To better understand the physics of inclined porous medium convection at
different φ, we numerically compute steady convective solutions using Newton iteration and then
perform secondary stability analysis of these nonlinear states using Floquet theory. Our analysis
indicates that the inclination of the porous layer stabilizes the boundary layers of the natural roll,
but intensifies the boundary-layer instability of the antinatural roll. These results facilitate physical
understanding of the large-scale cellular flows observed in the numerical simulations at different
values of φ.

Keywords: convection; porous media; secondary stability; floquet theory; localized states

1. Introduction

Buoyancy-driven convection in fluid-saturated porous media exhibits rich instability
characteristics and nonlinear dynamics as the Rayleigh number Ra, a dimensionless parameter
characterizing the ratio of driving to damping forces, increases [1–7]. This system has been extensively
studied owing to applications in geothermal energy extraction, geological carbon sequestration,
and the the design of compact heat exchangers [8–11]. In a homogenous and isotropic horizontal
porous layer uniformly heated from below, the basic conduction state becomes linearly unstable
above a critical Rayleigh number Rac = 4π2 [1,2], giving rise to steady O(1) aspect-ratio large-scale
convective rolls through a stationary bifurcation. As Ra is increased further, a secondary instability
occurs within the upper and lower thermal boundary layers via a supercritical Hopf bifurcation,
generating small-scale plumes that are periodically or quasi-periodically advected around the cells
for 400 . Ra . 1300 [3,12–16]. For Ra > 1300, the large-scale cellular flow is broken down and the
system transitions to the ‘turbulent’, narrowly spaced columnar-flow, high-Ra regime [4–6,17].

In deep geological formations the layer may not be strictly horizontal; for example, in carbon
sequestration the saline aquifers are generally inclined at an angle to the horizontal [18–21].
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The inclination of the layer introduces an additional control parameter, i.e., the tilt angle, which
significantly affects the instability and bifurcation of the base flow. In a sloping three-dimensional (3D)
porous layer with an inclination angle φ above the horizontal, four types of flows exist near the onset
of convection: the basic single-cell shear flow with an upward current near the lower heated wall and
a downward current near the upper cooled wall (Figure 1); polyhedral cells with wall-normal axes;
longitudinal helicoidal cells resulting from the longitudinal rolls (with wall-parallel axes) superposed
on the basic flow; and two-dimensional (2D) transverse rolls [22–35]. Note that in an infinitely extended
layer, the unicellular base state becomes independent of the wall-parallel (x) coordinate and reduces to
a laminar unidirectional shear flow, as schematically depicted in Figure 1. The early experiments by
Bories and collaborators [22–24] indicated that the basic unicellular flow is stable for Ra cos φ ≤ 4π2;
when Ra cos φ is slightly greater than 4π2, however, convection appears in the form of polyhedral cells
for small inclination angles (φ . 15◦) and longitudinal helicoidal rolls for larger φ. Besides these three
flow configurations, 2D transverse rolls are also observed at small Ra and φ, e.g., in the experiments
by Caltagirone et al. [25], Kaneko [26], and Kaneko et al. [27], and in the numerical simulations by
Caltagirone and Bories [28].

In order to investigate the conditions for transitions between these different flow regimes, a series
of subsequent studies were carried out. Using linear stability analysis, Caltagirone and Bories [28]
demonstrated that in an infinitely extended porous layer, the basic-state shear flow is stable for
Ra cos φ ≤ 4π2. These authors also obtained a transition criterion from the polyhedric cells or
transverse rolls to the helicoidal cells, with their analysis yielding a transition angle φt ' 31.8◦ between
these flow patterns. More recently, a full numerical investigation of the marginal stability of the
background flow was performed by Rees and Bassom [29] in a 2D inclined porous layer. Since all
fields are presumed to be independent of the transverse (y) direction, polyhedral cells and helicoidal
rolls cannot be realized in the 2D layer. Consequently, the basic unicellular flow can be linearly stable
at smaller φ. Moreover, as shown in Reference [29], 2D linear instability at large Ra can only arise when
φ ≤ 31.3◦. Additional linear stability analyses have been performed with the aim of understanding the
effects of material anisotropy and variations in boundary conditions [30–35]. Crucially, recent analysis
by Wen and Chini [36] indicates that the basic state is not energy stable for φ ≤ 90◦ and Ra > 91.6,
so this base state may become unstable to sufficiently large-amplitude disturbances for φ > 31.3◦.

Instead of focusing on the onset of convection, in this work we numerically investigate how
layer inclination affects the flow structure and dynamics of finite-amplitude convection at moderate
values of the Rayleigh number (Ra < 1000). Although some numerical simulations of porous medium
convection have been performed in inclined cavities to investigate the emergent steady convective
flow at small Ra [37–39], the side walls may significantly impact the flow structure and transport
properties if the aspect ratio of the domain is not sufficiently large (e.g., in a sloping square cavity).
Here, we conduct well-resolved numerical simulations in an inclined 2D Rayleigh–Darcy domain
having O(1) aspect ratio but enforce periodicity rather than sidewall conditions in the wall-parallel (x)
direction, since the former enables a better approximation of the physics of convection in an extended
layer. Of course, in the moderate-Ra regime on which we focus, the convection is not ‘turbulent’ but
rather spatially coherent, implying that the quantitative results of our simulations necessarily will
depend on the precise O(1) value of the aspect ratio employed. Nevertheless, we expect that the
observed trends, qualitative results, and physical insights gleaned from our simulations will be robust
to variations in the domain aspect ratio. Moreover, we perform one set of simulations in an extended
domain of large aspect ratio to investigate, for the first time in single-species porous media convection,
the phenomenon of spatial localization of the emergent convection patterns. To elucidate the physical
mechanisms manifested in the simulations as Ra and φ are varied, we also compute (dynamically
unstable) steady convective solutions using Newton iteration and then perform secondary stability
analysis of these nonlinear states numerically using Floquet theory. Collectively, our results shed light
on the development of moderate-Ra large-scale cellular flows at different inclination angles.
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Figure 1. Dimensionless geometry and background/basic state for 2D convection in inclined
Rayleigh–Darcy domains. (a) Closed domain; (b) L-periodic domain. x and z are the wall-parallel and
wall-normal coordinates, respectively, and g is the (dimensional) acceleration of gravity. For φ > 0◦,
the basic-state temperature field (realized in the absence of convection) varies only in z, as in the
horizontal case (φ = 0◦). The basic-state velocity field is nonzero, however, with the background
shear flow strengthening as the inclination angle φ is increased. The flow in (a) represents the basic
unicellular shear flow observed in experiments in a closed domain. In an infinitely extended layer (i.e.,
L → ∞), the unicellular base state becomes x-independent and reduces to a laminar unidirectional
shear flow, as shown in (b).

The remainder of this paper is organized as follows. In the following section, we formulate
the standard mathematical model of inclined porous medium convection. In Section 3, we perform
numerical simulations in the moderate-Ra regime for a range of inclination angles, and then investigate
the structure and stability of steady nonlinear convective states. Finally, our conclusions are given
in Section 4.

2. Governing Equations

Consider a 2D fluid-saturated porous layer inclined at an angle φ above the horizontal (Figure 1).
The domain is heated from below and has aspect ratio L. We assume the motion of the incompressible
fluid satisfies the Boussinesq approximation and Darcy’s law. The system is rendered dimensionless
using the layer thickness H, the temperature difference across the layer ∆T, the diffusion time
Td = αmH2/κ, and the diffusion velocity Ud = κ/H, where αm is the ratio between the overall
volumetric heat capacity of the porous media and the volumetric heat capacity of the fluid, and κ is
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the thermal diffusivity [10,29,31–35]. Then, the flow and heat transport processes of the system are
governed by the following non-dimensional equations [10]:

∇ · u = 0, (1)

u +∇p = RaT(sin φex + cos φez), (2)

∂tT + u · ∇T = ∇2T, (3)

where u(x, t) = (u, w), T(x, t) and p(x, t) are the dimensionless velocity, temperature, and pressure,
respectively; ex and ez are unit vectors in the wall-parallel (x) and wall-normal (z) directions; and ∇2

is the 2D Laplacian operator. The system of equations is solved subject to the boundary conditions

T(x, 0, t) = 1, T(x, 1, t) = 0, w(x, 0, t) = 0, w(x, 1, t) = 0. (4)

As discussed in Section 1, all fields are required to be L-periodic in x (Figure 1b). For the 2D
system, the fluid velocity can be described by using a stream function ψ, so that (u, w) = (∂zψ,−∂xψ).
Then Equations (2) and (3) can be re-expressed as

∇2ψ = Ra(∂zθ sin φ− sin φ− ∂xθ cos φ), (5)

∂tθ + ∂zψ∂xθ − ∂xψ∂zθ = −∂xψ +∇2θ, (6)

where θ(x, t) = T(x, t) − (1 − z), and θ and ψ satisfy L-periodic boundary conditions in x and
homogeneous Dirichlet boundary conditions in z.

Three dimensionless parameters control the dynamics of this system: the inclination angle
φ; the domain aspect ratio L; and the normalized temperature drop across the layer, namely,
the Rayleigh-Darcy number

Ra =
HKgα∆T

κν
, (7)

where K is the medium permeability, g is the gravitational acceleration, α is the thermal expansion
coefficient, and ν is the kinematic viscosity. In an infinitely extended layer, the inclination of the
domain will induce a background shear flow which strengthens as φ is increased; the corresponding
basic state is defined by T = 1− z, u = Ra sin φ( 1

2 − z)ex, and p = 1
2 Ra sin φx + Ra cos φ(z− 1

2 z2) and
is shown schematically in Figure 1b. In the next section, we demonstrate that the background shear
flow dramatically impacts the flow structure as φ is increased.

3. Dynamics at Moderate Ra

3.1. Numerical Simulation Results

In this section, high-resolution numerical simulations are performed to investigate the dynamics
of convection at moderate Ra in an inclined porous layer. We solve Equations (5) and (6) numerically
using a Fourier–Chebyshev-tau pseudospectral solver developed in References [36,40–42]. The system
is discretized spatially using Fourier series in x and Chebyshev series in z [43], and temporally using
a third-order-accurate semi-implicit Runge–Kutta scheme for the first three time steps [44] and a
four-step fourth-order-accurate semi-implicit Adams–Bashforth/Backward-Differentiation scheme for
all subsequent time steps [45]. The simulations are performed in domains with spatial period L = 2
or L = 10, where L = 2 corresponds to the wavelength of the marginal mode for onset of convection
at Rac = 4π2 in the horizontal case (φ = 0◦). At L = 2 and for each Ra, the results from simulations
performed at smaller φ are utilized as the initial conditions for simulations at larger φ; at L = 10
and φ = 35◦, however, particularly-designed and random initial conditions are used, respectively,
for simulations at Ra = 100 and Ra ≥ 300.
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At small Ra (just above the onset of convection), the flow exhibits steady stable O(1) aspect-ratio
large-scale convective rolls when the layer is inclined. As shown in Figure 2, for Ra = 100 and L = 2
there exist two steady cells corresponding to counter-rotating convective rolls: the counterclockwise
circulation with positive ψ and the clockwise circulation with negative ψ, hereafter referred to
as ‘natural’ and ‘antinatural’ convective rolls, respectively. Either of these two types of steady
circulation may exist in isolation in the small-aspect-ratio sloping porous cavity due to the effect
of thermally-insulating lateral walls [38,39]; however, in a periodic domain, these two rolls always
coexist. Moreover, for the horizontal case (φ = 0◦), the steady flow exhibits centro-reflection
symmetry (Figure 2a). Reflection symmetry in x is broken by the layer inclination (0◦ < φ < 90◦),
although centrosymmetry is retained (Figure 2b,c). Our numerical simulation results indicate that
the inclination of the layer modifies the boundary layer thickness of the velocity field for the natural
and antinatural rolls: the former becomes thinner while the latter becomes thicker. Furthermore,
the extremum ψ value of the natural roll becomes larger as φ is increased (see the colorbar limits in
Figure 2), in contrast to that of the antinatural roll, implying that compared with antinatural convective
motion, the natural convective motion becomes more vigorous when the layer is inclined. This result
accords with the physical intuition that, for 0◦ < φ < 90◦, the base shear flow u = Ra sin φ( 1

2 − z)ex,
which intensifies for increasing φ, enhances (suppresses) fluid motions with the same (opposite) sense
of rotation.

As for horizontal convection, the steady rolls computed at different φ strengthen but remain
stable as Ra is increased up to 200. As shown in Figure 3, however, at Ra = 300 the antinatural roll
becomes unstable first for φ & 10◦ (while the natural roll remains stable) and small-scale proto-plumes
are generated from the upper and lower thermal boundary layers and advected around the cell by
the background roll (Figure 3c). Moreover, this boundary layer instability becomes much stronger
as the inclination angle is increased so that the unsteady two-cell (one natural and one antinatural)
convective roll pattern is split into a stable steady four-cell convective state at φ ≈ 25◦, as shown
in Figure 3d.

For Ra & 400, the steady convective rolls become unstable even at small φ, and the resulting
flow exhibits a series of transitions between periodic and quasi-periodic roll motions (Figure 4),
as observed in the horizontal case. A primary difference between inclined and horizontal porous
medium convection is that the inclination of the layer alters the symmetry of the flow by intensifying
the near-wall instability of the antinatural roll (associated with a thickening of the velocity boundary
layer) while stabilizing the natural roll (associated with a thinning of the velocity boundary layer).
As φ is increased, the boundary-layer instability of the antinatural roll becomes more vigorous so that
the plumes generated from the thermal boundary layers split the original two-cell convection into
multiple-cell convection, as shown in Figure 4. It is worth noting that as Ra is increased, the value of φ at
which the flow transitions from two-cell convection to four-cell convection decreases (Table 1), e.g., for
Ra = 300, 500 and 998, the approximate transition angle is decreased from 25◦ to 15◦ and finally to 5◦.

The 2D numerical simulations performed by Caltagirone and Bories [28] and Moya et al. [38] did
not exhibit convective flows at large φ in wide domains (e.g., L = 10), in apparent agreement with the
prediction that the basic state is linearly stable for φ > φt with φt ≈ 31.3◦ [29]. Nevertheless, the basic
state may become unstable when disturbance amplitudes are sufficiently large since, as shown by
Wen and Chini [36], the base state is not energy stable for φ ≤ 90◦ at Ra > 91.6. Figure 5 shows
snapshots of isotherms from numerical simulations at φ = 35◦ and L = 10 for different Rayleigh
numbers ranging from 100 to 500. Interestingly, not only do convective flows arise but, given different
initial conditions, these convective flows can adopt distinct forms. For instance, at Ra = 100, the flow
can exhibit stable localized convective structures with various numbers of roll pairs (Figure 5a,b) or
large-scale cellular flows (Figure 5c); a flow pattern consisting of five replicas of the stable two-cell
convective state obtained for L = 2 (Figure 5d) is also realizable. We note that spatially-localized states
previously have been observed in double-diffusive convection in porous media [46,47], but here our
numerical simulations reveal—for the first time in single-species porous medium convection—the
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existence of these localized convective states at large φ. Moreover, our simulation results also indicate
that the (large-scale) localized roll pattern still appears instantaneously at higher Ra when the flow
becomes unsteady (Figure 5e,f). Although the flow structure for φ > φt at small and moderate Ra
will not be discussed in further detail in this study, we comment that the observed spatially-localized
convective states appear to arise through a subcritical bifurcation of the basic state enabled by the gap
in parameter values for linear and nonlinear stability [36].

Table 1. Approximate angle φ at which the flow transitions from two-cell convection to four-cell
convection in numerical simulations at moderate Ra and L = 2.

Ra 300 500 792 998

φ 25◦ 15◦ 10◦ 5◦

0 0.5 1 1.5

0

1

0

1

0 0.5 1 1.5

0

1

-5

0

5

(a)

0 0.5 1 1.5

0

1

0

1

0 0.5 1 1.5

0

1

-4

0

6

(b)

0 0.5 1 1.5

0

1

0

1

0 0.5 1 1.5

0

1

-3

0

7

(c)

Figure 2. Snapshots of isotherms (left) and corresponding streamlines (right) from numerical
simulations at Ra = 100 and L = 2. (a) φ = 0◦; (b) φ = 10◦; (c) φ = 25◦. The streamlines of
the natural (positive ψ) and antinatural (negative ψ) rolls are shown in red and blue, respectively.
For a range of φ values, the flow takes the form of stable steady convective rolls. As φ is increased,
the natural roll becomes more vigorous (see the colorbar limits) and more tightly attached to the walls,
while the antinatural roll is suppressed and becomes detached from the walls.
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Figure 3. Snapshots of isotherms (left) and corresponding streamlines (right) from numerical
simulations at Ra = 300 and L = 2. (a) φ = 0◦; (b) φ = 10◦; (c) φ = 17.5◦; (d) φ = 25◦. In this
case, the flows in (a,d) are steady; in (b,c), the upper and lower boundary layers of the antinatural rolls
(negative ψ) become unstable. At φ ≈ 25◦, the small proto-plumes generated from the boundary-layer
instabilities of the antinatural rolls split the unsteady two-cell convection (with one natural and one
antinatural roll) into a steady four-cell convective state, thereby reducing the aspect ratio of each roll.
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Figure 4. Snapshots of isotherms (left) and corresponding streamlines (right) from numerical
simulations at Ra = 500 and L = 2. (a) φ = 0◦; (b) φ = 10◦; (c) φ = 15◦. For φ < 15◦, the convection
appears in the form of unsteady rolls (a,b). However, as φ is increased, the boundary-layer instability
of the antinatural roll (negative ψ) becomes stronger and splits the unsteady two-cell convective state
into the steady four-cell convection pattern shown in (c).
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Figure 5. Cont.
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Figure 5. Snapshots of isotherms from numerical simulations at φ = 35◦ and L = 10. (a–d) Ra = 100;
(e) Ra = 300; (f) Ra = 500. Sub-plots (a–d) show steady convective states obtained using different initial
conditions, while (e) and (f) show snapshots of time-dependent states. Although the basic-state shear
flow is linearly stable for φ > φt ≈ 31.3◦ in 2D, convection nevertheless may be realized by initializing
with sufficiently large-amplitude disturbances; i.e., sub-critical instabilities are possible in this parameter
regime. The spatially-localized convective states evident in (a,b), observed here for the first time in
single-species porous medium convection, are one manifestation of this sub-critical instability.

In summary, our well-resolved numerical simulations show that the instantaneous flow at
moderate Ra self-organizes into O(1) aspect-ratio large-scale cellular flows, suggesting that the basic
physics of inclined porous medium convection can be understood by studying the underlying exact
coherent states, e.g., steady convective solutions, that support observed convective patterns. Accordingly,
in the following sections, we compute steady convective solutions and then assess the stability of these
nonlinear states.

3.2. Steady Convective States

We numerically compute steady solutions of Equations (5) and (6) using the Newton–GMRES
(generalized minimal residuals) algorithm. Following Wen et al. [6] and Wen and Chini [36], we write
the linear differential equations for the corrections as[

∇2 Ra(cos φ∂x − sin φ∂z)

−∂x + θi
z∂x − θi

x∂z ∇2 − ψi
z∂x + ψi

x∂z

] [
4ψ

4θ

]
=

[
−Fψ

res
−Fθ

res

]i

, (8)

with the correction terms

4ψ = ψi+1 − ψi, 4θ = θi+1 − θi, (9)
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and the residuals of the steady governing equations

Fψ
res = ∇2ψ− Ra(∂zθ sin φ− sin φ− ∂xθ cos φ), (10)

Fθ
res = ∇2θ − (∂zψ∂xθ − ∂xψ∂zθ + ∂xψ), (11)

where the superscript ‘i’ denotes the ith Newton iterate. Then, (8) is solved using a Krylov-subspace
(GMRES) iterative method under the centrosymmetry constraint for θ. For each i, we stop the GMRES
iteration once the L2-norm of the relative residual of (8) is less than 10−4, and finally stop the Newton
iteration when the L2-norm of (Fψ

res, Fθ
res) is less than 10−8. For each Ra, the results from smaller φ are

utilized as the initial conditions for simulations at larger φ.
As noted above, steady convective states in an inclined porous layer are stable at small Ra (e.g.,

Ra ≤ 200). However, as the Rayleigh number is increased, the boundary layers near the upper and
lower walls become unstable and small-scale features are generated and advected around the cell by
the large-scale roll (Figure 3c). In this section, the structure of these unstable steady convective states is
investigated at Ra = 500 and L = 2 for different inclination angles. As shown in Figure 6, the increasing
inclination of the layer enhances the background flow, thereby intensifying the natural-roll motion
and suppressing the antinatural-roll motion. Consequently, as φ is increased, the natural rolls become
more vigorous and more tightly attached to the upper and lower walls; in contrast, the antinatural
rolls become much weaker and detach from the walls (Figures 6 and 7).
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Figure 6. Cont.
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(d)

Figure 6. Isotherms (left) and streamlines (right) of steady convective states at Ra = 500 and L = 2.
(a) φ = 0◦; (b) φ = 10◦; (c) φ = 20◦; (d) φ = 30◦. As the inclination angle is increased, the natural roll
(positive ψ) becomes more vigorous (see the colorbar limits) and more tightly attached to the walls,
while the antinatural roll (negative ψ) is suppressed and becomes detached from the walls. At φ = 30◦,
the antinatural roll makes contact with the upper and lower walls only at certain localized intervals in x.

0 10 20 30

8

12

16

20

Natural Roll

Antinatural Roll

Figure 7. Magnitude of ψm for steady convective states as a function of φ at Ra = 500 and L = 2.
ψm denotes the extremum ψ value corresponding to the natural roll with max(ψ) (positive) and
antinatural roll with min(ψ) (negative). As φ is increased, the natural-roll motion is intensified, while
the antinatural-roll motion is suppressed.

3.3. Secondary Stability Analysis

In this section, a spatial Floquet analysis is performed to investigate the linear stability of fully
nonlinear steady convective states in an inclined porous layer. We decompose each field into a steady
nonlinear 2D base flow (denoted with a subscript ‘s’) plus a time-varying small-amplitude perturbation
(denoted with a tilde),

ψ(x, t) = ψs(x) + ψ̃(x, t), (12)

θ(x, t) = θs(x) + θ̃(x, t). (13)

Then, the evolution of the disturbances ψ̃ and θ̃ are governed by following linearized equations

∇2ψ̃ = Ra(sin φ∂z − cos φ∂x)θ̃, (14)

∂t θ̃ = ∇2θ̃ − ∂xθs∂zψ̃ + ∂zθs∂xψ̃ + ∂xψs∂z θ̃ − ∂zψs∂x θ̃ − ∂xψ̃. (15)
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According to Floquet theory, the solutions for the perturbations in (14) and (15) can be expressed as[
θ̃

ψ̃

]
= eiβksx

{
∞

∑
n=−∞

[
ˆ̃θn(z)
ˆ̃ψn(z)

]
einksx

}
eλt + c.c., (16)

where λ is the temporal growth rate, ks is the fundamental wavenumber of the spatially-periodic steady
solution, n is the wall-parallel Fourier mode number, β is the real Floquet parameter (0 ≤ β ≤ 0.5),
which provides the freedom to modify the fundamental horizontal wavenumber of the perturbation,
and c.c. denotes complex conjugate. Substituting the ansatz (16) into Equations (14) and (15) yields

−Ra [sin φ∂z − i(n + β)ks cos φ] ˆ̃θn +
[
∂2

z − (n + β)2k2
s

]
ˆ̃ψn = 0, (17)[

∂2
z − (n + β)2k2

s + h̃n

]
ˆ̃θn + [−i(n + β)ks + g̃n] ˆ̃ψn = λ ˆ̃θn (18)

for each n, where h̃n and g̃n can be determined numerically by calculating the convolution of the
non-constant-coefficient terms (∂xψs∂z − ∂zψs∂x) and (−∂xθs∂z + ∂zθs∂x), respectively, in (15). Finally,
the eigenvalue problem (17) and (18) is discretized using a Chebyshev collocation method and
the resulting algebraic eigenvalue problem is solved using Arnoldi iteration to obtain the leading
eigenvalues and eigenfunctions.

Our results reveal that, at moderate Ra, the maximum convective growth rate σm ≡ Re{λm}/Ra
for both the horizontal and inclined cases is independent of β, and the corresponding fastest-growing
eigenfunction shares a similar spatial structure for different β. Hence, below we only present the results
of our stability analysis at β = 0. Figure 8 shows the variation of σm as a function of φ at the aspect
ratio Ls = 2π/ks = 2. The inclination of the layer enhances the instability of the steady state, and for
each Ra, there exists a peak in σm at particular angle φm. [Note that in our time-dependent numerical
simulations the increasing instability with φ generally causes the two-cell convection pattern to split
into a four-cell pattern before φm is reached (Table 1 and Figure 8).] Interestingly, this trend is opposite
to that exhibited by the basic state itself; that is, increasing the inclination of the layer stabilizes the
basic state, primarily by reducing the destabilizing effect of buoyancy, while destabilizing steady
convective states (at least for φ ≤ φm) owing largely to the intensification of the background shear
flow. Moreover, the structure of the most unstable eigenfunction shown in Figure 9 and the results
presented in Figure 10 confirm that the antinatural rolls are more unstable than are the natural rolls
at moderate Rayleigh number, as also indicated by the numerical simulations in Section 3.1. Again,
as φ is increased, the natural roll of the steady state strengthens and becomes more tightly attached to
the walls, and thereby is stabilized; on the contrary, the antinatural roll is suppressed and becomes
detached from the walls, and thereby is destabilized. Thus, the increase in the maximum growth rate
σm with φ in Figure 8 is attributable to the destabilization of the antinatural roll.
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Figure 8. Variation of the maximum growth rate, σm, with φ at moderate Ra, Ls = 2 and β = 0.
At Ra = 300, the steady state is marginally stable for φ < 10◦ and becomes weakly unstable at φ = 10◦.
The same branch of steady states is not obtained at large φ for Ra = 500 and 792 using the present
numerical scheme.
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Figure 9. The fastest-growing 2D temperature eigenfunctions at Ra = 500, Ls = 2 and β = 0.
(a) φ = 0◦; (b) φ = 20◦. For the horizontal case, reflection symmetry is satisfied and both the natural
and antinatural rolls are equally unstable. However, as φ is increased, the natural roll is stabilized and
the instability of the antinatural roll is intensified.
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Figure 10. The leading eigenvalues, σ = λ/Ra, at Ra = 500, Ls = 2 and β = 0. (a) φ = 0◦; (b) φ = 20◦.
All of the unstable modes for both the horizontal and inclined cases exhibit a similar structure as that
of the corresponding fastest-growing mode in Figure 9.
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4. Conclusions

In this study, we investigate the flow structure and dynamics of moderate-Ra convection in an
inclined 2D porous layer uniformly heated from below. Using pseudospectral numerical simulations,
we show the evolution of the O(1) aspect-ratio large-scale cellular flows as functions of Ra and
φ. Our numerical simulation results indicate that the inclination of the layer breaks the reflection
symmetry of the convective rolls in the wall-parallel direction. As the inclination angle φ is increased,
the background shear flow strengthens, thereby intensifying the natural-roll motions and suppressing
the antinatural-roll motions. Therefore, for increasing Rayleigh number Ra and at sufficiently large
φ, the boundary layers of the antinatural roll become unstable prior to those of the natural roll.
Interestingly, our numerical simulations reveal for the first time the existence of spatially-localized
convective states in single-species porous medium convection at large φ, which may be anticipated
based on the gap in parameter values for linear and nonlinear stability of the basic state [36].

To better understand the physics of inclined porous medium convection at different φ, we also
analyze the structure and stability of steady nonlinear convective states at moderate Ra. We compute
the steady solutions using a Newton–GMRES algorithm and then perform secondary stability analysis
using Floquet theory. Consistent with the unsteady flow observed in our numerical simulations,
the steady states appear in the form of large-scale convective rolls: one natural roll rotating in a
counterclockwise direction; and one antinatural roll rotating in a clockwise direction. As the inclination
angle is increased, the strengthening background mean flow enhances the motion of the natural
roll causing it to more tightly attach to the upper and lower walls, but weakens the motion of the
antinatural roll driving detachment from the walls, at least for sufficiently large φ. Moreover, Floquet
analysis of these steady states reveals that before the antinatural roll is completely detached from the
walls, the inclination of the layer stabilizes the boundary layers of the natural roll, but intensifies the
boundary-layer instability of the antinatural roll. These analyses shed light on the development of
moderate-Ra large-scale cellular flows at different inclination angles.
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