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Abstract: The second law of thermodynamics is indispensable in engineering applications. It allows
us to determine if a given process is feasible or not, and if the given process is feasible, how efficient
or inefficient is the process. Thus, the second law plays a key role in the design and operation
of engineering processes, such as steam power plants and refrigeration processes. Nevertheless
students often find the second law and its applications most difficult to comprehend. The second
law revolves around the concepts of entropy and entropy generation. The feasibility of a process
and its efficiency are directly related to entropy generation in the process. As entropy generation
occurs in all flow processes due to friction in fluids, fluid mechanics can be used as a tool to teach
the second law of thermodynamics and related concepts to students. In this article, flow through
packed beds and consolidated porous media is analyzed in terms of entropy generation. The link
between entropy generation and mechanical energy dissipation is established in such flows in terms
of the directly measurable quantities such as pressure drop. Equations are developed to predict the
entropy generation rates in terms of superficial fluid velocity, porous medium characteristics, and
fluid properties. The predictions of the proposed equations are presented and discussed. Factors
affecting the rate of entropy generation in flow through packed beds and consolidated porous media
are identified and explained.

Keywords: undergraduate education; applications of fluids; fluid mechanics; packed bed; porous
media; non-equilibrium thermodynamics; entropy generation; pressure loss; Ergun equation;
Forchheimer equation

1. Introduction

Thermodynamics is a difficult subject to learn and teach. It is considered to be one of the
most abstract disciplines of the physical sciences [1]. Students all over the world face difficulties in
learning thermodynamics. More specifically, it is the second law of thermodynamics dealing with
entropy and entropy production that is difficult for students to fully comprehend. The second law of
thermodynamics simply states that all real (irreversible) processes are accompanied by the production
of entropy in the universe. However, the students of thermodynamics often find it difficult to visualize
entropy generation in real processes at a mechanistic level. The quantification of entropy generation
in real processes is an equally problematic issue for students. What causes entropy generation and
how do we quantify entropy generation? These are some of the fundamental questions faced by
students. Moreover, there are no instruments which can be used to directly measure entropy and
entropy generation in real processes.

Entropy generation occurs in flow of all real (viscous) fluids [2]. When a viscous fluid is forced to
flow through any geometry, such as a pipe, viscous stresses and velocity gradients are established.
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For fluid to remain in motion, work has to be done against the viscous stresses which oppose its motion.
Consequently, part of the mechanical energy of fluid is dissipated into frictional heat (internal energy)
during motion. The dissipation of highly ordered mechanical energy into disorderly internal energy is
reflected in entropy generation. Thus, the analysis of fluid mechanics problems and measurement
of the appropriate flow variables such as pressure loss could be used as a tool to demonstrate and
quantify entropy generation in real processes.

The main objectives of this article are: (a) to analyze the flow of viscous fluids through packed
beds of discrete particles and through consolidated porous media in terms of entropy generation;
(b) to quantify entropy generation in flow through packed beds and consolidated porous media in
terms of directly measureable quantities such as pressure loss as a function of flow rate of fluid;
and (c) to discuss various factors which affect the rate of entropy generation in flow through packed
beds and consolidated porous media.

2. Brief Review of the Second Law of Thermodynamics

The second law of thermodynamics could be stated in several different but equivalent ways.
The classical statements of the second law are the Kelvin–Planck statement and the Clausius statement.

The Kelvin–Planck statement says that “It is impossible for a system operating in a cycle and
connected to a single heat reservoir to produce a positive amount of work in the surroundings [3]”.
According to the Kelvin–Planck statement, it is impossible to build a heat engine shown schematically
in Figure 1 where heat absorbed from a heat reservoir is completely converted into work without
altering the properties of the system. Mathematically, the Kelvin–Planck statement can be expressed
as [4]:

Wcycle ≤ 0 (single heat reservoir) (1)

where the system communicates thermally only with a single heat reservoir. The sign convention
for work (W) used in this article is W = positive, if it is produced by the system (flows out of the
system to surroundings) and W = negative, if it is absorbed by the system (flows into the system
from surroundings). Thus, no cyclic process is possible where Wcycle > 0 using a single heat reservoir.
The equality in Equation (1) is valid for a reversible process and the inequality is valid for an irreversible
process. For a reversible process, no work is produced or destroyed, that is, Wcycle = 0 whereas work is
destroyed when the process is irreversible, that is, Wcycle < 0 (assuming that the system communicates
thermally only with a single heat reservoir).
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The Clausius statement of the second law [3] says that “It is impossible for a system operating
in a cycle to have its sole effect the transfer of heat from a low temperature heat reservoir to a high
temperature heat reservoir”. According to the Clausius statement, it is impossible to construct a device
based on the scheme shown schematically in Figure 2 where the sole result of the process is the transfer
of heat from a cooler body at low temperature (TL) to a hotter body at high temperature (TH).
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Another powerful statement of the second law of thermodynamics is that all irreversible (real)
processes are accompanied by entropy generation in the universe [5], that is:

SG,univ = ∆Ssys + ∆Ssurr ≥ 0 (2)

where SG,univ is the total amount of entropy generated in the universe (system + surroundings), ∆Ssys

is the entropy change of the system and ∆Ssurr is the entropy change of the surroundings. The equality
in Equation (2) is valid for a reversible process and the inequality is valid for an irreversible process.
According to this statement of the second law, no process is possible for which SG,univ < 0.

Entropy is a measure of disorderliness of a system. According to the Boltzmann entropy equation,
the entropy of a system can be expressed as [3]:

S = kBlnΩ (3)

where Ω is the number of possible configurations of the system and kB is the Boltzmann constant.
The larger the number of possible configurations of the system, greater is the disorderliness of the
system and higher is the entropy. Therefore, we can interpret the second law of thermodynamics in
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yet another way, that is, “Only those processes are possible processes which lead to an increase in the
disorderliness of the universe”.

The scheme shown in Figure 1 is impossible as it decreases the disorder of the universe, that is,
SG,univ < 0. Here ∆Ssys = 0 but ∆Ssurr < 0 as the surroundings heat reservoir loses heat. For this
scheme, Equation (2) gives:

SG,univ = −
Qcycle

T
≥ 0 (4)

where T is the absolute temperature of the heat reservoir and Q is the heat transferred. As Qcycle = Wcycle
from the first law of thermodynamics, Equation (4) reduces to Equation (1), that is, Wcycle ≤ 0 when
there is only one heat reservoir involved. Similarly, the scheme shown in Figure 2 is impossible as it
decreases the disorder of the universe:

SG,univ = ∆Scold−body + ∆Shot−body < 0 (5)

Note that ∆Scold−body < 0 as it loses heat whereas ∆Shot−body > 0 as it gains heat. However, due to
different temperatures of the cold and hot bodies,

∣∣∣∆Scold−body
∣∣∣ > ∣∣∣∆Shot−body

∣∣∣.
Thus, the Kelvin–Planck and Clausius statements of the second law of thermodynamics are special

cases of the statement of the second law expressed in the form of Equation (2).
For a flow process (see Figure 3), the second law of thermodynamics can be written as [2]:

.
SG,univ =

.
SG,CV +

.
SG,Surr =

{
ρs(n̂·

→

V)dA +

*
∂(ρs)
∂t

dϑ−
∑ .

Qi
Ti
≥ 0 (6)

where
.
SG is the rate of entropy generation, s is the entropy per unit mass of fluid, ρ is the fluid density,

n̂ is unit outward normal to the control surface,
→

V is fluid velocity vector, A is the control surface
area, t is time, ϑ is the volume of the control volume,

.
Qi is the rate of heat transfer to control volume

from ith heat reservoir at an absolute temperature of Ti, the subscripts CV and Surr refer to control
volume and surroundings, respectively. As noted earlier, the equality in Equation (6) is valid for a
reversible (frictionless) process and the inequality is valid for an irreversible process. The surface

integral
v
ρs(n̂·

→

V)dA is the net outward flow of entropy (associated with mass) across the entire control

surface. The volume integral
) ∂(ρs)

∂t dϑ is the rate of accumulation of entropy within the entire control
volume (assumed to be fixed and non-deforming). For a control volume with one inlet and one outlet,
Equation (6), under steady state condition, reduces to:

.
SG,universe =

.
m(∆s) −

∑ .
Qi
Ti
≥ 0 (7)

where
.

m is the mass flow rate.
The quantification of entropy generation in real processes is important from a practical point

of view as entropy generation is directly related to the efficiency of the process. Higher the rate of
entropy generation in a process, lower is the thermodynamic efficiency of the process. According
to the Gouy–Stodola theorem [6] of thermodynamics, the loss of power or work potential in a real
process, due to irreversibilities in the process, is directly proportional to the total rate of entropy
generation. Thus:

.
Wlost ∝

.
SG,univ (8)

where
.

Wlost is the rate of work lost (wasted) as a result of irreversibilities in the process.
As an example of a flow process, consider flow through a control volume shown in Figure 3.

The first law of thermodynamics for open systems under steady state condition gives:

.
m
[
∆h + ∆

(
V2/2

)
+ g∆z

]
=

.
Q−

.
Wsh (9)
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where h is the specific enthalpy of fluid, V is the fluid velocity, g is the acceleration due to gravity, z is
the elevation,

.
Q is the rate of heat transfer, and

.
Wsh is the rate of shaft work. Neglecting kinetic and

potential energy changes, Equation (9) simplifies to:

.
Wsh =

.
Q−

.
m∆h =

.
m(Q− ∆h) (10)

where Q is the heat transfer per unit mass of fluid. The second law, Equation (7), can be written as:

.
SG,univ =

.
m(∆s) −

.
Q
To
≥ 0 (11)

where To is the absolute temperature of the heat reservoir (surroundings). For the flow process to
be reversible:

.
SG,univ =

.
m
[
(∆s) −

Qrev

To

]
= 0 (12)

Qrev = To(∆s) (13)

where Qrev is the heat transfer per unit mass of fluid for a reversible process. From Equations (10)
and (13):

.
Wsh,rev =

.
m[To(∆s) − ∆h] (14)

The lost work,
.

Wlost, is defined as:

.
Wlost =

.
Wsh,rev −

.
Wsh (15)

From Equations (10), (14), and (15), we get:

.
Wlost =

.
m[To(∆s) −Q] =

.
mTo

[
(∆s) −

Q
To

]
(16)

Using Equation (11), Equation (16) can be re-written as:

.
Wlost = To

.
SG,univ ≥ 0 (17)

Equation (17) is the Gouy–Stodola theorem [6] of thermodynamics. Thus, the rate of work lost
due to irreversibilities is directly proportional to the rate of entropy generation. The thermodynamic
efficiency ε of a flow process can be defined as:

ε =

.
Wsh
.

Wsh,rev

= 1−

.
Wlost
.

Wsh,rev

≤ 1.0 (18)

In a reversible process,
.

Wlost = 0 and ε = 1. In any irreversible process,
.

Wlost > 0 and ε < 1. If no
work is produced in the process, that is, actual

.
Wsh is zero, then all the work potential is lost due to

irreversibilities in the process and consequently, ε = 0.



Fluids 2019, 4, 116 6 of 23

Fluids 2019, 4, x 5 of 22 

ሶீܵ ,௨௡௜௩ = ሶ݉ (ݏ∆) − ሶܳ௢ܶ ≥ 0 (11) 

where ௢ܶ is the absolute temperature of the heat reservoir (surroundings). For the flow process to be 
reversible: ሶீܵ ,௨௡௜௩ = ሶ݉ ൤(∆ݏ) − ܳ௥௘௩௢ܶ ൨ = 0 (12) 

ܳ௥௘௩ = ௢ܶ(∆ݏ) (13) 

where ܳ௥௘௩ is the heat transfer per unit mass of fluid for a reversible process. From Equations (10) 
and (13): ሶܹ ௦௛,௥௘௩ = ሶ݉ ሾ ௢ܶ(∆ݏ) − ∆ℎሿ (14) 

The lost work,	 ሶܹ ௟௢௦௧, is defined as: 	 ሶܹ ௟௢௦௧ = ሶܹ ௦௛,௥௘௩ − ሶܹ ௦௛ (15) 

From Equations (10), (14), and (15), we get: 	 ሶܹ ௟௢௦௧ = ሶ݉ ሾ ௢ܶ(∆ݏ) − ܳሿ = ሶ݉ ௢ܶ ൤(∆ݏ) − ܳܶ௢൨ (16) 

Using Equation (11), Equation (16) can be re-written as: 	 ሶܹ ௟௢௦௧ = ௢ܶ ሶீܵ ,௨௡௜௩ ≥ 0 (17) 

Equation (17) is the Gouy–Stodola theorem [6] of thermodynamics. Thus, the rate of work lost 
due to irreversibilities is directly proportional to the rate of entropy generation. The thermodynamic 
efficiency ߳ of a flow process can be defined as: ߳ = ሶܹ ௦௛ሶܹ ௦௛,௥௘௩ = 1 − 	 ሶܹ ௟௢௦௧ሶܹ ௦௛,௥௘௩ ≤ 1.0 (18) 

In a reversible process, 	 ሶܹ ௟௢௦௧ = 0 and	߳ = 1. In any irreversible process,		 ሶܹ ௟௢௦௧ > 0 and	߳ < 1. If 
no work is produced in the process, that is, actual ሶܹ ௦௛ is zero, then all the work potential is lost due 
to irreversibilities in the process and consequently, ߳	 = 	0. 

 

Figure 3. Typical flow process. 

3. Flow through Unconsolidated and Consolidated Porous Media 

Figure 3. Typical flow process.

3. Flow through Unconsolidated and Consolidated Porous Media

Porous medium is a composite material in that it consists of two phases, namely pores (voids, free
space pockets) and solid-phase. The pores may be occupied by a fluid (gas, oil, water, etc.). A large
variety of natural and synthetic materials are porous in nature. Examples include: underground oil
reservoirs, ceramics, solid foams, sand filters, wood, and packed beds of particles used widely in
chemical engineering applications. The pores of a porous medium usually form a three-dimensional
inter-connected network and, therefore, fluids can flow through the porous medium. If all pores of a
porous medium are inter-connected, then the porosity (ε) of the porous medium is simply the fraction
of the total volume of the medium that is occupied by the pores. Thus, the fraction of the total volume
that is occupied by the solid phase is (1− ε). When some pores are isolated or disconnected or have
dead ends, then the effective porosity, defined as the ratio of connected void volume to total volume of
the medium, is lower than the total porosity.

Porous media could be classified as consolidated or unconsolidated. In consolidated porous
medium, the solid phase is basically a single piece of material or the grains of the solid phase are
cemented or fused together to form a single piece of solid phase. In unconsolidated porous media,
on the other hand, the grains or the particles of the solid phase are not cemented together and, therefore,
the porous medium is a multi-particle system like a packed bed of individual (un-cemented, un-glued)
particles. Flow of single-phase Newtonian fluids (gas, water, oil) through packed beds and consolidated
porous media is important from a practical point of view.

3.1. Analysis of Flow through Packed Beds (Unconsolidated Porous Media)

3.1.1. Pressure-Loss in Flow through Packed Beds

Consider flow of a Newtonian fluid through a horizontal cylindrical packed bed of particles
with bed diameter Db and bed length Lb. As flow through a packed bed is quite complex, a rigorous
theoretical derivation of pressure drop-flow rate relationship is not possible. Only approximate
models have been developed. In one approach, used widely to model flow through packed bed of
particles, the packed bed is visualized as a bundle of identical capillary tubes [7–9]. In its simplest
form, the capillary tube bundle model assumes that the capillary tubes are straight, cylindrical of
constant cross-section (uniform radius), and parallel (all oriented in the same direction), as shown in
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Figure 4. The average velocity in any capillary tube is the same as that in the packed bed. The capillary
diameter is equal to the hydraulic diameter of the bed, dH, defined as:

dH = 4
(

volume o f voids
total wetted sur f ace area

)
=

( 4ε
1− ε

)(Vp

Sp

)
(19)

where ε is the void fraction or porosity, Vp is the volume of a single particle, and Sp is the surface
area of a single particle. In writing the above expression for dH, it is assumed that all the particles
are identical and that the wetted surface of the cylindrical container walls of the bed is negligible as
compared with the total wetted surface area of the particles. For a bed of identical spherical particles,
Vp/Sp = dp/6, where dp is the particle diameter. Thus, the hydraulic diameter becomes:

dH =
(2

3

)(
ε

1− ε

)
dp (20)
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The superficial velocity of fluid (Vs) is defined is:

Vs =

.
ϑ

Ab
(21)

where
.
ϑ is the volumetric flow rate of fluid and Ab is the total cross-sectional area of the bed. Thus, Vs

is the velocity of fluid in the bed if no particles were present in the bed. The average velocity V of fluid
in the bed, also called interstitial velocity, is defined as:

V =

.
ϑ

A f low
(22)

where A f low is the cross-sectional area of bed through which the fluid flows. The porosity of the bed ε
is given as:

ε =
A f low

Ab
(23)

Therefore, the average or interstitial velocity of fluid in the bed is:

V =
Vs

ε
(24)
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This expression of average velocity does not consider the tortuous path taken by fluid in the bed.
Due to tortuosity of the bed, the actual average velocity of fluid in the bed is larger than that given by
Equation (24). The tortuosity τ of a bed is defined as:

τ =
Le

Lb
(25)

where Le is average length of the tortuous path taken by the fluid and Lb is the straight length of the
bed. To account for the tortuosity, the actual average velocity of the fluid in the bed can be expressed
as follows:

V = τ
Vs

ε
(26)

In laminar flow of a Newtonian fluid through a cylindrical tube, the pressure gradient in the
direction of flow is given as:

−

(
dP
dx

)
= 32

µV
D2

 (27)

where µ is the fluid viscosity and D is the tube diameter. Replacing D with hydraulic diameter dH and
the constant factor of 32 with C, the pressure-gradient in a capillary tube model of the packed-bed
model can be expressed as:

−

(
dP
dx

)
= C

µV

d2
H

 (28)

Note that flow in the bed is assumed to be laminar here. The constant C is expected to be larger
than 32, as the path of fluid in the bed is not straight. The fluid follows a tortuous path in the bed
and consequently, the pressure drop over a certain straight length is expected to be more than that
observed over the same length if the fluid path was non-tortuous. Therefore, the constant C is taken as
32 τ where τ is the tortuosity. Upon substitution of the expressions for dH and V, and taking C = 32 τ,
Equation (28) gives:

−

(
dP
dx

)
= 72 τ2

µVs

d2
p

 (1− ε)2

ε3 (29)

Equation (29) assumes that the cross-section of the representative flow passage (capillary tube) in
the porous medium is circular and constant. In reality the fluid moves through converging-diverging
flow passages of non-uniform cross-sections. In converging-diverging flows, fluid experiences
stretching or extensional deformation. The elongation or stretching of fluid elements results in
additional dissipation of energy and pressure drop. Thus, this equation needs to be modified further
as follows:

−

(
dP
dx

)
= 72 τ2K

µVs

d2
p

 (1− ε)2

ε3 (30)

where K is an empirical factor that takes into account the influence of non-constant cross-section of
flow passage on pressure-gradient. The tortuosity τ is often taken to be

√
2 for random packing of

uniform spheres [9]. It is generally a function of the porosity of the porous medium [10]. For example,
the following model, based on the Maxwell equation for electrical conductivity of composite, is often
used to describe the relationship between tortuosity and porosity [10]:

τ = 1.5− 0.5ε (31)

When τ =
√

2 and K = 25/24, the following well-known Blake–Kozeny equation for laminar
flow through randomly packed bed of uniform spheres is obtained [7]:

−

(
dP
dx

)
= 150

µVs

d2
p

 (1− ε)2

ε3 (32)
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When τ =
√

2 and K = 5/4, the following Carman–Kozeny equation, another well-known
equation for laminar flow through randomly packed bed of uniform spheres, is obtained [11]:

−

(
dP
dx

)
= 180

µVs

d2
p

 (1− ε)2

ε3 (33)

Both Blake—Kozeny and Carman–Kozeny equations are popular in the literature although they
use different values of the factor K. The observed difference in K values is probably related to differences
in particle-shape, surface roughness of particles, and porosity of bed. Note that these equations are
restricted to only laminar flow through bed of nearly uniform spheres. The packed-bed Reynolds
number Reb, defined below, should be less than 10 for flow to be laminar in the bed.

Reb =
( 1

1− ε

)ρdpVs

µ
(34)

For turbulent flow through packed beds (Reb > 1000), the following Burke–Plummer equation is
often used [12]:

−

(
dP
dx

)
= 1.75

(
ρV2

s

dp

)
(1− ε)
ε3 (35)

In the transition region, the following equation, obtained by superposition of Blake–Kozeny and
Burke–Plummer equations, proposed by Ergun [13] is widely used:

−

(
dP
dx

)
= 150

µVs

d2
p

 (1− ε)2

ε3 + 1.75
(
ρV2

s

dp

)
(1− ε)
ε3 (36)

As the Ergun equation, Equation (36), is obtained by the superposition of laminar and turbulent
expressions, it is valid over the full range of the packed-bed Reynolds number Reb. The Ergun equation
could also be re-cast in the following form [14]:

fb =
150
Reb

+ 1.75 (37)

where fb is the packed-bed friction factor defined as:

fb =
−

(
dP
dx

)(
ρV2

s
dp

)
(1−ε)
ε3

(38)

The Ergun equation, Equation (36) or (37), is used extensively in the literature to describe
pressure loss in packed beds. However, the following points should be kept in mind when using the
Ergun equation: (a) it is applicable to unconsolidated beds of nearly uniform-size spherical particles
with appreciable roughness. For smooth spheres, it tends to over-predict fb in the high Reb range
(Reb > 700) [14–16]; (b) if the bed particles are non-uniform in sizes, the Sauter mean diameter of
particles should be used in the application of the Ergun equation; (c) when particle shape deviates
significantly from a sphere, the Ergun equation tends to under-predict fb [17]; and (d) wall effects
can be important when Db/dp < 10. When wall effects are important, the experimental data show
deviation from the predictions of the Ergun equation [18].

Figure 5 shows the prediction of the packed bed friction factor as a function of packed bed
Reynolds number using the Ergun equation, Equation (37). In the limits of low Reb and high Reb, the
Ergun equation predictions overlap with the predictions of the Blake–Kozeny equation (low Reb) and
the Burke–Plummer equation (high Reb), as expected.
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3.1.2. Entropy Generation in Flow through Packed Beds

Consider steady flow of an incompressible fluid through a bed of particles (see Figure 6). We can
apply the following macroscopic mechanical energy balance between the inlet and outlet of the bed [2]:

.
Wsh +

.
Fl +

.
m
[
∆ϕ+ ∆(KE) +

1
ρ
(∆P)

]
= 0 (39)

where
.
Fl is the rate of mechanical energy dissipation due to friction in fluid, ∆ϕ is the potential energy

change per unit mass of fluid, ∆(KE) is the kinetic energy change per unit mass of fluid, and ∆P is the
pressure change of the fluid. Neglecting potential and kinetic energy changes and taking

.
Wsh = 0,

the mechanical energy balance gives:
.
Fl = −

.
m
ρ
(∆P) (40)

The rate of mechanical energy dissipation per unit length of packed bed (
.
F
′

l ) can be expressed as:

.
F
′

l =

.
m
ρ

(
−

dP
dx

)
(41)

From the second law of thermodynamics, Equation (11), we get:

.
SG,univ =

.
m(∆s) > 0 (42)

Note that we are assuming flow to be adiabatic with negligible heat transfer. There is no entropy
generation in the surroundings. All the entropy is generated within the fluid inside the packed bed
and the rate of entropy generation is the net rate of increase in entropy of the flowing stream.
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We can now relate entropy change of the fluid stream to pressure change. For pure substances,
the relationship between entropy and other state variables is given as [5]:

Tds = dh− (dP/ρ) (43)

where T is the absolute temperature. From the first law of thermodynamics, Equation (9), the enthalpy
change is zero in the absence of heat transfer and shaft work for steady flow in a horizontal bed.
Consequently, Equation (43) reduces to:

Tds = −(dP/ρ) (44)

Assuming incompressible flow and constant temperature, Equation (44) upon integration gives:

∆s = −
∆P
ρT

(45)

From Equations (42) and (45), it follows that:

.
SG =

.
m
ρ

(
−

∆P
T

)
> 0 (46)

The subscript “univ” has been removed from
.
SG,univ as

.
SG,univ is simply the rate of entropy generation

within the fluid inside a packed bed. From Equations (41) and (46), we can also express the rate of
entropy generation in a packed bed on a unit volume basis as:

.
S
′′′

G =

.
F
′

l
TAb

=
Vs

T

(
−

dP
dx

)
(47)

where Ab is the total cross-sectional area of the bed and
.
S
′′′

G is the rate of entropy generation per unit
volume of the bed. From Equations (38) and (47), we get:

.
S
′′′

G =
( 1

T

)(1− ε
ε3

)(ρV3
s

dp

)
fb (48)

The packed bed friction factor fb for laminar flow (Reb < 10) is given as:

fb =
150
Reb

(49)

Consequently, Equation (48) reduces to:

.
S
′′′

G =
( 1

T

)150(1− ε)2

d2
pε3

µV2
s (50)
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Thus, entropy generation rate per unit volume of bed in steady laminar flow of a Newtonian
fluid is directly proportional to the fluid viscosity and to the square of the superficial fluid velocity in
the bed. The entropy generation rate also depends on the particle diameter, the bed porosity ε, and
the temperature.

The packed bed friction factor in turbulent flow (Reb > 1000) is given as [7–9]:

fb = 1.75 (51)

Consequently, Equation (48) reduces to:

.
S
′′′

G =
( 1

T

)(1.75(1− ε)
dpε3

)(
ρV3

s

)
(52)

Thus, entropy generation rate per unit volume of bed in steady turbulent flow of a Newtonian
fluid is independent of the fluid viscosity and is directly proportional to the cube of the superficial
fluid velocity in the bed. The entropy generation rate also depends on the fluid density, the particle
diameter, the bed porosity ε, and the temperature.

To cover the full range of packed bed Reynolds number Reb, we substitute the Ergun equation,
Equation (37), into Equation (48) to obtain the following equation valid over the full range of packed
bed Reynolds number Reb:

.
S
′′′

G =
1
T

150(1− ε)2

d2
pε3

µV2
s +

(
1.75(1− ε)

dpε3

)(
ρV3

s

) (53)

Note that Equation (53) is simply the superposition of Equations (50) and (52).

3.2. Analysis of Flow through Consolidated Porous Media

3.2.1. Pressure-Loss in Flow through Consolidated Porous Media

Laminar flow in consolidated porous media (see Figure 7) is usually described by Darcy’s law
given as follows [19]:

−
dP
dx

=
µ

k
Vs (54)

where k is the permeability of the porous medium. Permeability is a measure of the ability of porous
medium to conduct fluid. Higher k means lower resistance to flow and consequently, larger flow rate
for the same pressure gradient. k has the dimensions of (length)2. It is usually expressed in darcies.
For example, 1 darcy = 1 (cm/s). centipoise/(atm/cm) = 9.87 × 10−13 m2.
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Darcy’s law is equally applicable to unconsolidated porous medium such as packed bed of
free (un-cemented/un-fused) particles. Thus, the Blake–Kozeny equation or the Carman–Kozeny
equation are special cases of the Darcy law. Upon comparison of the Darcy law with Blake–Kozeny/

Carman–Kozeny equations, the permeability of a packed bed of uniform size spherical particles can be
expressed as follows:

k =
d2

pε
3

150(1− ε)2 (55)

k =
d2

pε
3

180(1− ε)2 (56)

Equation (55) gives permeability based on the Blake–Kozeny equation whereas Equation (56) gives
permeability based on the Carman–Kozeny equation.

Darcy’s law is restricted to flows where viscous forces dominate over the inertial forces. At high
flow rates, the flow in the porous medium becomes turbulent and Darcy’s law is no longer valid.
The pressure-gradient in the turbulent regime is much higher compared with that in the laminar
regime at the same superficial velocity Vs. In order to extend the Darcy law to turbulent regime,
Forchheimer [19] modified the Darcy law by adding a quadratic term as follows:

−
dP
dx

=
µ

k
Vs + βρV2

s (57)

where the first term on the right side of the equation reflects the viscous effects and the second term
reflects the inertial effects. β is called the non-Darcy flow coefficient with a dimension of 1/length.
This equation could be re-written in dimensionless form as:

fpm =
−

dP
dx

βρV2
s
= 1 +

1
Repm

(58)

where fpm is the friction factor for flow in consolidated porous medium and Repm is the porous-medium
Reynolds number, also referred to as Forchheimer number, defined as:

Repm =
ρVsβk
µ

(59)

At low Reynolds number (Repm < 0.1), the first term on the right side of the dimensionless
Forchheimer equation, Equation (58), can be neglected and it reduces to Darcy’s law. At high Reynolds
number (Repm > 10), the second term on the right side of the dimensionless Forchheimer equation,
Equation (58), can be neglected and it reduces to fpm = 1. Figure 8 shows the prediction of fpm as a
function of Repm using the Forchheimer equation, Equation (58).
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In order to apply the Forchheimer equation, the value of non-Darcy flow coefficient is needed.
It can be determined experimentally. The experimental procedure to determine β involves two steps:
In the first step, the permeability k of the porous sample is determined from Darcy’s law by restricting
the experiments to low flow rates, and in the second step, the experiments are conducted at high flow
rates and β is evaluated directly from the Forchheimer equation from the knowledge of pressure drop
versus flow rate. The non-Darcy flow coefficient decreases with the increase in the permeability of the
porous medium [20].

The Forchheimer equation is equally applicable to unconsolidated porous medium such as a
packed bed of particles. Ergun equation is a special case of the Forchheimer equation. The Forchheimer
equation, Equation (57) reduces to the Ergun equation, Equation (36), when permeability k and
non-Darcy flow coefficient β are replaced by the following expressions:

k =
d2

pε
3

150(1− ε)2 and β =
7
4

(
1− ε
dpε3

)
(60)

The relationships between fpm and fb, and Repm and Reb are as follows:

fb = 1.75 fpm (61)

Reb =
(600

7

)
Repm (62)

3.2.2. Entropy Generation in Flow through Consolidated Porous Media

Consider one-dimensional flow of an incompressible Newtonian fluid in consolidated porous
medium, as shown in Figure 9. The rate of entropy generation in consolidated porous medium per
unit volume is given by Equation (47), re-written as:

.
S
′′′

G =
Vs

T

(
−

dP
dx

)
=

( 1
T

)(
βρV3

s

)
fpm (63)

The porous medium friction factor fpm for laminar flow (Repm < 0.1) is given as:

fpm =
1

Repm
(64)
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Consequently, Equation (63) reduces to:

.
S
′′′

G =
( 1

T

)(µ
k

)
V2

s (65)

Thus, entropy generation rate per unit volume of the porous medium in steady laminar flow of a
Newtonian fluid is directly proportional to the fluid viscosity, inversely proportional to the porous
medium permeability, and directly proportional to the square of the superficial fluid velocity in the
medium. The entropy generation rate also depends on the temperature.
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The porous medium friction factor in turbulent flow (Repm > 10) is given as:

fpm = 1 (66)

Consequently, Equation (63) reduces to:

.
S
′′′

G =
( 1

T

)
(ρβ)V3

s (67)

Thus, entropy generation rate per unit volume of the porous medium in steady turbulent flow of
a Newtonian fluid is independent of the fluid viscosity and is directly proportional to the cube of the
superficial fluid velocity in the bed. The entropy generation rate also depends on the fluid density,
the non-Darcy flow coefficient β, and the temperature.

To cover the full range of porous medium Reynolds number Repm, we substitute the Forchheimer
equation, Equation (58), into Equation (63) to obtain the following equation valid over the full range of
porous medium Reynolds number Repm:

.
S
′′′

G =
1
T

[(µ
k

)
V2

s + (ρβ)V3
s

]
(68)

Equation (68) is simply the superposition of Equations (65) and (67).

4. Simulation Results and Discussion

4.1. Entropy Generation in Flow through Packed Beds

4.1.1. Laminar Flow

The entropy generation rate in laminar flow through packed beds, per unit volume of the bed, as
a function of superficial bed velocity is shown in Figure 10 for the following conditions: T = 298.15 K,
dp = 1 mm, µ = 18.5 µPa·s, and ρ = 1.184 kg/m3. Equation (50) is used to generate the plots. For a given

value of the bed porosity ε, the entropy generation rate
.
S
′′′

G increases with the increase in the superficial
velocity Vs of the fluid in the bed.
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the entropy generation rate falls sharply with the increase in the bed porosity. These results are as 
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frictional heat increases due to increases in viscous stresses and velocity gradients in the fluid. 
Consequently, there occurs an increase in the rate of entropy generation. When the bed porosity is 

Figure 10. Effect of bed porosity on the rate of entropy generation per unit volume of the packed bed in
laminar flow (T = 298.15 K, dp = 1 mm, µ = 18.5 µPa·s, ρ = 1.184 kg/m3). The data points are generated
using Equation (50).

The increase in
.
S
′′′

G with the increase in Vs is larger if the bed porosity ε is small. Additionally, the
entropy generation rate falls sharply with the increase in the bed porosity. These results are as expected.
With the increase in the fluid velocity, the rate of mechanical energy dissipation into frictional heat
increases due to increases in viscous stresses and velocity gradients in the fluid. Consequently, there
occurs an increase in the rate of entropy generation. When the bed porosity is increased, the bed
structure becomes more open to fluid flow resulting in a decrease in the resistance to fluid motion and
mechanical energy dissipation and, hence, a decrease in the rate of entropy generation.

Figure 11 shows the effect of fluid viscosity on the rate of entropy generation in laminar flow.
The plots are generated using Equation (50). With the increase in fluid viscosity, the resistance to fluid
motion increases due to an increase in the viscous stresses. With the increase in viscous stresses, the
rate of mechanical energy dissipation into frictional heat (internal energy) increases. The conversion of
highly ordered mechanical energy into disorderly internal energy is reflected in an increase in the rate
of entropy generation.
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The effect of particle diameter on the rate of entropy generation in laminar flow through packed
beds is shown in Figure 12. A sharp reduction in the rate of entropy generation occurs with the increase
in the particle diameter. With the increase in the particle diameter, the number density of particles is
decreased for the same bed porosity ε. It can be readily shown that the number of particles per unit
volume of bed np and the fluid-solids contact area per unit volume of bed Asolids are:

np =
6(1− ε)

πd3
p

; Asolids = πd2
pnp =

6(1− ε)
dp

(69)

Equation (69) assumes that the particles are uniform spheres of diameter dp. The decrease in the
number density of particles with the increase in particle diameter results in a decrease in contact area
between the fluid and solids resulting in a decrease in the resistance to fluid motion. Consequently the
rate of mechanical energy dissipation into internal energy and hence the rate of entropy generation
decrease with the increase in particle diameter.Fluids 2019, 4, x 16 of 22 
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Figure 12. Effect of particle diameter on the rate of entropy generation per unit volume of the packed
bed in laminar flow (T = 298.15 K, ε = 0.40, µ = 18.5 µPa·s, ρ = 1.184 kg/m3). The data points are
generated using Equation (50).

Figure 13 shows the effect of temperature on the rate of entropy generation in laminar flow
through packed beds. The rate of entropy generation decreases with the increase in temperature
keeping other factors (fluid properties, bed characteristics) constant. At a given fluid velocity Vs,
the rate of mechanical energy dissipation into internal energy is the same at different temperatures as
the fluid properties are kept constant. Then why does the rate of entropy generation decrease with the
increase in temperature? It so happens that the increase in entropy with the increase in internal energy
is sensitive to temperature. For incompressible materials, the rate of change of entropy with respect to
internal energy, that is, the derivative dS/dU, is given as:

dS
dU

=
1
T

(70)

Higher the temperature, smaller is the increase in entropy for the same increase in internal energy.
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Figure 13. Effect of temperature on the rate of entropy generation per unit volume of the packed bed in
laminar flow (ε = 0.40, dp = 1 mm, µ = 18.5 µPa·s, ρ = 1.184 kg/m3). The data points are generated
using Equation (50).

4.1.2. Turbulent Flow

Figures 14–16 show the entropy generation rates for turbulent flow through packed beds under
different conditions. Due to broad ranges of entropy generation rates and superficial fluid velocities,
the plots are drawn using log-log scale. The plots on log-log scale are linear with a slope of 3 as expected
from Equation (52). With the increases in bed porosity and particle diameter, the entropy generation
rates decrease due to a decrease in the resistance to fluid motion and mechanical energy dissipation.
There is no dependence of entropy generation on fluid viscosity in turbulent flow. However, fluid
density now plays a role. With the increase in fluid density, the rate of entropy generation in turbulent
flow increases due to an increase in the resistance to fluid motion and mechanical energy dissipation
caused by inertial effects.
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generated using Equation (52).
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Figure 17 shows the entropy generation rate in a packed bed over a broad range of fluid
superficial velocity covering the full range of packed bed Reynolds number. The plot is generated
from Equation (53) under the following conditions: T = 298.15 K, ε = 0.40, dp = 1 mm, µ = 18.5 µPa·s,
and ρ = 1.184 kg/m3. The predictions of Equation (53) overlap with the two asymptotes, Equation (50)
for low velocities and Equation (52) for high velocities.
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G for packed beds over a broad range of fluid superficial velocity under the
conditions: T = 298.15 K, ε = 0.40, dp = 1 mm, µ = 18.5 µPa·s, and ρ = 1.184 kg/m3. The data points are
generated using Equation (53).

4.2. Entropy Generation in Flow through Consolidated Porous Media

The entropy generation rate in laminar flow through consolidated porous medium is given
by Equation (65). The key factor affecting the

.
S
′′′

G vs. Vs behavior is the ratio of fluid viscosity to
permeability, µ/k. Figure 18 shows the plots of

.
S
′′′

G vs. Vs for different values of µ/k. The plots on a
log-log scale are linear with slopes of 2. With the increase in µ/k ratio, the entropy generation rate
increases at any given superficial velocity Vs. When the fluid viscosity is increased (keeping k the
same), the entropy generation rate increases due to an increase in mechanical energy dissipation caused
by viscous stresses. When the permeability k of the porous medium is decreased (keeping µ the same),
the porous medium becomes less permeable to fluid flow resulting in larger resistance to fluid motion
and hence larger rates of mechanical energy dissipation and entropy generation. Note that k is typically
in the range of 10−15 to 10−12 m2 for porous sandstones [20].Fluids 2019, 4, x 19 of 22 
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Figure 18. Effect of viscosity to permeability ratio (µ/k) on the rate of entropy generation per unit
volume of consolidated porous medium in laminar flow (T = 298.15 K, β = 108 m−1, ρ = 103 kg/m3).
The data points are generated using Equation (65).

In turbulent flow through consolidated porous medium, the key factor governing the
.
S
′′′

G vs. Vs

behavior is ρβwhere β is the non-Darcy flow coefficient. With the increase in ρβ, the entropy generation
rate increases at any given Vs, as shown in Figure 19. Note that the non-Darcy flow coefficient is
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inversely related to the porous medium permeability [20]. For sandstones, β is typically in the range
of 108 to 1012 m−1. With the increase in β, the porous medium becomes less permeable to fluid flow
resulting in an increase in the resistance to fluid motion. Consequently, the rates of mechanical energy
dissipation and entropy generation increase with the increase in ρβ. The fluid density has a similar
effect on entropy generation rate in the turbulent regime.

Fluids 2019, 4, x 19 of 22 

 
Figure 18. Effect of viscosity to permeability ratio (ߤ ݇⁄ ) on the rate of entropy generation per unit 
volume of consolidated porous medium in laminar flow (ܶ = 298.15 K, 108 = ߚ m−1, 103 = ߩ kg/m3). 
The data points are generated using Equation (65). 

In turbulent flow through consolidated porous medium, the key factor governing the ሶீܵ ᇱᇱᇱ vs. ௦ܸ 
behavior is ߚߩ  where ߚ  is the non-Darcy flow coefficient. With the increase in ߚߩ , the entropy 
generation rate increases at any given ௦ܸ , as shown in Figure 19. Note that the non-Darcy flow 
coefficient is inversely related to the porous medium permeability [20]. For sandstones, ߚ is typically 
in the range of 108 to 1012 m−1. With the increase in	ߚ, the porous medium becomes less permeable to 
fluid flow resulting in an increase in the resistance to fluid motion. Consequently, the rates of 
mechanical energy dissipation and entropy generation increase with the increase in	ߚߩ. The fluid 
density has a similar effect on entropy generation rate in the turbulent regime. 

Figure 20 shows the entropy generation rate in a consolidated porous medium over a broad 
range of fluid superficial velocity (10−4	≤ 	 ௦ܸ 	≤ 	10 m/s) covering laminar, transition, and turbulent 
flow regimes. The plot is generated from Equation (68) under the following conditions: ܶ = 298.15 K, 1 = ߤ mPa·s, 1000 = ߩ kg/m3, ݇	= 10−12 m2, ߚ	 = 108 m−1. The predictions of Equation (68) overlap with 
the limiting low ܴ݁௣௠ asymptote (Equation (65)) at low superficial velocities and with the high ܴ݁௣௠ 
asymptote (Equation (67)) at high superficial velocities. 

 
Figure 19. Effect of ߚߩ on the rate of entropy generation per unit volume of consolidated porous 
medium in turbulent regime (ܶ = 298.15 K, 10 = ߤ mPa·s, ݇ = 10−12 m2). The data points are generated 
using Equation (67). 

Figure 19. Effect of ρβ on the rate of entropy generation per unit volume of consolidated porous
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Figure 20 shows the entropy generation rate in a consolidated porous medium over a broad
range of fluid superficial velocity (10−4

≤ Vs ≤ 10 m/s) covering laminar, transition, and turbulent
flow regimes. The plot is generated from Equation (68) under the following conditions: T = 298.15 K,
µ = 1 mPa·s, ρ = 1000 kg/m3, k = 10−12 m2, β = 108 m−1. The predictions of Equation (68) overlap with
the limiting low Repm asymptote (Equation (65)) at low superficial velocities and with the high Repm
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5. Conclusions

In conclusion, a novel approach is described to teach the second law of thermodynamics via
the analysis of flow through packed beds and consolidated porous media. The second law of
thermodynamics and the relevant background in fluid mechanics are reviewed briefly. The link
between entropy generation and mechanical energy dissipation in flow through packed beds and
consolidated porous media is established in terms of the directly measureable pressure loss. Equations
are developed to predict the entropy generation rates in a porous medium in terms of the flow
variables, fluid properties, and structural properties of the medium. Simulation results dealing with
entropy generation in a porous medium are presented and discussed. The proposed approach can be
implemented at an undergraduate level either as an experimental exercise dealing with pressure loss
measurements in flow through a porous medium such as a packed bed or as a simulation exercise.
The material presented in the article is suited for third year engineering students after they have
completed introductory courses in fluid mechanics and thermodynamics.
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