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Abstract: The Elder problem is one of the well-known examples of an unstable density-driven
flow (DDF) and solute transport in porous media. The goal of this research is to investigate the
influence of fracture networks on this benchmark problem due to the great importance of the fractured
heterogeneity effect on unstable DDF. For this aim, the fractured Elder problem is solved using
COMSOL Multiphysics, which is a finite element method simulator. Uniform and orthogonal fracture
networks are embedded to analyze free convective flow and development of unstable salt plumes.
The results indicate that the mesh sensitivity of the fractured Elder problem is greater than the
homogeneous case. Furthermore, it has been shown that in the fractured cases, the onset of instability
and free convection occur with lower critical Rayleigh number, which means that fracture networks
have a destabilizing effect. Also, we examined the structural properties of fracture networks that
control convective flow patterns, and the simulation results show that the strength of convection
and instability at the beginning of the intrusion is proportional to the aperture size of the fractures.
Moreover, the increase of the fracture’s density leads different modes of transient convective modes,
until a specific fracture density after which the transient convective modes become similar to the
homogenous case.

Keywords: Elder problem; convection; instability; fingering; fractured porous media; Sherwood
number

1. Introduction

Density-driven flow (DDF) in porous media has been studied extensively over the last
few decades because of its practical applications in petroleum engineering, geologic carbon
sequestration, geothermal energy systems, groundwater management, oxide fuel cells, solar collectors,
thermal insulation systems, nuclear reactors, amongst many others [1–3]. The term convection is often
used in connection with DDF processes, where groundwater flow is driven by density differences
in the fluid, created by differences in temperature and/or concentration, as the primary driving
factor that causes a density gradient to occur, and as a result flow and transport in the porous
domain can occur due to the buoyancy effect. The term convection has been used in different ways
in the literature. Ataie-Ashtiani et al. [4] have discussed and clarified the typical confusion about
applications of the convection term. Common classifications of convection include free, forced, mixed,
thermohaline [5], double-diffusive [6,7] and thermomagnetic and can take on many different forms
and types in more general science and engineering [4]. When the density of the fluid in place increases
with depth, the flow system is stable. Conversely, when the density of fluid decreases with depth
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the system would be potentially unstable and fingering patterns may develop at the interface under
certain hydrogeologic conditions [3]. Unstable configurations can be found in several industrial and
environmental applications such as in carbon dioxide (CO2) injection in geological reservoirs [8–10],
geothermal systems [11] and saltwater infiltration from inland sabkha or salt lakes [12,13].

The Elder problem has been widely used to investigate unstable DDF in porous media [14].
Details about the historical account of the genesis, evolution, and resolution of the Elder problem can
be found in Simmons and Elder [15] and Elder et al. [16]. The classic Elder problem originated from
a thermal experiment, which was initially set up to investigate transient thermal natural convection
patterns [14]. Voss and Souza [17] reformulated this problem into a solute analogue to thermal
convection. The solute Elder problem has become a popular benchmark for variable-density flow
and transport simulators [18,19]. The key issue for benchmarking is the mesh sensitivity of the Elder
problem solutions. For instance, Johannsen [20] provided a bifurcation diagram with respect to the
Rayleigh number (Ra) and showed that several steady solutions could exist. The existence of multiple
steady solutions has also been explained by Van Reeuwijk et al. [21]. With a bifurcation analysis,
the authors confirmed the fact that the multiple steady states are an intrinsic characteristic of the
Elder problem and not related to numerical artifacts. Ataie-Ashtiani et al. [22] explored the influence
of mass transport boundary condition on the convective mode and showed that multiple solutions
exist, no matter what the type of boundary conditions that are employed. Besides benchmarking
purposes, the Elder problem has been also used to provide physical insight into unstable DDF processes.
For instance, Post and Prommer [23] investigated the effect of multicomponent geochemical reactions.
Xie et al. [24] studied the effect of transient solute boundary conditions on DDF in an unstable setting.
Graf and Boufadel [25] extended the Elder problem for application to partially saturated systems.
Lu et al. [26] developed dual-domain mass transfer in the Elder problem to explore the kinetic mass
transfer effects on unstable DDF.

The impact of heterogeneities of the porous medium on DDF processes is well documented in
the literature i.e., [1,12,27–30]. The effect of heterogeneity on the Elder problem has been studied in
Prasad and Simmons [31], using a stochastic framework. Fractured configurations are a particular
style of heterogeneity, as fractures may be the preferential pathways of convective flow. The effect
of fractures on unstable DDF processes has been investigated in several papers using a variety of
configurations. In this context, Graf and Therrien [32] studied dense plume migration in orthogonal and
irregular fracture networks, using a 2D porous enclosure as the conceptual model. For non-orthogonal
fracture networks, they indicated that convection cells form and overlap both the porous matrix
and fractures. For fractures with irregular orientation, they indicated that the migration of a dense
plume is sensitive to the geometry of the network and the connectivity to the source. Based on the
Horton-Rogers-Lapwood (HRL) problem, Vujevic et al. [33] investigated the impact of a fracture
network on instability and fingering. They found that irregular fracture networks would destabilize the
flow system. They also demonstrated that the factors, which determine the strength of free convection,
are continuous fracture circuits, fracture length in discontinuous fracture networks and fracture to
matrix permeability ratio. Hirthe and Graf [34] developed an efficient model to simulate DDF in
fractured domains by optimizing fracture networks. All these studies are based on 2D numerical
simulations that neglect the convection patterns within the fractures. Based on a Rayleigh stability
analysis, Simmons et al. [35] investigated unstable DDF in low-permeable domains with vertical
fractures. They analyzed the possible modes of intrafracture (within the fracture) and interfracture
(between fractures through the porous layers) free convection. They defined the conditions for
occurrence of each mode. For intrafracture convection, they analyzed two modes either parallel
to the fracture plane or perpendicular to the fracture plane. They found that, in low-permeable
porous layer, the most likely mode is the intrafracture convection parallel to the plane of fracture.
Graf and Therrien [36] extended their previous study to 3D domains with 2D fractures. They showed
fingering phenomena within the fractured planes. Graf and Therrien [36] also compared density-driven
geothermal flow to density-driven haline flow. They found that for typical matrix and fracture
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hydraulic conductivities, heat conduction diminishes the growth of thermal instability while low mass
diffusion enables unstable haline ‘fingering’ within fractures. Vujevic and Graf [37] investigated the
effect of combined inter-and intra-fracture convection modes in fracture networks on unstable DDF
in low-permeable layer. They realized that for regular networks, the most important mode is the
interfracture convection.

Despite the significant effect of fractured heterogeneity on unstable DDF and the importance of the
Elder problem for understanding unstable DDF processes, to the best of our knowledge, this problem
has never been investigated in the case of a fractured domain. Thus, the main objective of the present
paper is to address this gap by examining the effect of orthogonal fracture networks on the Elder
problem. In this context, we address three particular research questions: (1) The effect of fracture
networks on the mesh sensitivity and bifurcation states of the Elder problem, (2) the impact of fracture
networks on the critical Rayleigh number for the onset of instability and (3) how do the structural
properties of fracture networks (aperture and density of the fractures) control convective flow patterns?
For this purpose, we considered a new configuration of the Elder problem (fractured Elder problem) by
embedding orthogonal fracture networks and we performed numerical simulations using COMSOL
Multiphysics (COMSOL, Inc., Palo Alto, CA, USA), which is a commercial finite element simulation
package widely used in various physical and engineering applications.

This paper is structured as follows: First, in the Methods section, the conceptual model of the
fractured Elder problem is presented, the governing equations and the different fractured scenarios are
summarized, some measurable characteristics are defined to be used in our analysis and the COMSOL
model is briefly presented. In the Results and Discussion section, first, the validity of the COMSOL
model results is investigated, then we address the three research questions formulated in this paper
using this new model.

2. Methods

2.1. Conceptual Model

The domain and boundary conditions of the fractured Elder problem considered in this study
are similar to the adapted Elder problem as used by Voss and Souza [17], Lu et al. [26] and Post and
Prommer [23]. The domain was 600 m wide and 150 m high, as in Figure 1. All boundaries were
impermeable to flow, and the top left and right corner nodes were two nodes with an imposed head.
The middle part of the top surface had a constant concentration, which was sufficiently high to cause
the onset of fingering instability. For all other boundaries, a no-flow boundary condition was assigned.
The density contrast between the saltwater and the freshwater was equal to 200 kg/m3 as in Lu et al. [26]
and Post and Prommer [23].
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2.2. Fractured Domain Scenarios

In this study, we investigated scenarios including networks of orthogonal fractures. Several
scenarios dealing with different fracture density were considered (as shown in Figure 2). Scenario A
corresponds to the homogeneous case. Increasing fracture density was considered in scenarios B to F.Fluids 2019, 4, x FOR PEER REVIEW 4 of 18 
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fracture networks with increasing fracture density.

2.3. Governing Equations

DDF in the pours matrix was governed by variable-density flow and mass transport equations [38].
The mass conservation was ensured by the continuity equation and the velocity based on Darcy’s law
using the freshwater head formulation are as follows:

S
∂h
∂t

+∇·u = 0 (1)

u =
ρ0g
µ

km

(
∇h−

ρ− ρ0

ρ0
ez

)
(2)

where S is the storage coefficient, h is the equivalent freshwater head [L], t is the time [T], u is the
velocity [LT−1], ρ0 is freshwater density [ML−3], g is the gravity [LT−2], µ is the fluid dynamic viscosity
[ML−1T−1], km is the intrinsic permeability of the porous matrix [L2], ρ is the mixed fluid density
[ML−3] and ez is the unit vector in the z-direction.

For solute transport, the following equation represents the mass balance in a non-deformable
porous medium:

εm
∂c
∂t

+∇·(uc−D∇c) = 0 (3)

where εm is the porosity of the medium [-], c is the relative solute concentration [-], and D is the
molecular diffusion coefficient [L2T−1] (as is common for the Elder problem, the dispersion coefficients
are neglected).

Equations (1), (2) and (3) are coupled by a linear function which relates the density (ρ) and the salt
concentration (c) as follows:

ρ = ρ0 + (ρs − ρ0)c (4)

where ρs is the saltwater density at the source boundary.
The discrete fracture network approach was used to take into account the fractures which are

embedded as 1D lines in the 2D porous domain. The same mathematical model was used to simulate
DDF in fractures but by considering specific permeability (kfr) and porosity (ε f ). We should mention
that Simmons et al. [35] investigated unstable DDF in fractured low-permeability porous media (vertical
fractures). They studied interfracture and intrafracture convection modes. Based on a Rayleigh stability
analysis, they defined conditions required for the onset of convection in each mode. Simmons et al. [36]
showed that, in the low-permeable porous layer, the most likely mode is the intrafracture convection
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parallel to the plane of fracture. The assumptions considered in this work (2D porous domain and 1D
fractures) do not allow for considering the intrafracture convection modes which require 3D simulations
(3D porous domain and 3D fractures). As the aim of this work is to investigate the fractured Elder
problem with dense orthogonal fracture networks that require dense grids associated to prohibitive
computational costs, we adopted the discrete fracture network approach and we limited the study
to the interfracture convection mode. A similar approach has been used in Graf and Therrien [32],
Vujevic et al. [33], Hirthe and Graf [34] and Koohbor et al. [39]. For regular networks, Vujevic and
Graf [37] have shown that the most important mode is the interfracture convection.

The fracture permeability (kfr [L2]) can be calculated as a function of the fracture aperture using
the cubic law [35], as follows:

k f r =
(2b)2

12
, (5)

where 2b is the fracture aperture.
The bulk permeability in the case of orthogonal fracture network is calculated as in Vujevic et al. [33]:

kb =

(km +
k f r(2b)

(2B)

)−1

+
(2b)

k f r(2B)


−1

, (6)

where 2B is the fracture spacing.
The physical parameters used in this work are summarized in Table 1.

Table 1. Physical parameters used in COMSOL for the fractured Elder problem (Rayleigh number (Ra) = 400).

Parameter Variable Value

Length L 600 (m)
Height H 150 (m)

Freshwater density ρ f 1000 (kg/m3)
Saltwater density at the top boundary ρs 1200 (kg/m3)
Intrinsic permeability of the medium km 4.845× 10−13 (m2)

Porosity of the medium εm 0.1 [-]
Diffusion coefficient Dm 3.565× 10−6 (m2/s)
Dynamic viscosity µ 10−3 (kg/(m·s))

Gravitational acceleration g 9.8 (m/s2)
Porosity of the fracture ε f 0.1 [-]

Fracture aperture 2b [range of variation]
Fracture density 2B [range of variation]

2.4. The Rayleigh Number

The non-dimensional analysis of these equations leads to one parameter governing the natural
convection processes which is the Rayleigh number (Ra). This number is defined as the ratio of the
buoyancy forces that drive flow to diffusive forces that dissipate it. Ra is defined by [31]:

Ra =
km(ρs − ρ0)gH

µεD
(7)

We should mention that in this work Ra is defined using the permeability of the porous matrix
(km). Ra is used to indicate the extent of instability and characterize the onset of free convection. For the
standard Elder problem (homogeneous domain) we have Ra ≈ 400. The situation is unstable as the
Raleigh number is larger than the critical value for the onset of instability (Rac). For an infinitely
long porous domain with impermeable top and bottom surfaces subject to constant concentrations,
the critical Rayleigh number is estimated to be 4π2 [15,21].
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2.5. The Average Sherwood Number

To characterize free convection, we used the dimensionless Sherwood number (Sh). Sh is commonly
used as an indicator for the strength of convection, and equal to the ratio of the actual mass transfer
due to free convection to the rate of the mass transfer due to diffusion [3,26]. The average Sherwood
number over the source zone boundary can be calculated using the concentration gradient, as follows:

Sh =
1
2

3H∫
H

(
∂c
∂y

)
y=H

dx. (8)

2.6. The Simulation Tool: COMSOL Multiphysics®

COMSOL Multiphysics was used in this work to perform the simulations of the fractured Elder
problem. This software package has an interactive environment for modeling scientific problems based
on the finite element method. To simulate DDF, we coupled the “Darcy’s flow” interface from the
“Subsurface flow” module and the “transport of diluted species in porous media” interface from the
“chemical species transport” model, as in Mozafari et al. [40] and Koohbor et al. [39]. The fluid density is
expressed analytically in terms of salt concentration as in Equation (4). The developed COMSOL model
was based on the full mathematical model without the Boussinesq approximation. Johannsen [20]
demonstrated that such an approximation could be invalid for the Elder problem. The interface
“Fracture flow” was used to include fractures via the discrete fracture approach. Triangular meshes
generated by the COMSOL meshing tool were used to perform the simulations which were run for the
time-dependent mode (transient conditions). 2D triangular cells were used to represent the matrix
and 1D cells to represent the fractures. The fracture cells were positioned along the sides of the matrix
triangular cells [39]. The average Sherwood number was automatically calculated using the “Derived
value” tool of the COMSOL post-processing interface.

3. Results and Discussion

3.1. Verification of the COMSOL Model

The developed COMSOL model is verified based on the standard Elder problem (homogeneous
domain, scenario A), by comparison with the results of Lu et al. [26] which are obtained using
SEAWAT-2000. The parameters used for this simulation are given in Table 1. As in Lu et al. [26],
a square mesh was used for these simulations. The computational mesh consists of 2756 square
elements, which is almost equivalent to the mesh used in Lu et al. [26]. The concentration distributions
after 1, 5, 10, 20 and 50 years are plotted in Figure 3. The results compare well with Lu et al. [26]
(see Figure 2 in that paper). The results are also in agreement with the classification suggested by
van Reeuwijk et al. [21] and Simmons and Elder [15]. The concentration distribution is similar to the
solution S1 defined in those papers. The Sherwood number is also in good agreement with Lu et al. [26].
But we should mention that in Lu et al. [26], the porosity is not considered in the evaluation of the
Sherwood number. Here, the Sherwood number is calculated to be 0.16. In Lu et al. [26], it is less
than 0.1.
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3.2. Mesh Sensitivity Analysis

One of the notable issues of the Elder problem is its mesh sensitivity. In this section, we investigate
the effect of fractures on the uniqueness of the results of the fractured Elder problem and compare that
with the mesh sensitivity of the standard homogeneous case. We run the COMSOL model for scenarios
(A) and (C), for three different mesh sizes. For scenario (C), we set the aperture of 2b = 2× 10−4 (m).
Three mesh levels with 1253 (A1), 5116 (A2) and 4,5485 (A3) nodes are used for scenario (A). Equivalent
mesh levels consisting of 1264 (C1), 5143 (C2) and 45527 (C3) nodes are used for scenario (C). To reduce
the computational time, numerical simulations are performed in half of the domain by exploiting the
symmetry of the domain. The corresponding concentration distributions are given in Figure 4. As one
can see in Figure 4, the free convection patterns in the standard Elder problem (scenario A) vary with
mesh resolution. For instance, as shown for case A1 after 3 years and 5 years, we have four fingers (two
fingers illustrated for the half the domain), and after 10 years we have 2 separate fingers below the top
boundary in the whole domain, whereas for the finer mesh sizes of cases A2 and A3, after 3 years and
5 years we would have five fingers and, after 10 years, an extra finger would appear below the center
of the top boundary. Meanwhile, we can see that the variation of the results for different mesh sizes of
the fractured Elder problem (scenario C) is more than the standard one (scenario A). In Figure 4 we can
observe not only a variation in the number of fingers, but also the shape of the fingers of cases C1, C2,
and C3 is more significant than the variation of cases A1, A2 and A3. In this regard, Figure 5 illustrates
the mesh sensitivity of maximum local Sherwood number beneath the source zone at the top boundary
for these two scenarios (which occurs after three years). It is obvious that for scenario (C), we have a
more change in the Sherwood number than for scenario (A). Moreover, Figure 6 gives the variation of
the time average concentration at the center of the bottom surface (x = 300 m and y = 0 m) versus the
mesh size (number of nodes in the computational mesh), for scenarios (A) and (C). This figure shows
that there is more significant variation of concentration for scenario (C) than scenario (A). Taking all
the information obtained into account leads to the conclusion that the sensitivity of the fractured Elder
problem would be greater than in the homogeneous case, and fractures increase the sensitivity of the
Elder problem to the underlying mesh used in the numerical solution.
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Figure 5. Variation of the average Sherwood number after three years (t = 3 years) versus the number
of nodes used in the simulations (scenarios A and C).
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Figure 6. Variation of the time average concentration at a local point (x = 300 m; y = 0 m) versus the
number of nodes used in the simulations (scenarios A and C).

3.3. Effect of Fractures on the Onset of Instability

For the standard Elder problem, the critical value of the Rayleigh number for the onset of instability
is Rac = 40 [15]. The main goal of this section is to understand the effect of fractures on the onset of
instability. Our objective is to understand if the fracture network will destabilize (means instability will
appear with Ra < 40) or stabilize (means instability will appear with Ra > 40) the system. We developed
simulations for the homogeneous case (scenario A) and for a selected fractured case (scenario D), for
different values of Rayleigh number. For scenario (D), we set the aperture of 2b = 5× 10−4 (m). In each
case of different Ra, the intrinsic permeability of the medium is constant (km = 4.845 × 10−13 (m2));
therefore, Ra would be changed by only modifying the diffusion coefficient. The values of the Rayleigh
number for our simulations are 20, 40 and 60 which correspond to the diffusion coefficients equal to
7.129× 10−5, 3.565× 10−5 and 2.376× 10−5 (m2 s−1) for both scenarios. The corresponding concentration
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distributions at times of 1, 3, 5 and 10 years are plotted in Figure 7. As one can observe, for Ra = 40 and
60 at scenario (A), the initial appearance of fingers are obvious, which means we have an unstable
system, and it confirms the fact that if Ra exceeds a value of 40, we would have the onset of instability
the in homogeneous Elder problem. The results of scenario (D) show that the convective flow patterns
of scenario (D) have higher strength of free convection than scenario (A). Figure 7 indicates that the
onset of free convection in the fractured Elder problem is expected to occur with lower Rac, and fracture
porous media would destabilize this problem. This is consistent with the results of Simmons et al. [1]
and Sharp et al. [41]. To confirm these results, Figure 8 shows the plot of the variation of the Sherwood
number versus time, for all simulations. We can observe that the curve corresponding to scenario (A)
at Ra = 20 is quite smooth, which indicates that there is no convection in this case and the solute flux is
mainly diffusive. At Ra = 40, the curve for scenario (A) is perturbed with a prompt change between
2 and 3 years. The same behavior can be observed at Ra = 60, but the curve is perturbed between
1 and 6 years. This means that the perturbations represent the onset of instability. If we follow the
same analysis for scenario (D), we can conclude that, in this case, the onset on instability occurs at a
lower Rayleigh number as the curves are more perturbed than scenario (A). It is relevant to note that
heterogeneity can become unstable, starting at a certain time but then stabilize the system at a later
time. Figure 7, which gives the concentration distributions at local times, cannot be used to indicate if
this phenomenon occurs in this case. However, it is clear from Figure 8 that this phenomenon does not
exist as the perturbations of the Sherwood number appears once for all cases.
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3.4. Effect of Fracture Aperture

For characterizing geologic controls in networks of fractures, the aperture plays an important role.
In this section, we explore the impact of fracture aperture on the concentration profiles and the fingering
process associated with instability. To do so, we have studied this effect on scenario (D). Four different
cases are simulated in COMSOL for different apertures. These cases are (D1), (D2), (D3) and (D4),
which correspond to aperture sizes (2b) equal to 0.8× 10−4, 1.6× 10−4, 2.4× 10−4, and 3.2× 10−4 (m).
The parameters of intrinsic permeability of the porous medium and the diffusion coefficient are the
same as homogeneous Elder problem, which results in Ra = 400 (Rayleigh number is based on the
permeability of the porous domain). The corresponding fracture and bulk values of permeability are
given in Table 2. Figure 9 shows the results of the solute distribution of this simulation at times of 1, 3,
5 and 10 years. It is clear from this figure that the fracture aperture influences the fingering processes.
At t = 1 year, the increase of fracture aperture leads to more fingers that are related to the fracture
presence, and the convective flow in the fracture moves up (see Figure 10). The increase of fracture
aperture increases the velocity of the upward flow in the fractures and pushes the saltwater toward the
source within the fractures. At t = 3 years, the fracture aperture does not affect the number of fingers.
More horizontal expansion of the fingers can be observed around the fractures. At t = 5 and 10 years,
the fracture aperture influences the number of fingers as well as the concentration distribution.

For illustration, Figure 11 shows the average of local Sherwood number beneath the source zone
in the top layer at different times versus the aperture size of fracture (Including aperture 2b = 0 which
represents homogeneous case or scenario A). As one can see in this figure, at t = 2 years, the Sherwood
number increases by enlarging the aperture size. Besides, for the later times (t = 10, 20, 30, 40 and
50 years), the value of Sherwood numbers for the cases of different aperture sizes are almost equal and
with increasing the simulation time, the Sherwood number decreases. Therefore, Figure 2 confirms the
issue discussed above, and shows that for the early times of the intrusion of fractured Elder problem,
the strength of convection and instability is proportional to the aperture size of fracture; however,
at the other times, the stability of the system for different aperture size of fractures would be the same.
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Table 2. Fractured network parameters.

Scenario Fracture Spacing
(2B) (m)

Fracture Aperture
(2b) (×10−4 m)

Fracture
Permeability (kfr)

(×10−9 m2)
kfr/km

Bulk Permeability
(kb) (×10−13 m2)

Simulated scenarios parameters for effect of fracture aperture (Scenario D):
D1 75 0.8 0.53 1100 4.85
D2 75 1.6 2.13 4402 4.89
D3 75 2.4 4.80 9907 5
D4 75 3.2 8.53 17612 5.21

Simulated scenarios parameters for effect of fracture density:
A - - - - -
B 300 5 20.83 42993 5.19
C 150 3.96 13.07 26976 5.19
D 75 3.14 8.23 16986 5.19
E 37.5 2.49 5.18 10691 5.19
F 18.75 1.98 3.27 6749 5.19
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3.5. Effect of Fracture Density

In this section, we investigated the effect of fracture density on the convective flow patterns. Thus,
we performed simulations for all the fractured scenarios that involve variable fracture spacing. All the
parameters for the porous media and fluid are considered the same as for the standard Elder problem
(Table 1), which result in Ra = 400. The fracture aperture (2b) was calculated based on the fracture
spacing (2B) in order to have the same bulk permeability for all scenarios. The fracture network
parameters for all the scenarios are given in Table 2 The solute distributions of all scenarios at times
of 1, 3, 5, 10, 20 and 50 years are depicted in Figure 12. The first observation is that, except slight
deviations where the fingers meet the vertical fracture, the convective modes in scenarios (A) and (B)
are quite similar and this is for all shown times. This seems to be logical as the fracture density of
scenario (B) is very low and because the vertical fracture is not in contact with the source zone. This is
also confirmed in Figure 13 which shows the variation of the Sherwood number for all scenarios at 2,
10, 20 and 50 years. The Sherwood numbers for scenarios (A) and (B) are almost the same. For scenario
(C) as shown in Figure 12, the transient convective modes are different from the homogenous case
(scenario A). The increase of the fracture network density affects the fingering processes. A vertical
fracture crosses the source zone and leads to two more fingers at t = 1 year. These two fingers can be
attributed to the upward convective flow in this vertical fracture that pushes the saltwater towards the
upper surface. With more saltwater diffusion from the source, the fingers gather together and lead to
one finger at 5 years, but concentration distribution and the number of fingers remain different from
those observed in scenario (A). The concentration distribution becomes similar to scenario (A) after
50 years. Similar behavior can be observed for scenario (D), but concentration distribution and number



Fluids 2019, 4, 168 14 of 18

of fingers become similar to scenario (A) earlier at t = 20 years. For scenarios (E) and (F), the transient
convective modes tend to behave like scenario (A). This makes sense as the fracture aperture becomes
very small, the domain behaves as homogenous when the density of fractures is relatively high and
the bulk permeability is the same for all scenarios. Another point in Figure 12 which should be taken
into consideration is that at t = 50 years the system, despite its scenario, approaches a stationary
state with uniform solute concentration and no fluid motion. As depicted in Figure 13, the difference
between the Sherwood numbers of fractured scenarios and that of the homogenous case increases with
the fracture density until an optimal value after which this difference decreases. Moreover, as said
before, the overall value of Sherwood number decreases during time for all the scenarios due to the
convergence to a stationary state, as Figure 13.
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4. Conclusions

The existence of various numerical solutions made the Elder problem one of the most popular
unstable DDF problems. In the current study, we investigated the influence of uniform and orthogonal
fracture networks on this problem. The simulation results, developed by COMSOL Multiphysics,
have been explored to see the change of free convective flow patterns and the fingering phenomenon.
The main findings can be summarized in the three following items:

(1) Embedding fracture networks in the Elder problem increases the mesh sensitivity and
bifurcation states of this problem. In other words, by changing the mesh size, the fractured
Elder problem has more variation in both the number and shape of the plumes than the
non-fractured case.

(2) Fracture networks have a destabilizing impact on the Elder problem. It means that the onset
of instability of fractured Elder problem occurs with the value of Rayleigh number lower than
40 which is the critical Rayleigh number of onset of instability.

(3) Concerning how the structural properties of fracture networks control convective flow
patterns, we explored the effect of aperture fractures and density of the fracture networks.
By enlarging the aperture size in a fractured case of Elder problem, the instability increases
at an early time, and since the convective flow in the fractures moves up there would be a
higher number of fingers at the beginning. However, the system will be stable at the other
times, and the simulation results will be the same for different aperture sizes. In addition,
as the fracture density increases, various transient convective modes obtained which are
different from the non-fractured case at the beginning; nonetheless, this difference exists until
an optimal fracture density, and after that, the high dense fractured scenarios behave similarly
to the homogeneous case in fingering processes and plume patterns.

The presented work can be a foundation for further unstable DDF numerical modeling of fractured
Elder problem. It would be useful to extend this model for fracture networks, without being limited to
only vertical and horizontal fractures, and also simulate them in 3D with more complexity to approach
real-world fractured media.
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