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Abstract: The placement of a cylindrical body in a flow alters the velocity and pressure fields resulting
in a local increase in the flow speed near the body. This interaction is of interest as wind turbine
rotor blades could be placed in the area of increased wind speed to enhance energy harvesting. In
this work the aerodynamic performance of two short aspect ratio (AR = 0.93) cylindrical bodies
was evaluated for potential use in “accelerated wind” applications. The first cylinder was smooth
with a constant diameter. The diameter of the second cylinder varied periodically along the span
forming channels, or corrugations, where wind turbine blades could be placed. Experiments were
performed for Reynolds numbers ranging from 1 × 105 to 9 × 105. Pressure distributions showed that
the smooth cylinder had lower minimum pressure coefficients and delayed separation compared to
the corrugated cylinder. Velocity profiles showed that the corrugated cylinder had lower peak speeds,
a less uniform profile, and lower kinetic energy flux when compared to the smooth cylinder. It was
concluded that the smooth cylinder had significantly better potential performance in accelerated
wind applications than the corrugated cylinder.
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1. Introduction

The power that can be extracted from the wind is primarily driven by three factors, the
cross-sectional area that is being used to capture the wind, the velocity of the captured wind,
and the power coefficient of the turbine blades. This relationship is described by:

P =
1
2
ρπR2U3

f sCpow (1)

Here Cpow is the coefficient of power for the wind turbine, Ufs is the free stream wind speed, and R
is the rotor radius [1]. Note that in this work Cp is used to define the pressure coefficient rather than the
coefficient of power. One can, therefore, increase the harvested power by increasing the blade radius,
the wind speed, or the coefficient of power, which is representative of the aerodynamic efficiency of
the wind turbine. Equation (1) indicates that the rotor area is a strong driver of the power of a wind
turbine. This has led to increased rotor sizes, especially for commercial scale wind turbines. However,
wind turbine sizes are ultimately bounded by structural limitations and other practical considerations
such as the need to transport parts. Power is also a function of the coefficient of power of the system
which has an upper limit defined by the Betz limit (59.3%) for free wind turbines, limiting potential
gains through increased aerodynamic efficiency.
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Equation (1) indicates that a wind turbine’s extracted power has a cubic relationship with wind
speed. This leads to the strategy of increasing the velocity of the wind at the rotor plane to increase the
power extraction. Increased wind speed is typically accomplished by siting turbines in locations with
high wind speeds or by increasing the tower height. This, however, limits the number of economically
viable siting locations. Alternately, one could attempt to modify the local wind stream to achieve
higher velocities at the rotor plane. This approach is attractive in that relatively small changes in the
local wind speed can lead to significant increases in harvested energy.

“Accelerated wind” is a general term for such strategies and is normally accomplished by adding
a structure near the rotor to locally increase the flow velocity. The most common example is seen in
diffuser augmented wind turbines (DAWT). A DAWT’s structure lowers the pressure downstream of
the blades to draw a greater mass of air through the rotor plane and thus generate more power than a
similarly sized horizontal axis wind turbine (HAWT) [1–10]. A less explored accelerated wind concept
is to place rotors near structures that increase the local wind speed. Examples of this include building
augmented wind turbines [11–13] and specially designed tower structures [14–16]. This study explores
the concept of placing wind turbine rotors next to a cylindrical structure, see Figure 1. The cylindrical
structure serves to act as both the wind turbine tower and a method to increase the velocity at the
rotor plane.
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Figure 1. Conceptual views of (a) original Optiwind 150 kW wind turbine design. (b) Conceptual
smooth cylinder design. Rotors shown schematically by dotted circles. In application, direction of
wind would be into the page so that turbine blades are at ±90◦ with respect to the wind direction.

Duffy and Jaran [12] reported on what they named a “toroidal accelerator rotor platform” (TARP).
The TARP concept used a toroidal channel around the outside of a cylinder to accelerate the wind
into rotor blades that were mounted in the channel. The TARP was intended to be either an add-on
attachment to grain silos, water towers, etc. or as a standalone structure. This concept was extended to
the WARP, or wind amplified rotor platform, consisting of a number of stacked TARP modules [13]. A
prototype was built and briefly tested in Belgium; however, a viable commercial product does not
exist today.

A similar concept, the Optiwind “Accelerator Platform”, shown in Figure 1a, formed the motivation
for the current study. This concept was a finite span (aspect ratio, AR = 0.93) corrugated circular
cylinder where the rotor blades would also sit in isolated channels. The channels were conceived of as
aerodynamic structures to direct the wind into the wind turbine blades, which would also isolate the
wind turbine blades from each other. This is strategically different from DWATs in that the channels
were not intended to be traditional diffusers, but more specifically as flow directors. Flow acceleration
was provided by the surface curvature. This concept was the motivation for the first model used in the
current study. The second model, shown in Figure 1b, was a smooth circular cylinder with the same
aspect ratio and a diameter equal to the outer diameter of the corrugated cylinder. The location of the
rotor placement for both designs is indicated by the dashed circles. Both models were intended to
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accelerate the wind prior to entering rotors; however, the smooth cylinder lacked the “flow directing”
channels as shown. The high level goal of the project was to design a mid-range, scalable wind turbine
for the renewable energy market [15]. In both cases the number of stack turbines, three shown in
Figure 1 and used for testing, could be chosen arbitrarily depending on the power requirements.

This work details experiments performed on the two tower models: a 1:80 scale model of the
Optiwind Accelerator Platform (i.e., the “corrugated cylinder model”) and a smooth circular cylinder
with the same aspect ratio as the corrugated model. The surface pressures and tangential velocity,
Vθ (r), profiles were acquired experimentally for both platform models. The location and magnitude
of the minimum pressure coefficient (Cp,min) and the mean flow velocities were used as metrics in
determining the effectiveness of the potential designs for accelerating the flow. The minimum pressure
coefficient, Cp,min, serves as one basis for discussion of the performance in this work in two ways. First,
the location of the Cp,min is indicative of where the surface flow curvature has changed and the flow is
no longer following the surface shape. It can be used to determine if the separation point has moved
forward or aft between cases. Second, the magnitude of Cp,min correlates with the increase in flow
velocity, and it can again be used comparatively between cases.

The motivation for this work was to assess the potential of the two shapes for accelerated wind
applications. The goal of the current work was to compare, in a quantitative manner, the flow around
low aspect ratio cylinders with smooth and corrugated surfaces. Within the larger project, the results of
this study were used to down select the platform shape and guide the continued design/development
of the prototype wind accelerator platform within the larger project. It is acknowledged that the
presence of rotors, which were not investigated in this work, would change the flow conditions around
both the corrugated and smooth cylinders. This effect is the subject of future studies for the following
reasons. First, rotors are typically designed to provide a specific pressure drop that optimizes the power
extraction. Because this study was used to down select the platform geometry, the rotors have not yet
been designed. Second, this study provides a canonical case comparing short aspect ratio cylinders
with and without surface corrugations. These conditions, without the rotors, therefore represent the
upper limit on the potential performance.

2. Materials and Methods

2.1. Experimental Models and Facility

The corrugated cylinder was constructed using stereolithography as a 1:80 scaled model of the
proposed Optiwind Accelerator Platform design with three rows of corrugations, as shown in Figure 2.
The key dimensions of the model were as follows: major diameter, Dmaj = 0.269 m; minor diameter
Dmin = 0.164 m; length, L = 0.249 m; and the aspect ratio based on the major diameter L/Dmaj = 0.93.
Pressure taps were added circumferentially along the minor diameter (i.e., in the “valley” of the
channel) of the model and along the corrugation walls, as shown in Figure 3, for all three channels.
The surface of the corrugated cylinder was sanded to smooth the steps in the surface resulting from
the stereolithography fabrication.

A smooth cylinder with the same diameter as the major diameter and aspect ratio of the corrugated
cylinder provided a second potential platform design as well as a canonical baseline reference case.
The smooth cylinder was fabricated from a 0.27 m diameter PVC pipe cut to the same length as the
corrugated cylinder, which provided an aspect ratio equal to the platform model, L/D = 0.93. Pressure
taps were machined into the cylinder at the mid-height.

Experiments were performed in the Clarkson University High Speed Aerodynamic Wind Tunnel.
The tunnel is an open loop tunnel with a 1.2 × 0.9 × 1.8 m long test section. The tunnel blockage due
to the models was 6.7% based on the major diameter and length of the corrugated cylinder model.
Experimental flow speeds ranged from Ufs = 10 to 50 m/s. The turbulence level of the tunnel free
stream was measured via hotwire anemometry to be approximately 1.2% within the velocity range
investigated. The Reynolds number was computed based on the major diameter of the corrugated
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cylinder and the test section free stream speed. Experimental Reynolds numbers covered a range of Re
= Ufs Dmaj/υ = 1.9 × 105 to 8.9 × 105 for this study. It is noted that the Reynolds number for the full
scale device was expected to be nominally 50–100 × 105. The upper end of the experimental Reynolds
number was limited in this work by the flow facility (i.e., cross sectional area of the test section and
maximum flow speed). While this was approximately an order of magnitude lower than the device
Reynolds number that motivated the study, the results show a decreasing dependence on the Reynolds
number, and the results were expected to be qualitatively similar and therefore informative. The lowest
Reynolds number was investigated to allow for Reynolds number trends to be investigated. Both
models were placed in the wind tunnel with a 0.15 m vertical offset from the bottom floor of the test
section, as shown in Figure 4. The tops and bottoms of the models were closed.
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2.2. Pressure Measurements

The models contained pressure taps with 1 mm diameter openings at the surface starting at the
leading edge (θ = 0◦) and extending around the diameter of the models in 10◦ increments. Stainless
steel tubing (1.58mm outer diameter, 1.32 mm inner diameter) was pressed into each tap to allow for
connection with the pressure transducer via Tygon tubing. The corrugated cylinder model also had
rows of pressure taps along the channel walls at φ = 42◦ and 98◦ up from the horizontal as shown in
Figure 3. Pressure surveys were conducted using an Omega model PX653-10BD5V pressure transducer
with a ±2.5 kPa range. Data were acquired with a National Instruments PCI-6024E 12 bit A/D card.
Each pressure measurement consisted of 96,000 data points at a sampling rate of 2400 Hz. A ScaniValve
solenoid controller was used to index through the model pressure taps sequentially after sampling at a
given location was completed. Uncertainty in the pressure measurements was estimated to be 0.025
kPa, which corresponded to an uncertainty level in the reported pressure coefficients of Cp = ±0.03.

The pressure data reported in this work are the average surface pressure values in non-dimensional
form. The pressure coefficient, CP, was calculated using:

Cp =
PS − PS,Tunnel

1
2ρU2

f s

(2)

where PS is the average pressure at a tap location and PS,Tunnel is the static pressure in the test section
upstream of the model. The dynamic pressure of the free stream was measured using a pitot-static
probe upstream of the models.

2.3. Hot-Wire Measurements

Velocity surveys were taken around the models using a DISA type 55M01 Constant Temperature
Anemometer (CTA) with a DANTEC 55P14 single-wire probe. The hot-wire sensor utilized a 5 µm
tungsten wire with a 1mm active length. Data were acquired with a National Instruments PCI-6024E
12 bit A/D card. Hot-wire data were sampled at 12,000 Hz for 30 s to provide 360,000 measurements.
The hot-wire probes were pre- and post-calibrated to ensure the sensor did not drift during use. The
uncertainty in the hot-wire measurements was estimated to be ±0.058 Vθ/Ufs. Velocity profiles were
performed by traversing the probe radially outward at 13 different angular locations around the model
over the range of θ = 0◦ to 180◦ in 15◦ increments.
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3. Results

3.1. Review of Flow Around Circular Cylinders

The inviscid solution to flow around a 2D circular cylinder [17] provides the limiting case for the
current study. The solid line in Figure 5 shows the surface pressure distribution, while the dashed
line shows the associated tangential surface velocity, Vθ, distribution for the inviscid flow around a
cylinder. The leading edge of the cylinder is defined as θ = 0◦. In the absence of viscosity, the peak
speed around a circular cylinder is Vθ/Ufs = 2 and is located at θ = 90◦. This corresponds to a minimum
pressure coefficient of Cp,min = −3 at the same angular location. Equation (1) indicates that a factor of 2
increase in the wind speed would result in a factor of 8 potential increase in the harvestable power at
the surface of the cylinder. It is worth noting that the actual increase in power would be lower than
a factor of 8 as Vθ decreases in the radial direction even for the inviscid case; therefore, the actual
increase in power would depend on the radius of the wind turbine blades.
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Figure 5. Surface velocity and pressure distribution for inviscid flow around a circular cylinder.

Past results for circular cylinders without end effects [18–21] show that for Reynolds numbers of
practical importance, the flow separates and forms a wake downstream of the cylinder. The location of
the separation generally begins at about θ ≈ 70◦ and moves aft (i.e., increasing θ) with the increasing
Reynolds number to an angle of θ ≈ 120◦, as shown in Figure 6. These results also show that the
wake region becomes smaller with the increasing Reynolds number. The Re = 8.5 × 105 case shown in
Figure 6 does not follow the Reynolds number trends as Cp,min is significantly lower and further aft for
this case than for the higher Re = 3.6 × 106 case. This is due to the formation of a separation bubble at
the surface of the cylinder, which occurs in a critical Reynolds number range [18].

Results for finite aspect ratio cylinders with two free ends in the Reynolds number range of the
current experiments are more limited as most studies are concentrated on cantilevered finite aspect
ratio geometries [22–24]. Zdravkovich et al. [25] investigated the pressure distributions around circular
cylinders of finite aspect ratio with two free ends for the Reynolds number between 0.6 and 2.6 ×
105. Data from that work for a L/D = 1 and Re = 2.6 × 105 showed Cp,min ≈ −1.6 occurring at θ ≈ 70◦.
The angular location of Cp,min was consistent with the data from Achenbach [18] with a difference of
approximately 33% in Cp,min. The work in this study is compared with the results of Achenbach to
provide comparative analysis on the effect of the short aspect ratio on the pressure distribution.
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Achenbach [18].

3.2. Pressure Surveys

Figure 7 shows the surface pressure distribution along the centerline of the smooth cylinder for the
Reynolds number range investigated. The data showed that Cp,min decreased and its location moved
aft as the Reynolds number increased, consistent with the trends for the 2D cylinder. At Re = 1.9 ×
105 the surface pressure deviated almost immediately from the inviscid profile and had a minimum
pressure coefficient of Cp,min = −0.5 at θ ≈ 68◦. The pressure coefficient recovered slightly to a nominally
constant value of Cp = −0.4 after this point. The location and value of Cp,min were indicative of laminar
flow around a cylinder. For the Re = 7.7 × 105 case the minimum pressure coefficient was found to be
Cp,min = −1.8 at θ ≈ 90◦, more consistent with turbulent flow. The dependence on the Reynolds number
appeared to be more significant at lower Reynolds numbers and was likely a result of the transition
from laminar to turbulent flow.
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Figure 7. Surface pressure distribution for the smooth cylinder case.

The results for the valley of the center channel for the corrugated cylinder are shown in Figure 8.
There was similar Reynolds number dependence observed for this model. The minimum pressure
coefficient, Cp,min, decreased with the increased Reynolds number going from Cp,min ≈ −0.33 at Re = 1.9
× 105 to Cp,min ≈ −1.24 at Re = 7.7 × 105. While the location of Cp,min shifted farther aft on the cylinder
with increasing Reynolds number (θ ≈ 54 to 66◦), this shift was less significant than was observed for
the smooth cylinder. In the separated wake of the corrugated cylinder, the pressure coefficient was
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nominally uniform for all cases at Cp = −0.52 except for the lowest Reynolds number case for which
Cp = −0.28 in this region. This case also showed very little pressure recovery after the location of the
minimum pressure.
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Figure 8. Pressure distributions through the corrugated cylinder center channel valley.

Comparison of the two current cases to previous data [18] are shown in Figure 9. The current
data for the low aspect ratio smooth cylinder indicated that the pressure distribution was significantly
altered by the lower aspect ratio of the model in the current study throughout the Reynolds number
range investigated. Specifically, Cp,min was lower and its location more aft for the infinite span compared
to the finite span case. These observations indicated that end effects caused earlier separation, which
reduced the pressure change on the cylinder surface. Data taken were also acquired with end plates
(1.5D) on the finite aspect ratio smooth cylinder. These plates were insufficient to counteract end
effects at low Re, as can be seen in Figure 9a; however, at the higher Re, shown in Figure 9b, the
surface pressure profiles are more similar to the reference data of Achenbach [18]. The high Reynolds
number cases for the current data and the reference data were both in the critical Reynolds number
range with flow separation and reattachment; however, the gradient in the pressure distribution
following separation was lower for the finite aspect ratio cylinder. This implied that the separation
and reattachment region was likely smaller for the finite aspect ratio case in the critical Reynolds
number range.
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Comparison of the corrugated and smooth cylinders showed Cp,min was significantly lower for
the smooth cylinder when compared to the corrugated cylinder, as shown in Figure 9. The location of
the measured minimum pressure and the minimum pressure coefficient, to the spatial resolution of
the current data, are shown in Figure 10 to highlight the difference between the models. The location
of the minimum pressure, θmin, was earlier and the value of Cp,min was higher for the corrugated
cylinder versus the smooth cylinder. For example, at Re = 7.7 × 105 the values were −1.25 vs. −1.80
for Cp,min and 57◦ vs. 90◦ for θmin. The pressure surveys indicated that the separation was earlier for
the corrugated model and was suggestive that the drag would be higher for case as well. Limited
direct drag measurements, not shown in this work, measured a drag coefficient of Cd = 0.95 for the
corrugated cylinder compared to Cd = 0.60 for the smooth cylinder at Re = 7.7 × 105 supporting the
results of the pressure surveys. The higher relative Cp,min values were suggestive that the flow speeds,
and therefore the degree of flow acceleration, for the corrugated model were lower than for the smooth
cylinder. This was important for the motivating accelerated wind application in that it indicated that
the smooth cylinder would perform better. The trends in these results would be expected to hold for
the real world application, which would include wind turbine blades, though the magnitudes would
be expected to be different.
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Figure 10. (a) θmin and (b) Cp,min versus Reynolds number for the smooth and corrugated cylinders.

The surface pressures at φ = 42◦, 98◦ up the side wall of the corrugated cylinder model are shown
in Figure 11. The Reynolds number trends observed in the channel valley continued along the channel
walls with Cp,min decreasing with increasing Reynolds number. At φ = 42◦ up the channel wall the
location of Cp,min moved from θ ≈ 57◦ at Re = 1.9 × 105 to θ ≈ 65◦ at Re = 3.8 × 105. Beyond this
Reynolds number the separation point remained at nominally the same angular location. Similar
trends were observed at φ = 98◦ up the side wall. It is interesting to note that stagnation conditions, Cp

< 1 at θ = 0, were not observed at the θ = 98◦ location indicating the leading edge flow field was quite
complex and three dimensional.

The pressure distributions along the sidewalls are compared in Figure 12. The minimum pressure
coefficient, Cp,min, increased from Cp,min = −1.46, in the valley, to Cp,min = −1.23 at φ = 42◦ and Cp,min =

−0.74 at φ = 98◦. The angular location of Cp,min was the same for the valley and φ = 42◦ but moved
slightly further aft at the φ = 98◦. The pressure at the leading edge also showed a dependence on the
wall location. In the channel valley, Cp = 0.99 indicating that the tap was at or near a stagnation point.
The pressure coefficient was slightly less than this (Cp = 0.97) at φ = 42◦. In contrast, at φ = 98◦, Cp

= 0.85 for the leading tap. The data show that the flow approached stagnation conditions in or near
the valley bottom. The pressure coefficients were uniform in the wake region. The magnitudes of Cp
show that the surface pressure was three dimensional within the channels. This is suggestive that the
flow acceleration was most prominent in the valley region and decreased towards the side walls of the
channel. Note that only a single Reynolds number is shown in Figure 12 for brevity; however, the
qualitative trends were consistent for all Reynolds numbers investigated.
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Figure 12. Pressure distribution as a function of channel wall location.

The corrugated cylinder had three channels along the axis of the model allowing for comparison
of end versus interior channels. The pressure distribution in the valleys of the center (interior channel)
and top channel (end channel) is shown in Figure 13. Significant differences between the interior and
end channels were observed. The end channel had lower Cp values at all surface locations and for
all Reynolds number cases indicating the end channels had higher potential for energy harvesting
compared to interior channels. For example, Cp,min = −1.86 for the top channel, and Cp,min = −1.46 for
the center channel at Re = 8.9 × 105. A similar trend was observed for the Re = 1.9 × 105 case with
Cp,min lower for the top channel (−0.55 vs. −0.32).

The difference between the two cases was caused by the channel boundary conditions, which were
significantly different between the top and the middle channels. The interior channel had nominally
symmetric boundary conditions due to the existence of channels above and below. The end channel
had different boundary conditions on either side. The lower portion of the top channel was common
with the upper portion of the center channel; however, the top portion of the upper channel was
bounded by the free stream allowing air flow to go over top of the model. It was interesting to note
that these end effects encountered by the top and bottom channels enhanced the performance of the
flow dropping Cp,min in the edge channels. The data suggested that the separation was delayed for the
end channels resulting in the continued decrease in Cp, which for the intended application would be
beneficial. Data with end plates, shown in Figure 13b, confirmed that end effects were responsible for
the differences in the surface pressures in the center channel, though the end channel saw minimal
improvement with the addition of the plates. The end plates did not appear to alter the pressure on the
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downstream side of the corrugated cylinder indicating that drag would likely continue to be high for
this model.
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3.3. Velocity Surveys

Velocity surveys were conducted with single-wire hot-wire probes around the smooth and
corrugated cylinders. The probe was oriented at each angular location such that it measured the
azimuthal velocity component, Vθ(r). The azimuthal velocity was of primary interest in this study
as it is the velocity component normal to the intended rotor plane. Velocity surveys were conducted
normal to the surface (i.e., in the radial direction) at 15◦ increments around the cylinder starting at
the leading edge, θ = 0◦. The data for the smooth cylinder were acquired at the mid-height of the
cylinder, while the data for the corrugated cylinder were acquired along the center channel valley of
the model. We note that both measurement locations were expected to have small relative spanwise
velocity components due to the presence of the corrugations and/or symmetry. The radial velocity
component was also expected to be small outside of the model wakes, which were beyond the expected
placement of the rotors.

Results of the velocity surveys are shown in contour form in Figure 14 for the Re = 7.7 × 105 case,
which was closest to the expected operational Reynolds number. The dash-dot-dot line in the figure
marks the boarder where the flow speed was equal to the free stream. This was included to differentiate
the regions where the flow speed was either above or below the free stream value. Both cases show
deceleration as the flow approached the leading edge, as expected. The flow then accelerated around
both the smooth and corrugated cylinders; however, the velocity fields were quantitatively different
for the two models. The data clearly show that the location of the peak flow speeds was shifted to
higher angles (i.e., closer to θ ≈ 90◦) for the smooth cylinder. The peak speed for the smooth cylinder
occurred at θ ≈ 90◦ after which the flow decelerated, as shown in Figure 14a. In contrast, the peak flow
speed occurred earlier at θ ≈ 75◦ for the corrugated cylinder model. The results also showed that the
wake region, demarked by the region where the flow speed was below the free stream speed for the
aft portion of the model, was physically larger for the corrugated cylinder. These observations were
consistent with the pressure surveys, which showed lower Cp values and more pressure recovery in
the wake for the smooth cylinder. They are also consistent with the lower drag measurements for the
smooth cylinder. It is noted that single hot-wire probes are not able to resolve the direction of the flow,
only the magnitude, in the wake. As a result, the detailed structure of the wake region, e.g., where the
flow could be reversed, cannot be determined from the current data.
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velocity fields for the two cases. The radial distance was rescaled in Figure 15 so that the model 
surface occurred at r* = 0, and the distance was normalized by the difference in height between the 
major and minor axis of the corrugated cylinder. This scaling method resulted in r* = 1 corresponding 
to the edge of the major diameter in the corrugated model and the equivalent dimensional distance 
for the smooth cylinder. The inviscid velocity profile at θ = 90° (dash-dot) and free stream speed 
(dashed) are also plotted for reference in Figure 15. 

Figure 14. Velocity distribution around the (a) smooth and (b) and corrugated cylinders. Note: Solid
black denotes minor diameter of the corrugated cylinder and the diameter of the smooth cylinder.
The dashed line in (b) represents the location of the major diameter. The dash-dot-dash line shows the
contour of u/Vfs = 1. Re = 7.7 × 105. Flow left to right.

Velocity profiles at select angles are shown in Figure 15 to quantify the differences between the
velocity fields for the two cases. The radial distance was rescaled in Figure 15 so that the model surface
occurred at r* = 0, and the distance was normalized by the difference in height between the major and
minor axis of the corrugated cylinder. This scaling method resulted in r* = 1 corresponding to the edge
of the major diameter in the corrugated model and the equivalent dimensional distance for the smooth
cylinder. The inviscid velocity profile at θ = 90◦ (dash-dot) and free stream speed (dashed) are also
plotted for reference in Figure 15.

The velocity profiles were found to be qualitatively similar for the two geometries at θ = 75◦.
At this angular location the velocities were higher than the freestream at all radial measurement
locations, with the highest value of Vθ/Vfs ≈ 1.43 at the measurement location closest to the surface. The
velocity decreased to Vθ/Vfs ≈ 1.2 at the upper measurement location and appeared to be asymptotically
approaching the freestream value. The boundary layer at the cylinder surface was relatively thin with
a thickness less than the distance from the wall to the first measurement point at r* = 0.06.

At 90◦ the velocity profiles were qualitatively different for the two geometries. The flow around
the smooth cylinder continued to accelerate due to the curvature of the wall. Velocities were higher at
all radial locations compared to the 75◦ location for this geometry, and the boundary layer remained
comparatively thin. The maximum value of the angular velocity was Vθ/Vfs ≈ 1.6, which was
approximately 20% lower than the inviscid velocity of Vθ/Vfs ≈ 2.0. The corrugated cylinder showed
a qualitatively different profile at this angular location. The changes in the structure of the velocity
profile were most pronounced near the wall. The location of the peak velocity moved away from the
wall forming what appeared to be a thick viscous boundary layer that occupied approximately 20% of
the channel height. This resulted in a noticeably less uniform velocity profile, particularly near the
wall. Additionally, the flow speed was lower than the freestream for approximately the bottom (i.e.,
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near wall) 10% of the channel height. The flow speeds were comparatively lower at all locations than
were measured at θ = 75◦ indicating the flow was decelerating within the channel.Fluids 2020, 5, 25 13 of 17 
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These trends in the velocity data continued at θ = 105◦. Here the velocity profile for the smooth
cylinder was nominally the same as it was at θ = 90◦, though the velocity magnitudes were slightly
reduced. Comparison showed a slight deceleration in the velocity for the entire profile; however, this
was expected due to the change in curvature of the model. The viscous boundary layer remained
thinner than the data spacing. The low speed region of the corrugated cylinder continued to expand
out away from the valley wall filling the bottom 60% of the channel height. Flow speeds lower than the
free stream were measured in the bottom 40% of the channel height. By 120◦ the velocity magnitude
was below the free stream in 80% of the corrugated channel height. The velocities also continued to
decrease for the smooth cylinder, though they were still above the freestream value at all measurement
locations. The velocity data were suggestive that viscous effects, likely due to the increased surface
area of the corrugated cylinder, were responsible for the differences in the velocity and pressure results
observed for that model.

Recall that the purpose of placing wind turbine blades next to a surface is to increase the kinetic
energy of the wind before it enters the wind turbines blades. Ideally, one would prefer the flow speeds
to be as high as possible (to maximize energy harvest) and uniform across the blades (for structural
reasons). The experimentally measured and the computed inviscid velocity profiles were used to
provide an estimate of the kinetic energy flux per unit width by:

KE =

∫ 1

0

V3
θ
(r∗)

U3
FS

dr∗ (3)
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It is acknowledged that the flow field varies in two dimensions (i.e., in the r-z plane) at a particular
θ location for the two experimental geometries and that the actual kinetic energy flux over an area
would differ from the integrated values using Equation (3). However, the estimate from this 1D
integration provided a quantitative comparison of the geometries with the current data.

The inviscid profile provides a maximum of 5 times the kinetic energy in the free stream at θ = 90◦,
as shown in Figure 16. This is less than the “8 times” value because the inviscid velocity distribution
varies with r as previously discussed. The smooth cylinder also showed a peak normalized kinetic
energy at θ = 90◦, though it was lower than for the inviscid flow (2.8 vs. 5). This result highlights
the importance of the cubic functionality of the power with velocity. The corrugated cylinder had a
maximum normalized kinetic energy at θ = 75◦ and was comparable in magnitude (~2.5) to the smooth
cylinder at this location. The normalized kinetic energy decreased for the corrugated cylinder at θ =

90◦ and was lower than for the smooth cylinder case (1.7 vs. 2.8) and less than half of the inviscid case.
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It is instructive to note that while both model cases were significantly below the inviscid kinetic
energy potential, they were both above that for a rotor alone in a free stream (i.e., a value of 1). This
indicated that the rotors could potentially experience enhancement due to placement next to both
models. Interpretation of the values for the corrugated cylinder should be done carefully as the channel
pressure and velocity data were suggestive that the velocities near the bounding walls would be lower
than in the centerline of the channel. One should therefore expect that the kinetic energy flux (i.e., the
area integrated KE flux) in the corrugated cylinder would be lower than what was calculated using
Equation (3).

The turbine blades for the real-world application are best placed at θ = 90◦ for operational reasons.
These reasons include the ability to self-align with the changes in the wind direction due to forces on
the symmetrically placed pairs of rotor blades and the need for the system to be aligned out of the wind
if needed. This azimuthal position therefore deserves additional discussion. Comparison of the data at
θ = 90◦ clearly shows that the smooth cylinder had both higher velocities and a more uniform velocity
profile. Uniformity in the velocity profile is desirable for blade loading and structural reasons in an
accelerated application. In particular, the variation in the velocity profile measured for the corrugated
model near the wall, approximately 50%, represents a potential difficulty if used as the loading near the
tip varies significantly. The smooth cylinder on the other hand experiences a smaller fractional change,
approximately 12%, across the blades. The lower velocities for the corrugated cylinder resulted in a
38% drop in the kinetic energy potential for the corrugated cylinder at this angular location. The results
clearly showed that the smooth cylinder was a more desirable platform shape for the larger project.
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4. Discussion

The pressure and velocity fields around short aspect ratio (AR = 0.93) smooth and corrugated
cylinders were investigated experimentally using surface pressure and single-wire hot-wire anemometry.
The corrugated cylinder was originally conceived as a strategy to accelerate and direct the wind into
wind turbine blades to provide a scalable midrange “accelerated wind” system, which motivated
this study. The smooth cylinder provided a canonical reference geometry for comparative purposes
as well as a second candidate platform design. The smooth cylinder results are unique in that they
were conducted for a smaller aspect ratio than is typically studied and for a non-surface mounted
finite aspect ratio model. The goals of these experiments were to quantify and compare the surface
pressures and flow fields around the low aspect ratio (AR = 0.93) smooth and corrugated cylinders.
The experiments were performed without wind turbine blades, which represents the upper limiting
condition for the motivating accelerated wind application. This then provides a “best case” scenario
by which the designs could be compared.

The results indicated that the minimum pressure coefficient, Cp,min, was higher and the flow
separated earlier for the smooth finite aspect ratio cylinder when compared to published results for a
bounded (i.e., “infinite aspect ratio”) cylinder at similar Reynolds numbers. These results showed that
the end effects on the finite aspect ratio cylinder played a significant role even at the center of the small
aspect ratio cylinder and were consistent with prior work [18,25], which was conducted near the Re of
the current work. These results then indicate that end effects are of critical importance when using low
aspect ratio cylindrical bodies to accelerate the flow for wind turbine applications.

The corrugated cylinder showed smaller decreases in the pressure coefficient, Cp, and earlier
separation compared to the smooth cylinder with the same aspect ratio. This occurred over the entire
Reynolds number range investigated. Both of these results indicated that flow acceleration around the
corrugated cylinder was lower than for the smooth cylinder. The early separation also resulted in an
increased the size of the downstream wake and subsequently an increase in the drag coefficient for the
corrugated cylinder. The azimuthal velocity measurements, Vθ, confirmed that the flow speeds around
the corrugated cylinder were reduced when compared to the smooth cylinder. The velocity profiles
revealed that the cause of the differences between the models was the development of a large viscous
region in the channels due to the presence of the corrugation walls. There was a measurable variation
in the pressure fields between end and internal channels for the corrugated cylinder indicating that
end effects were also important for this geometry. Interestingly, the edge channels appeared to perform
better (based on magnitude and location of Cp,min) than the center channel did. The end effects were
mitigated by placing bounding plates on the upper and lower surfaces of the model, reducing channel
to channel variation.

Both the smooth and corrugated cylinder models had azimuthal velocities that were below those
for inviscid flow around a cylinder as expected given the viscous nature of real flows. However, both
cases did show increased flow speeds compared to the free stream in the intended rotor plane. This
resulted in a best case of 58% kinetic energy harvesting capability for the smooth cylinder case and 34%
for the corrugated cylinder when compared to the idealized upper limit based on the inviscid flow case.
This result provides useful insight for other accelerated wind applications, e.g., building augmented
wind turbines, where turbines are located near structures that were not specifically designed to provide
flow acceleration. In these cases, the results of this work show that shapes that may be suboptimal
from an aerodynamic standpoint may still result in accelerated flow (compared to the free stream wind
speed), which could be utilized for energy harvesting.

The following conclusions for the specific “accelerated wind” goal of this project were made
based on these results. End effects must be considered in platforms designed for accelerated wind
applications as they influence the velocity and pressure distributions in a negative manner. These can
be mitigated when designing the shape of the end of the platforms. The earlier separation and larger
wake region experienced by the corrugated model was consequential for design of a real world platform
as it resulted in higher drag. This would require higher structural requirements if the corrugated
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model were to be chosen. Consider next the velocity entering the location of the wind turbine blade
placement (θ = 90◦). Kinetic energy considerations aside, a uniform velocity profile is desirable from a
turbine blade structural standpoint. The azimuthal velocity profile in the planned rotor plane was
significantly more uniform when compared to that measured for the corrugated cylinder indicating
again that the smooth cylinder was a more favorable model moving forward.

The smooth cylinder was found to outperform the corrugated cylinder based on all of the study
test metrics: magnitude and location of Cp,min, magnitude and uniformity of Vθ in the intended rotor
plane, and the line integrated kinetic energy. From this it was concluded that the smooth cylinder
clearly had higher potential for application in designed accelerated wind applications. The results
of this work directly impacted the higher level goals of the project. Specifically, the smooth cylinder
model was selected, while the corrugated model was abandoned, in the continuing design process due
to the measurably poor performance of the corrugated model in this study.
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