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Abstract: Direct modeling of time-dependent transport and reactions in realistic heterogeneous
systems, in a manner that considers the evolution of the quantities of interest in both, the macro-scale
(suspending fluid) and the micro-scale (suspended particles), is currently well beyond the capabilities
of modern supercomputing. This is understandable, since even a simple system such as this can
easily contain over 107 particles, whose length and time scales differ from those of the macro-scale
by several orders of magnitude. While much can be gained by applying direct numerical solution
to representative model systems, the direct approach is impractical when the performance of large,
realistic systems is to be modeled. In this study we derive and analyze a “hybrid” model that is
suitable for fibrous reactors. The model considers convection/diffusion in the bulk liquid, as well
as intra-fiber diffusion and reaction. The essence of our approach is that diffusion and (first-order)
reaction in the intra-fiber space are handled semi-analytically, based on well-established theory. As
a result, the problem of intra-fiber transport and reaction is reduced to an easily solvable set of
n0 ODEs, where n0 is the number of terms in the Bessel expansion evaluated without recourse to
approximation; this set is coupled, point-wise, with a numerical model of the macro-scale. When the
latter is discretized using N nodes, the total “hybrid” model for the system consists of a system of
N(2 + n0) ODEs, which is easily solvable on a modest workstation. Parametric analyses are presented
and discussed.

Keywords: multi-scale analysis; fibrous reactors

1. Introduction

The modeling of coupled flow and transport/reaction in systems comprised of a solid phase
dispersed in a fluid phase has long been of interest to scientists and engineers. These systems involve
heat/mass transfer processes occurring at multiple time/length scales [1–3] and are found in a wide
range practical applications. Examples range from bioreactors [4] to catalytic cracking [5], where the
solid phase may be mobile, as in fluidized bed reactors, or fixed in place. Other areas of application are
found in the food industry, in the form of drying [6] and meat processing [7]. The particles themselves
can be porous, so a complete model must take into account transport in the carrier fluid, as well as the
exchange with and diffusion/reaction within the particles.

A single complete analytical solution is not possible for such systems, so many different approaches
have been used in their simplification and solution. The problem can be simplified by focusing on
the steady state solution and, in some cases, ignoring the diffusion within the particles [8]. However,
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even these assumptions still lead to a demanding numerical problem. In addition, transient solutions
are desirable as they allow more information to be extracted, especially when model predictions are
compared with dynamic experiments [6]. Another approach is to focus on only a single spatial scale,
modeling diffusion in a single structure [7]. Internal diffusion has also been taken into account in
countercurrent plug flow problems by relating the average concentration within the particles to the
local concentration in the fluid [9].

In the past few decades, advances in multi-scale and homogenization theories [10], as well as in
Computational Fluid Dynamics (CFD) codes and computing facilities, have pushed the boundaries
of what can be solved numerically [11]. Particle Resolved Simulations can solve the local heat/mass
transfer equations at the particle scale for both fixed and fluidized beds [12]. Detailed particle-based
approaches have been proposed using the simulation of a small number of particles in repeating unit
cells [3]. One drawback of directly solving the microscale transport equations in every single particle is
that prohibitively large meshes are required for, macroscopically, large systems. The problem is more
acute in time-dependent simulations, and poses a severe restriction in simulating real-life situations, in
which micron- or sub-micron-sized particles may be used.

The purpose of this work is to derive and present a hybrid (semi-analytical) solution to the
problem of coupled micro/macro scale mass-transfer in reactors containing fibers (micro-scale) oriented
transversely to the bulk flow. Besides intra-fiber diffusion, we also consider a first-order reaction
to be taking place within the fibers. This work utilizes the approach previously used for reactors
containing spherical catalyst particles and extends it to fibrous systems [13]. The key assumption
in the solution derivation is that individual fibers are treated as if they are surrounded by a liquid
of a uniform albeit time-varying concentration. Besides a small fiber diameter, this assumption is
more likely to hold when the bulk flow is transverse to the fiber axis, implying that our systems also
consist of unidirectional fibers. The concentration in the liquid phase (macro-scale) is resolved using
the well-established dispersion model. The proposed model only requires meshing of the macro-scale,
while the intra-particle concentration is described by a semi-analytical formula which requires the
solution of a small number of ODEs. This is easily tractable using standard ODE solvers.

Although this specific study is using the axial dispersion model to describe the transport in the
bulk liquid, the fiber-scale model is portable to any other macroscopic situation, as long as the fibers
are small relative to the concentration gradients in the bulk liquid. In Section 2, the development of the
model will be outlined for the case of constant reactor porosity, fiber porosity, and radius; this is not a
necessary assumption and the model can be modified to accept spatially varying parameters.

2. Model Development

The general approach of the outlined semi-analytical solution is to use the local surface
concentration (CR) in the fiber phase as a time-varying boundary condition for the intra-fiber transport
problem. The analytical solution for the concentration profile in the fiber is approximated by expanding
the solution in Bessel functions. The concentration profile allows for the calculation of the flux
from the liquid phase to the fiber phase, yielding an equation for the local liquid concentration (CL).
Discretization of the bulk scale leads to a system of ODEs which can be easily solved using standard
numerical methods.

2.1. Problem Description

In order to describe the dynamic response of the system shown in Figure 1, the governing
differential equations for the mass transfer in the bulk liquid and the mass transfer/consumption in
the intra-fiber space must be solved. The boundary condition at the surface of the fiber governs the
mass transfer between the fibers and the bulk liquid, therefore providing the link between the micro
(intrafiber spaces) and macro (bulk liquid) scales of the problem. The axial distance along the reactor
and the radial co-ordinate in a fiber are the two spatial independent variables, while the time is the
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third independent variable. In a manner similar to earlier studies [13,14] the following phenomena are
taken into account in the following analysis:

i. Mass accumulation in the bulk liquid.
ii. Mass diffusion from the bulk liquid, across the boundary layer, and into the fibers.
iii. Mass diffusion, accumulation and consumption (via a first-order chemical reaction) in the

intra-fiber space.
iv. Axial dispersion in the bulk liquid.
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The operating assumptions of the model are:

i. The fiber locations are fixed.
ii. The system is isothermal.
iii. The first order reaction constant and the intra-fiber diffusion coefficient are constant.
iv. The bulk liquid concentration gradients in the perpendicular plane (along the fiber length),

fiber aging and the pressure drop in the reactor are negligible. This implies that the bulk flow is
strictly transverse to the fiber axes.

v. The fibers are of uniform size and uniformly dispersed along the reactor.

2.2. Model Development

The following equation describes the mass transfer, accumulation, and consumption in the
intra-fiber space:

ε f
∂C f

∂t
=

1
r
∂
∂r

(
rDe f f

∂C f

∂r

)
− ε f kC f (1)

where C f is the concentration in the intra-fiber pore volume, De f f is the effective intrafiber diffusivity,
k is the first order reaction rate constant, and ε f is the fiber void fraction. The initial and boundary
conditions are given by

C f (r, t = 0) = 0 (2)(
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)
r = 0

= 0 (3)
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where CL is the concentration in the bulk liquid, CL
R is the liquid concentration at the inner side of the

boundary layer around the fiber, and ke is the external mass transfer coefficient. CL
R is related to the

fiber surface concentration (CR) via a partition coefficient, γ = CL
R/CR. The bulk-fluid concentration

CL Equation (4) links the micro- and the macro-scale processes. This microscale flux across the fiber
surface Equation (4) can be multiplied by the total fiber surface area per unit volume of reactor to yield
the flux from the bulk liquid to the fibers at any axial position in the reactor, Q∗.

Q∗ = 2(1− ε)
( De f f

R(F/VT)

)(
∂C f

∂r

)
r = R

(5)
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where ε is the reactor void fraction, R is the fiber radius, F is the bulk flow rate, and VT the total reactor
volume.

Using the dispersion model, in dimensionless form, the mass balance in the bulk liquid is

dCL

dtR
=

1
Pe
∂2CL

∂x2 −
∂CL

∂x
−Q∗ (6)

in which, Pe is the Péclet number, describing the relative strength of convection and diffusion in the
bulk liquid, x is the dimensionless axial position, and tR is the dimensionless time. Evidently, the flux
term (Q∗) in Equation (5) links the micro Equation (1) and macro Equation (6) scales of the problem.
The three terms on the right-hand side of Equation (6) are the mass flux due to diffusion, convection,
and transfer to the fibers. The initial and boundary conditions are

CL(x, 0) = 0 (7)(
∂CL

∂x

)
x = 0

= −Pe(C0 −CL) (8)(
∂CL

∂x

)
x = 1

= 0 (9)

As explained in Appendix A, the analytical solution of Equation (1) (available at constant surface
concentration) is used to derive an expression for the intra-fiber concentration, subject to a time-varying
surface concentration. The result is that the fiber surface concentration (CR) can be determined by
solving the following ODE:

∂CR

∂tR
=

BmεDR

2ε f Si
CL −

(
BmεDR

2ε f Si
γ+ 9φ2εDR

)
CR −

εDR

Si

n0∑
n = 1

Ψn (10)

The Ψn terms appearing in Equation (11) are described by ODEs of the form.

∂Ψn

∂tR
+ εDR

[
βn

2 + 9Φ2
]
Ψn =

∂CR

∂tR
+ 9εΦ2DRCR (11)

As a result, and as explained in the Appendix A, the fluid-to-fiber mass flux can be evaluated
either via the difference between the surface and liquid concentration Equation (12) or using the
summation of the Ψn terms Equation (13).

Q∗ = −2(1− ε)DRBm(γCR −CL) (12)

Q∗ = 4(1− ε)DR

∞∑
n = 1

Ψn (13)

In short, the microscale discretization of the fibers has been avoided and, instead, a system of
(2 + n0) ODEs describe the evolution of CL, CR, at a given axial position. Equation (6) can then be
discretized in the axial direction and written, in dimensionless form at axial node i, as:

dCL,i

dtR
=

1
Pe

CL,i+1 − 2CL,i + CL,i−1

∆x2 −
CL,i+1 −CL,i−1

2∆x
− 2DRBm(1− ε)(CL,i − γCR,i) (14)

The ODEs defined by Equations (10), (11), and (14) are applicable at each node, leading to a system
of N(2 + n0) ODEs, which can be solved using standard ODE solvers such as ode45 or ode113 available
in MATLAB.
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3. Results

We have performed a series of simulations using MATLAB ODE solvers ode45 or ode113 over a
range of dimensionless parameter values. The Thiele Modulus, Φ, describing the ratio of the reaction
rate to the diffusion rate inside the fiber, varied from 0 to 100. The Biot number, Bm, describes the
ratio of the external to internal mass transfer resistances varied from 10−3 to 100. The dimensionless
diffusivity, DR, was varied from 0.001 to 100. Fiber voidage, ε f and Péclet number, Pe, were also varied.

Model predictions concerning the effect of the Péclet number, in the presence and absence of
intra-fiber porosity, are shown in Figure 2. When porous fibers are considered, there is transfer of
the reactant from the bulk as the species diffuse into the fibers. This results in a modified effluent
profilecompared to the impermeable (solid) fibers case. This effect is more pronounced at high
Péclet numbers.
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The effect of the Biot number is shown in Figure 3 for two different levels of diffusivity for a
non-reacting species (Φ = 0). In each case, very low Biot numbers lead to the condition where the
liquid concentration profile is limited by a high external mass transfer resistance to the fibers, leading
to a negligible amount of exchange between the two phases. On the other end of the spectrum the
internal resistance of the fibers dominates. The Biot numbers that correspond to these limiting cases
are dependent on the other system parameters, such as DR. For the intermediary cases, the Bm and DR

terms both play a role as neither internal, nor external mass transfer resistances dominate.
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In Figure 4, the Thiele modulus is varied from 0 to 100 and the effect on the effluent profile and
the radial concentration profile, computed from Equation (A5) within a fiber at the end of the reactor
at tR = 10 are shown. When Φ is very low, the reaction is rate-limited as the reactant is consumed
very slowly and builds up in the fiber. When Φ is very large the reaction in the fibers proceeds very
quickly and the mass flux to the fiber is not large enough to sustain a high concentration in the fiber;
this corresponds to the mass transfer limited regime. In between the two extremes, all the parameters
play their role in the process.
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4. Case Study

A hybrid, semi-analytical model for coupled flow and mass-transfer processes in reactors
containing fibers oriented perpendicular to the direction of bulk flow has been presented in Section 2,
with some results of parametric analyses being shown in Section 3. This model is also applicable to
situations where the fiber radii/porosities vary along the reactor. This is because the relationship we
derive between the surface concentration in the fiber and that of the bulk liquid apply at each axial
position. The appropriate constants from Equations (11)–(13) would simply need to be replaced by
their values at node i. Another example would be the case where the reactor voidage is not constant
along the reactor, representing bundles of fibers placed at different locations. Such a case is shown
in Figure 5, in which a decreased voidage over 10 percent of the reactor length is introduced at three
positions: near the inlet, at the center, and near the outlet. The constant voidage example having the
same average ε over the reactor is also shown.
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The results of the analysis of the cases represented in Figure 5, in terms of effluent concentrations
and axial concentration profiles at steady state, are shown in Figure 6. With all other factors remaining
constant, the location of the fiber bundle does appear to slightly affect the transient response of the
system (Figure 6a), the fiber bundles leading to a slightly increased conversion of the feed material
within the reactor. This example illustrates one of the advantages of the semi-analytical model, as it
can easily capture differences that would have been ignored by the simplifications used in a model
based on bulk/effective properties.
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Notation of Parameters

βn positive roots of J0(β) = 0, where Jν is a Bessel function of order ν
ε reactor void fraction
ε f intra-fiber void fraction
γ partition coefficient, CL/C f
Ψn functions defined by Equations (6) and (7)
λ integration variable used in application of Duhamel’s Theorem

Φ Thiele modulus, R
3

√
k

De f f

Bm Biot number (dimensionless), keR
De f f

C0 concentration in the bulk liquid at the inlet, mol/L
C f concentration in the intra-fiber pore volume, mol/L
CL concentration in the bulk liquid, mol/L
CR concentration at the fiber surface, mol/L
CL

R concentration at the innter side of the boundary layer, mol/L
De f f effective intrafiber diffusivity, m2/s
DL axial dispersion coefficient, m2/s

DR dimensionless diffusivity,
De f f

R2(F/VT)

F reactor flow rate, L/s
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( )i the parameter in parentheses evaluated at node i
k first order reaction rate constant, s−1

ke external mass transfer coefficient, m/s

kn parameter defined in Appendix A as De f f
( βn

R

)2

L reactor length, m
n0 number of Ψ terms to be solved
N number of nodes in the spatial discretization
Pe Péclet number, uL

DL

r radial position within the fiber, m
R fiber radius, m
Si summation defined by Equation (A13)
t time, s
tR dimensionless time, t

ε

(
F

VT

)
u axial fluid velocity in the reactor, m/s
VT total reactor volume, L
x dimensionless axial distance, z/L
z axial distance from inlet, m

Appendix A

Intra-Fiber Concentration Profile in the Presence of Diffusion and 1st Order Reaction under a Time-Varying
Surface Concentration

The first step in the solution to Equation (1) subject to a time-varying surface concentration relies on existing
analytical solution for diffusion inside a cylinder [8,9] initially at zero concentration and subject to a constant
surface concentration of C0 for t > 0. This solution is:

C1
C0

= 1− 2
∞∑

n = 1

J0
(

r
Rβn

)
βn J1(βn)

exp(−knt) (A1)

Jν is the Bessel function of order ν, βn are the positive roots of J0(β) = 0 and kn = De f f
( βn

R

)2
. When a

first-order reaction is present Danckwert’s method [15] can be used to show that the time-dependent concentration
profile in the fiber (C2) for the same constant surface concentration is given by

C2
C0

= k
∫ t

0

C1
C0

e−kt′dt′ +
C1
C0

e−kt′ (A2)

Using Equation (A1) to evaluate Equation (A2) leads to the following intra-fiber concentration profile for
constant surface concentration and in the presence of diffusion and first-order reaction

C2
C0

= 1− 2
∞∑

n = 1

J0
(

r
Rβn

)
βn J1(βn)

k + kne−(kn+k)t

(kn + k)
(A3)

The normalized concentration profile under a time-varying surface concentration (CR) can now be found
using Duhamel’s Theorem [8]

C f (r, t) =

∫ t

0

∂CR
∂λ

C2
C0

(r, t− λ)dλ (A4)

Carrying out the integrations, the resulting expression for the intra-fiber profile, under a time-varying surface
concentration, CR, is given by

C f (r, t) = CR − 2
∞∑

n = 1

J0
(

r
Rβn

)
βn J1(βn)

Ψn (A5)

where the Ψn functions are given by

Ψn =

∫ t

0

∂CR
∂λ

(
k + kne−(t−λ)(kn+k)

kn + k

)
dλ n = 1, 2 . . .∞ (A6)
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or in differential form by

∂Ψn

∂tR
+ εDR

[
βn

2 + 9Φ2
]
Ψn =

∂CR
∂tR

+ 9εΦ2DRCR n = 1, 2 . . .∞ (A7)

with initial conditions Ψn(0) = 0. The derivative in Equation (5) can now be evaluated, using Equation (A5), as

∂C f

∂r r = R
=

2
R

∞∑
n = 1

Ψn (A8)

The relationship between the surface concentration and liquid concentration can therefore be written as

γCR = CL −
2

Bm

∞∑
n = 1

Ψn (A9)

And the flux term can be calculated either via the difference between the surface and the liquid concentration
Equation (A10) or via the summation of the Ψn terms Equation (A11).

Q∗ = −2(1− ε)DRBm(γCR −CL) (A10)

Q∗ = 4(1− ε)DR

∞∑
n = 1

Ψn (A11)

The large/increasing values of the factor multiplying the Ψn term (βn are monotonously increasing) in
Equation (A7) imply that, at large n, the Ψn functions follow the forcing function on the right hand side of the
equation. Above a certain threshold, the Ψn terms can be approximated using the quasi-steady state approximation

Ψn =
1

εDR[βn2 + 9Φ2]

∂CR
∂tR

+
9Φ2

βn2 + 9Φ2 CR (A12)

The infinite summation in Equation (A9) is therefore split into two parts, with the first n0 terms being
evaluated using Equation (A7) and the rest of the summation to infinity being approximated by Equation (A12).

∞∑
n = 1

Ψn =

n0∑
n = 1

Ψn +

[
1
εDR

∂CR
∂tR

+ 9Φ2CR

] ∞∑
n0+1

1
βn2 + 9Φ2 (A13)

Examples of the time-varying Ψn terms of different orders and their steady state approximations using
Equation (A12) (dashed lines, denoted “S.S.”) are shown in Figure A1a,b. The lower order n terms (Figure A1a)
are poorly approximated by Equation (A12) and clearly outweigh the higher order terms, which can be reasonably
approximated by Equation (A12) (Figure A1b). Computing more than the first ≈ 50 Ψn terms does not noticeably
impact the result of the summation for the example under consideration in Figure A1c. In general, more Ψn terms
will be necessary for a good approximation when the ∂CR

∂tR
term is large.
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Figure A1. Examples of the form and relative magnitude of Ψn terms and their steady state
approximations for (a) n = 1–5 (b) n = 5, 10, 15, 20, 25, 30 and 25 (c) the result of summation∑n0

n = 1 Ψn for n0 ranging from 2 to 200. With N = 50, this corresponds to a system of between 200 and
10,100 ODEs (in all cases shown, Pe = 10, DR = 0.1, Bm = 10, γ = 1, Φ = 0.1, ε f = 0.8).

The relationship between the accuracy and n0 is more clearly shown in Figure A2a where the maximum error
(over the timescale shown in Figure A1) relative to the case of n0 = 200 is shown for two different variables; namely,
CL, x = 1 and C f , r = 0 and x = 0. The number of Ψn terms to be calculated to reach a desired level of accuracy for
a given reactor can further depend on the variable of interest, for example the effluent concentration requires
fewer Ψn terms than the concentration at the fiber center to reach a certain accuracy threshold. As n0 increases,
the computation time also increases significantly, as shown in Figure A2b, therefore the n0 should be selected to
balance accuracy and computation time for each reactor. A model based on a similar method of solution of the
multi-scale problem has been used in [16] for the prediction of the response of a fixed bed made of Ca-Alginate
gel particles. It was found that model predictions were in excellent agreement to experimental results, which
exhibited the same, qualitatively distinct, features predicted by the model.
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Equations (A9) and (A13) combine to yield the differential equation for the surface concentration as a function
of the bulk liquid concentration and the process parameters.

∂CR
∂tR

=
BmεDR
2ε f Si

CL −

(
BmεDR
2ε f Si

γ+ 9Φ2εDR

)
CR −

εDR
Si

n0∑
n = 1

Ψn (A14)
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where Si is the summation

Si =
∞∑

n0+1

1
βn2 + 9Φ2 (A15)
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