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Abstract: Flow and heat transfer in a horizontal porous layer subjected to internal heat generation
and g-jitter is considered for the Dirichlet thermal boundary condition. A linear stability analysis is
used to determine the convection threshold in terms of the critical Rayleigh number. For the low
amplitude, high frequency approximation, the results show that vibration has a stabilizing effect
on the onset of convection when the porous layer is heated from below. When the porous layer is
cooled from below and heated from above, the vibration has a destabilizing effect in the presence of
internal heat generation. It is also demonstrated that when the top and bottoms walls are cooled and
rigid/impermeable, the critical Rayleigh number is infinitely large and conduction is the only possible
mode of heat transfer. The impact of increasing the Vadasz number is to stabilize the convection,
in addition to reducing the transition point from synchronous to subharmonic solutions.
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1. Introduction

Gravity driven natural convection in fluid saturated porous media has been widely studied for
various configurations for proposed engineering applications. Applications include inter alia rotating
machinery, chemical and materials processing, food industry and possibly nuclear vessel technology.
Pioneering past works, where the basic temperature gradient is constant, have been investigated by
several authors. Early works by [1–4] for non-rotating porous media provides an excellent reference
base for readers for constant basic temperature gradient. These early works set the foundational basis
for researchers in heat and mass transfer in porous media. Later important works involving rotating
effects in porous media were presented in [5–11], with [9] providing important results involving
Coriolis effects for the case when the centrifugal effects are negligible. The coefficient of the time
derivative in the momentum equation in [9] was proposed by [12] to be called the Vadasz number.
Typically the Vadasz number is very large in porous media applications and for this reason in most
formulations, the impact of the time derivative in the momentum equation is negligible and therefore
omitted. The work of [9] considers scenarios where the Vadasz number could be small, thus motivating
for the retention of the time derivative in the momentum equation. The results presented in [9] show
that the oscillatory mode of convection is possible when the Vadasz number is small to moderate.
The work presented in [13–16] involves the effects of g-jitter on the stability of convection in porous
media. In the studies [13,14], the author clearly demonstrates that the transition from synchronous to
subharmonic solutions is characterized by a spike in the curve of the synchronous mode just prior to
the transition.
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The focus of the current work is to consider the effects of vibration (g-jitter) for a porous layer
with internal heat generation. In principle this case corresponds to one where the basic temperature is
non-constant but rather a function of the vertical z- co-ordinate. Researchers are referred to earlier
works for flow and heat transfer with internal heat generation with constant gravity [17,18] and also
with variable gravity [19]. The work presented in [17] adopts the Dirichlet thermal boundary condition
and the results are quite relevant to the current study. Therefore outputs of the current work will be
compared to [17].

Early work on vibration’s effects on porous media with internal heat generation are presented
in [20,21]. Later analyses of vibration effects in a porous layer with through flow and internal heat
generation are presented in [22], which is an extension of previous work by this author [23,24].
Other works including internal heat generation in porous media with anisotropy are presented
in [25,26]. Research specifically involving the effects of gravity modulation and internal heat generation
in porous media are presented in [25–28]. Readers are also referred to two important books [29,30] for
further review/reading.

The current study has applications in nuclear reactor technology where possible seismic effects
may be modelled in terms of the g-jitter term. As an example, pebble bed modular reactors used in
gas cooled reactor plants with helium turbines could serve as a specific example of an engineering
application directly aligned with the current model being analysed. The gas-cooled reactor is typically
used in closed systems that are made up of a recuperator, helium turbine and inventory control/storage
systems. When this type of plant is operated, the circulating helium cools the porous pebble bed reactor
and in doing so heats up to a maximum of about 1100 ◦C. The heated helium gas then passes to a helium
turbine to produce power. Studies around porous media subjected to internal heat generation and
vibration effects for high temperature reactors should therefore largely be driven by the safety aspects
surrounding this technology [17]. Given that the future energy generation mix will focus largely on
low carbon emissions technologies, with significantly reduced water usage, there is a renewed interest
in pebble bed and molten salt reactor technology, hence the impetus for the current work. Although the
analysis in this paper uses a gas cooled porous reactor as an example, other examples for application
of this work include systems involving heat extraction or storage (in porous media) using molten salts.
These storage systems are largely found in the concentrating solar plant (CSP), and more specifically
central receiver systems using molten salts as the working fluid. The CSP plant is typically made up of
the heliostat field, the receiver tower where the solar rays are focused to heat up the salt and the steam
generator that exchanges heat from the hot salt loop to the bottoming Rankine steam cycle. Some of the
heated salt is also directed to the storage tanks containing porous media. In CSPs, maximizing hours
of storage is critical to increase the plant capacity factor. The size of storage (contributing to capacity
factor) and ultimately the solar multiple for the plant are traded off by minimizing the levelised cost
for electricity. Therefore a better understanding of storage systems and modelling thereof, with a
view to optimizing them to operate efficiently becomes critical, due to the impact on levelised cost
of electricity. The storage tank in a typical solar plant is made up of a large circular packed porous
bed that has permeable upper and lower boundaries. The porous bed in the tank is saturated by a
high freezing point ammonium salt. Further research and development in this area will make the
plant more efficient from a heat storage perspective. Also, seismic effects and an understanding of
these effects on the transfer of heat under these conditions become important as a design/containment
consideration to protect the environment.

The current study will determine the basic conduction flow and temperature profiles and then
solve the characteristic Rayleigh number definition using the linear stability theory. Following [13,31],
the equations that result will be cast into the canonical form of the Mathieu equations and thereafter
the critical Rayleigh number in terms of the Vadasz number will be determined for the case of
low-amplitude high-frequency vibration. The data will then be compared to [17], and the case of a
porous layer subjected to vibration without internal heat generation. This study is distinctly different
from [20–22] and will not resort to the use of a numerical solver, as the intent is to recover the design
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equations as a function of the key contributing variables. Based on the review performed, the author is
unable to locate any paper that has adopted the current methodology or for that matter has produced
the results presented.

2. Problem Formulation

Figure 1 shows a horizontal fluid saturated porous layer subjected to vibration that forms the basis
for the current work. The porous layer is sandwiched between two rigid and impermeable horizontal
plates, (a distance H∗ apart), subjected to gravity g∗, and vibration b∗ω∗2 sin(ω∗t∗). In Figure 1, the x*
refers to the horizontal distances and z* refers the vertical distances. At z∗ = 0: ∂T∗/∂z∗ = 0 and at
z∗ = 1:T∗ = T∗C which represents the adiabatic lower wall and perfectly conducting upper wall. The
Boussinesq approximation is applied to model the effects of the density variations and results in the
following system of dimensional equations for continuity, momentum and energy:

∇
∗
·V∗ = 0, (1)(

ρ∗o
φ∗
∂
∂t∗

+ 1
)
V∗ =

χ∗

µ∗

[
−∇
∗p∗ + ρ∗

(
g∗ + b∗ω∗2 sin(ω∗t∗)

)]
êz, (2)

∂T∗

∂t∗
+ V∗ · ∇∗T∗ = κ∗

(
∇
∗2T∗ +

q∗

k∗m

)
. (3)
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Figure 1. Illustration of vibrating porous layer with thermal boundary conditions shown in Table 1.

Table 1. Configurations for upper and lower wall heating with internal heat generation.

Case Boundary Condition A Description

1 z = 0 : dTB
dz = 0

z = 1 : TB = 0
0 Adiabatic bottom wall/Perfectly

conducting top wall

2 z = 0 : TB = 0
z = 1 : TB = 0

1
2

Perfectly conducting top and
bottom walls

3 z = 0 : TB = 1
z = 1 : TB = 0 −

1
2

Perfectly conducting top and
bottom walls

4 z = 0 : TB = 0
z = 1 : TB = 1

3
2

Perfectly conducting top and
bottom walls

5
z = 0 : TB = 0
z = 1 : dTB

dz = 0
1 Adiabatic top wall/Perfectly

conducting bottom wall
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In the system (1–3), the fluid velocity is V∗, the pressure is p∗ and the density is ρ∗.
In Equations (1)–(3), the temperature is T∗, the permeability of the porous medium is χ∗, the dynamic
viscosity is µ∗ and the fluid thermal conductivity is k∗m. The governing equations may be
non-dimensionalised using the scaling variables κ∗/L∗, µ∗κ∗/k∗0 and ∆T∗ = T∗H − T∗C for the filtration
velocity components (u∗, v∗, w∗), reduced pressure (p∗), and the temperature variations T∗ − T∗C.
In these scalings, κ∗ is the thermal diffusivity and k∗0 is a characteristic permeability associated with the
porous medium. The height of the porous medium H∗ is used to scale all spatial lengths according to
the relations, x = x∗/H∗, y = y∗/H∗ and z = z∗/H∗. Applying the scaling factors to Equations (1)–(3)
yields the following for constant permeability, in other words, χ = 1:

∇ ·V = 0, (4)(
1

Va
∂
∂t

+ 1
)
V =

[
−∇p + Rag(1 + δ sin(ωt))

]
Têz, (5)

∂T
∂t

+ V · ∇T = ∇2T + 1, (6)

The key non-dimensional parameters that emanate from the rescaling of Equations (1)–(3) are
the gravitational Rayleigh number, Rag =

(
ρ∗0β

∗g∗H∗k∗0/(µ∗κ∗)
)(

q∗H∗2/k∗m
)
, the vibration amplitude

δ = ηFrω2 where η = b∗/H∗ and the Froude number Fr = κ∗2/g∗H∗3. The Rayleigh number definition
in this paper is somewhat different from that defined in [17] and this has to do largely with the
variables chosen when non-dimensionalizing the governing equations. In particular readers will
observe from [17], that the scaling of the temperature is different from the current work. It will be
demonstrated later how this impacts the numerical values of the Rayleigh number when compared
to [17]. In Equation (5), Va is the Vadasz number defined as Va = φ∗Pr/Da, (where Pr is the Prandtl
number and Da is the Darcy number) and the symbols V, T and pr represent the dimensionless filtration
velocity vector, temperature and reduced pressure, respectively, whilst êz, is the unit vector in the z-
direction. In the previous work [9], the author has put forward a motivation for specific cases when
the Vadasz number is small and can be retained. In the instance of liquid metals this could be the case.
In the current study when considering a high temperature reactor for the proof of concept geometry,
an average porosity of φ∗ ≈ 0.4, a Prandtl number Pr = 0.7, characteristic permeability k∗0 ≈ 0.704
and calculated Darcy number Da ≈ 0.155 yields a Vadasz number Va = 1.81. This implies that for
systems involving gas reactors and porous media, there are instances in which the Vadasz number is
close to unity and can be retained in the momentum equation. The solutions for the basic temperature
and flow field is given as TB = B + Az− 1/2z2 and VB = 0, where A and B are constants that may be
determined, based on the imposed boundary for the various cases shown in Table 1. Since we will
consider the derivative of the basic temperature in the energy equation, the value for the constant B is
not required, and therefore will not be presented in Table 1.

In the current study we will only consider the Dirichlet thermal boundary conditions, in other
words, cases 2–4. The Neumann thermal boundary conditions, in other words, cases 1 and 5 will
be dealt with separately in another study. The results for the thermal boundary conditions will be
compared to the work of [17] and also referenced to the case of Benard convection with g-jitter and no
internal heat generation.

In providing a solution to the system of equations, it is convenient to apply the curl operator (∇×)
twice on Equation (5), and using Equation (4), consider only the vertical z-component of the result
to yield, (

1
Va
∂
∂t

+ 1
)
∇

2w−Rag(1 + δ sin(ωt))∇2
HT = 0, (7)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2.
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3. Linear Stability Analysis

Assuming small perturbations around the basic solution of the form T = TB +T′ and w = wB +w′

and linearizing Equations (4)–(7) yield the following equations,(
1

Va
∂
∂t

+ 1
)
∇

2w′ −Rag(1 + δ sin(ωt))∇2
HT′ = 0, (8)

dTB

dz
w′ =

(
∂T′

∂t
−∇

2T′
)
. (9)

Substituting Equation (9) into Equation (8) and simplifying, yields the following equation for T′,

2
(

1
Va
∂
∂t

+ 1
)(
∇

2
−
∂
∂t

)
T′ + (A− z)2

(
1

Va
∂
∂t

+ 1
)
∇

2
(
∇

2
−
∂
∂t

)
T′ = Rag(A− z)3(1 + δ sin(ωt))∇2

HT′. (10)

We assume an expansion into normal modes in the x- and y- directions of the form,

T′ = ei(sxx+syy)
N∑

k=1

ak(t) sin(kπz), (11)

which satisfies the boundary conditions, T′ = 0 and w′ = 0 at z = 0 and z = 1. In Equation (10)
s2 = s2

y + s2
z and k = 1, 2, 3, . . . N. Substituting Equation (11) into Equation (10) and then multiplying the

result by orthogonal functions and integrating over z ∈ [0, 1] yields the following system of equations,

N∑
k=1

{(
1

Va
∂
∂t + 1

) (
k2π2 + s2 + ∂

∂t

)(
−1 +

(
k2π2 + s2

)(
A
2 (A− 1) + 1

6 −
1

π2(k+l)2

))
+

+Rags2(1 + δ sin(ωt))
(
(A−1)

2

(
A2
−

A
2 + 1

2

)
+ 1

8 + 3
2

(1−2A)

π2(l+k)2

)}
ξlkak+

N∑
k=1

{(
k2π2 + s2

)(
1

Va
∂
∂t + 1

) (
k2π2 + s2 + ∂

∂t

) 2kl(2A−1)

π2(k2
−l2)

2 +,

+Rags2(1 + δ sin(ωt))
(

6kl(A−1)2

π2 −
3kl(1−2A)

π2 −
6
π4

(
1

(l−k)4 −
1

(l+k)4

))}
ξl+k,2p−1ak = 0,

(12)

where ξl+k,2p−1 is 1 when (l + k) is odd and zero otherwise. As can be observed, the system shown
in Equation (12) is complicated when solved to higher ranks of N. One may develop a numerical
solver to solve Equation (12) to the higher ranks, but that is outside the scope of the current work.
Even though there may be some inaccuracies associated with considering Equation (12) to rank N = 1,
useful information may be drawn from rank N = 1. As one proceeds to higher ranks, one would expect
to see a convergence in the critical Rayleigh number. For the current study, considering rank N = 1,
Equation (12) may be presented as,

d2a1

dt2 +
(
1 + Va

(
s2 + π2

))da1

dt
+ VaF0s2


(
s2 + π2

)
F0s2 + Rag(1 + δ sin(ωt))

a1 = 0, (13a)

where

F0 =
4(A− 1)

(
A2
−

1
2 A + 1

2

)
+ 1 + 3(1−2A)

π2((
4
3 −

2
π2

)
+ 4A(A− 1)

)
(s2 + π2) − 8

, (13b)

2p = 1 + Va
(
s2 + π2

)
. (13c)

Equation (13a) may be transformed into the Mathieu equation by taking a1 = e−λτX1(τ) so that
the resulting equation may be presented as,

X′′ 1 + [M + 2Q cos(2τ)]X1 = 0. (14)
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In Equation (14), the coefficients M and 2Q are defined for stationary convection as,

M =
4VaF0s2

ω2

(
Rag +

s2 + π2

F0s2

)
, (15)

2Q =
4VaF0s2Ragδ

ω2 . (16)

In previous studies [14,20], authors have related M and Q in Equations (15)–(16) via an indirect
numerical method. Whilst that method recovers both the synchronous and subharmonic modes, it is
quite cumbersome. In this paper I propose the following asymptotic expansions for low amplitude
and high frequency vibrations in an attempt to link M and Q,

X1 = X0 + QX1 + Q2X2 + . . . , (17)

M = M0 + QM1 + Q2M2 + . . . , (18)

where Q as defined in Equation (16) assumes small values for high vibration frequencies.
The methodology used in the derivation of Equations (19) and (20) involves the use of simple
asymptotic expansions, in other words, Equations (17) and (18) that are then applied on the Mathieu
equation, Equation (14). The resulting equations are solved to the various orders in Q noting that
one needs to apply the solvability condition to the resulting differential equations. The result shown
in Equation (20) therefore is the solvability condition. The relation between M and Q are then used
in conjunction with their definitions in Equations (15) and (16) to yield the characteristic equation
for the Rayleigh number. In the derivation of Equations (19) and (20), the coefficient of exponential
growth terms are set to zero and the constant, b0 > 0, is an integration constant and a real number.
The resulting solutions to rank N = 1 and the solvability condition may be represented as,

X1 = c0

(
1−

Q
2

cos(2τ)
)
, (19)

M = −
1
2

Q2. (20)

Using Equations (15) and (16) and substituting into Equation (20) yields the following characteristic
equation for the Rayleigh number,

1
2

F1Vas2(κFrω)2Ra2
g −Rag + Rag0 = 0 (21a)

where

F1 =

1
2 (1−A)

(
A2
−

1
2 A + 1

2

)
−

1
8 −

3
8π2 (1− 2A)((

1
6 −

1
4π2

)
+ 1

2 A(A− 1)
)
(s2 + π2) − 1

, (21b)

Rag0 =

(
s2 + π2

)(((
1
6 −

1
4π2

)
+ 1

2 A(A− 1)
)(

s2 + π2
)
− 1

)
s2

(
1
2

(
(1−A)

(
A2
−

1
2 A + 1

2

))
−

1
8 −

3
8π2 (1− 2A)

) . (21c)

From Equation (21a) one may observe that for the cases when the vibration frequency
approaches zero, in other words, ω→ 0 , the Rayleigh number approaches the definition, Rag → Rag0 .
Equation (21a) is solved for both zero and non-zero vibration frequencies for case 2 to case 4.

4. Results and Discussion

The Vadasz number and the Rayleigh numbers are scaled as follows: γ = Va/π2, R̂ = Rag/π2 and
R0 = Rag0/π2 for the purposes of calculation setup and presentation. As pointed out earlier, this paper
will not consider case 1 and case 5 which corresponds to the Neumann thermal boundary condition.
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For the Neumann thermal boundary condition, the formulation for Equation (11) needs to be changed
to the appropriate function; however, that is outside the scope of the current study. For case 2 when
A = 0.5 (i.e., perfectly conducting and impermeable/rigid, cooled upper and lower walls), Equation
(21c) reveals that the Raleigh number is infinitely large, in other words, R→∞ . The results presented
by [17] for a rigid lower wall and free/permeable upper wall for the same thermal boundary conditions
as case 2 yields a critical internal Rayleigh number equal to 470. For the current study, case 2 shows that
with internal heat generation, the presence of two rigid walls yields an infinitely large critical Rayleigh
number. In practical applications, the implication of the result is that the configuration illustrated by
case 2, in Table 1, indicates that the conduction solution is stable and convection will not occur.

Figure 2 shows the critical Rayleigh number versus the vibration frequency for selected values
of the scaled Vadasz number for case 3 when A = −0.5 (i.e., perfectly conducting and impermeable,
cooled upper walls and heated lower walls). In Figure 2, each of the curves end abruptly at specific
frequency asymptotes, beyond which there are no more real solutions. These points also denote the end
of the synchronous frequencies and the start of the subharmonic frequencies. The current formulation
does not recover solutions corresponding to subharmonic frequencies. The work presented in [13,14]
supports the point presented regarding the transition point from synchronous to subharmonic solutions.
The impact of increasing the Vadasz number causes the onset of the subharmonic solutions at lower
frequency values as indicated in Figure 2. At very low scaled Vadasz numbers, circa γ = 0.01, the onset
of the subharmonic frequencies occur at very large values. In case 3, when there is no vibration,
the critical Rayleigh number for internal heat generation to rank N = 1 is R0 = 3.38π2. This value of
Rayleigh number is significantly lower than the modified internal Rayleigh number of 470 predicted
by [17]. The result generated by case 3 seems plausible as the porous layer is heated from below
with internal heat generation, which probably would allow for the onset of convection at a lower
Raleigh number.
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number (A = −0.5).

Figure 3 shows that on the bottom end of the vibration frequency range viz. ω = 3000, increasing
or decreasing the scaled Vadasz number has no appreciable impact on the critical Rayleigh number.
However, increasing the vibration frequency to ω = 6000 shows that increasing the scaled Vadasz
number stabilizes the convection. Both Figures 2 and 3 also show another important point, in other
words, as the scaled Vadasz number is increased to very large values, the impact of vibration on
convection becomes negligible. This observation can be recovered from the momentum equation when
the time derivative disappears at very large Vadasz numbers.
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Figure 4 shows the results for case 4 when A = 1.5 (i.e., perfectly conducting and impermeable,
heated upper walls and cooled lower walls). In this case the results show that the existence of vibration
in a system has a destabilizing effect on the convection. When the vibration frequency approaches
zero in this case, the critical Rayleigh number becomes infinitely large. Even with internal heat
generation, it appears that the presence of rigid/impermeable upper and lower walls results in an
infinitely large Rayleigh number when the vibration frequency is zero. The results agree fully with
the findings in [31,32]. In practical applications the results show that convection could occur when
the vibration frequency increases to values larger than zero, in systems where the upper and lower
walls are rigid/impermeable. The results in Figure 4 show that increasing the Vadasz number has a
stabilizing effect on the convection. At very large Vadasz numbers, the effect of vibration becomes
negligible when the contribution of the time derivative disappears in the momentum equation.
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Figure 5 shows the results for the case of a porous layer heated from below and cooled from above
(Benard convection) and subjected to g-jitter [13] so that the results in Figures 2–4 may be compared to
observe the effects of internal heat generation and the temperature boundary conditions. The impact of
internal heat generation and the imposed temperature boundary conditions is to translate the curves
in Figure 2 to the right when compared to the data presented in Figure 2. It is observed in all of the
cases presented that the impact of increasing the Vadasz number is to have a stabilizing effect on
the convection.Fluids 2020, 5, x 10 of 12 
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5. Conclusions

The results for internal heat generation with specific Dirichlet thermal boundary conditions
as indicated in Table 1 are investigated when vibration is present. In this paper, case 2 to case
4 are considered. The Neumann thermal boundary conditions denoted by case 1 and 5 will be
analysed separately.

When the upper and lower walls are cooled (case 2), it is demonstrated that the critical Rayleigh
number is infinitely large for upper and lower rigid/impermeable walls. The work of [17] shows that
for a rigid lower wall and a free/permeable upper wall, for the same thermal boundary conditions, the
internal critical Rayleigh number is 470. The results for case 2 show that the basic state solution is
stable and convection does not occur.

For the case of heating from below and cooling from above (case 3) it is observed that for very
large Vadasz numbers the impact of vibration on convection becomes negligible. The results for case 3
are also compared to [17] and also referenced to the case of Benard convection with vibration and no
internal heat generation. For case 3 it is shown that increasing the Vadasz number has a stabilizing effect
on the convection. When the vibration is zero, the critical Rayleigh number approaches R0 = 3.38π2.
This value is significantly lower than the critical internal Rayleigh number of 470 cited in [17] for
cooled/free upper wall and cooled/rigid lower wall. In this case it is clear that heated lower walls
combined with internal heat generated significantly lowers the convection threshold. The Vadasz
number is also shown to impact the transition point from synchronous to subharmonic convection,
and the results indicate that increasing the Vadasz number causes this transition point to occur sooner
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for case 3 and for the case of Benard convection with vibration, without internal heat generation.
Upon comparing case 3 to the Benard case with vibration, there is a delay in the onset on subharmonic
frequencies as shown by the translation of the curves.

When the lower walls are cooled and the upper walls are heated (case 4), it is observed that the
vibration has a destabilizing effect on the convection. This result is in full agreement with previous
observations [31,32].

Finally it is also demonstrated that increasing the Vadasz number stabilizes the convection in a
porous layer with internal heat generation and vibration.
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