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Abstract: The scale-resolving simulation of a practical gas turbine combustor is performed using
a partially premixed finite-rate chemistry combustion model. The combustion model assumes
finite-rate chemistry by limiting the chemical reaction rate with flame speed. A comparison of the
numerical results with the experimental temperature and species mole fraction clearly showed the
superiority of the shear stress transport, K-omega, scale adaptive turbulence model (SSTKWSAS).
The model outperforms large eddy simulation (LES) in the primary region of the combustor, probably
for two reasons. First, the lower amount of mesh employed in the simulation for the industrial-size
combustor does not fit the LES’s explicit mesh size dependency requirement, while it is sufficient for
the SSTKWSAS simulation. Second, coupling the finite-rate chemistry method with the SSTKWSAS
model provides a more reasonable rate of chemical reaction than that predicted by the fast chemistry
method used in LES simulation. Other than comparing with the LES data available in the literature,
the SSTKWSAS-predicted result is also compared comprehensively with that obtained from the
model based on the unsteady Reynolds-averaged Navier–Stokes (URANS) simulation approach.
The superiority of the SSTKWSAS model in resolving large eddies is highlighted. Overall, the present
study emphasizes the effectiveness and efficiency of coupling a partially premixed combustion model
with a scale-resolving simulation method in predicting a swirl-stabilized, multi-jets turbulent flame
in a practical, complex gas turbine combustor configuration.

Keywords: CFD; combustion modeling; gas turbine combustor; scale-resolving simulation; partially
premixed flame

1. Introduction

The need for effective and efficient mathematical descriptions of turbulent reactive flows has led
to significant research interest in turbulent models that rely on resolving the turbulent spectrum [1–3]
and combustion models [4,5], which account for comprehensive chemical reactions without sacrificing
too much computational power. The LES approach [6] is known as one of the most popular
spectrum-resolving-based turbulent models, thanks to one of its most significant features. That is
to say, the large-scale turbulent eddies which dominate the turbulent dynamics and motions are
directly resolved by invoking a cell-size-based filtering technique [7]. However, this well-known
superiority of LES in describing large eddy motions also leads to one defect of the model: the high
computational power required for LES simulation due to the employment of small mesh cells to fill the
computational domain. Therefore, the LES modeling approach is more commonly used in academia
rather than industry, because of the complex and large-scale components often required in the latter.
In academia, on the other hand, the primary focus is the physical phenomena in small to medium scale
configurations, allowing the use of a more computationally expensive LES approach.
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Because of the LES defect, alternative mathematical methods, such as the detached eddy simulation
(DES) [8] and the scale adaptive simulation (SAS) [9], have been attracting more attention from
industries due to their lower requirement of computational powers and their ability to resolve the
turbulent spectrum. More specifically, the DES method employs a Reynolds-averaging Navier–Stokes
(RANS)-based modeling approach near the boundary layer regions, and the LES modeling approach
in the mainstream regions [10]; furthermore, the SAS method invokes an extra von Karmen length
scale in order to ensure an accurate energy distribution along the turbulent spectrum, and to improve
the performance of the RANS model [11]. In fact, the DES is often considered a first generation hybrid
RANS-LES modeling method, and the SAS is considered the second generation. This is because,
compared to DES, the SAS has two extra advantages allowing it to be quickly adapted to industrial
needs. First, the SAS has no explicit local grid spacing dependency in each direction, unlike the DES [12].
Second, the SAS can be easily incorporated into the existing experimentally adapted RANS model.

Consequently, Mentor and Egorov [13–18] studied the accuracy of the SAS method under
different flow conditions. For example, the 3D acoustic cavity and ITS (Institut für Thermische
Strömungsmaschinen, Stuttgart) turbulent combustion were investigated using the SSTKWSAS model
(the incorporation of the SAS approach into the shear stress transport K-omega model) [15]. Good
agreements between numerical and experimental results were obtained under the condition of using
coarse mesh. It was also shown [18] that the SAS outperforms LES in a periodic hill flow simulation
(the one described by Frohlich et al. [19]). Due to the coarse mesh and large time step used, the LES
returned incorrect results, while the SAS provided trustworthy results that were less dependent on mesh
or time step conditions. Many other case studies were provided by Egorov et al. [20], demonstrating
the good performance of SAS for various flows.

However, despite the accuracy of the SAS method in mathematically describing turbulent flow
motions, it is less valid for very complex reactive flows. One typical study might be the recent work
of Lourier et al. [21]. The thermoacoustic instability in a partially premixed lean swirl combustor
was investigated with the SSTKWSAS model coupled with two combustion models: the eddy
dissipation concept (EDC) model [22] and a finite-rate detail chemistry model incorporating an
assumed probability density function (PDF) method for subgrid modeling [23]. The numerically
obtained velocity, temperature and mixture fraction field fitted reasonably well with the experimental
data of Meier et al. [24]. The same turbulent model was also applied to the simulation of the ITS
combustion chamber fitted with a swirler [20]. The improved performance of SSTKWSAS over the
traditional shear stress transport, k-omega (SSTKW) model was observed on an unstructured mesh.

In the present study, a propane-fuelled, partially premixed industrial combustor is numerically
simulated with the SSTKWSAS model to further demonstrate the effectiveness and efficiency of the
model. The work differs from previous studies and provides extra contributions to the mathematical
modeling community in terms of the following points:

(1) The investigated combustor includes important features of a realistic industrial-used gas turbine
combustor, such as the multiple fuel holes, the swirler, the primary and secondary holes, the porous
walls, etc.;

(2) The SSTKWSAS approach is coupled with a finite-rate tabulated chemistry-based combustion
model validated in our previous work [25];

(3) Comprehensive comparisons of the SSTKWSAS model-produced results with experimental data
are provided for the main flame region of the combustor;

(4) The performances of different turbulence models are discussed and compared with LES results in
the literature [26].

Overall, this study is motivated by the lack of detailed SSTKWSAS (coupled with a valid
combustion model) simulation for a practical industrial-used gas turbine combustor. The extended
flame residence time in a realistic gas turbine combustor differs greatly from those in simple burners or
combustors, thus requiring the application of more comprehensive mathematical models.
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2. Mathematical Models

2.1. Turbulent Modeling

In this study, three turbulent models are employed to simulate the chosen gas turbine combustor.
The shear stress transport K-omega (SSTKW) [27] and Reynolds stress transport (RSM) [28] models are
RANS-based models widely used for industrial applications. The SSTKWSAS model is a scale-resolving
model derived from the SSTKW model by invoking a SAS approach [15]. The Reynolds-averaged
transport equations for SSTKW and SSTKWSAS are closed by solving two transport equations for
turbulent kinetic energy, k, and vortex frequency, ω. The RSM model is closed by solving six transport
equations for Reynolds stresses.

Although SSTKWSAS and SSTKW share almost the same equations, as shown in Equations (1)
and (2), their performances differ mainly because of the involvement of an extra term, QSAS, in ω
equations, as expressed in Equation (3).
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where Gk and Gω represent the generation of k and ω respectively. Dk and Dω represent the dissipation
of k and ω. Eω contains the cross-diffusion term due to transformation from the standard K-epsilon to
K-omega model. C1 and C2 are model constants [29], and the turbulent length scale Lt =

√
k/C1/4

µ ×ω.
The von Karman length scale, Lvk, is proportional to the ratio between the first and second velocity
derivatives. To provide high wave damping [18], the von Karman length scale is constrained by the
mesh size ∆ =

3√CV, where CV is the control volume. ρ, µe f f , κ and S are the fluid density, effective
viscosity, von Karman constant of 0.41 and scalar invariant of strain rate tensor, respectively.

For coarse mesh simulation using SSTKWSAS, the URANS (unsteady RANS) solution is obtained
because of the high local von Karman length scale, i.e., the small QSAS term leads to accumulated
viscosity. For fine mesh simulation, the term allows the resolving of the turbulent spectrum up to the
high wavenumbers with respect to the smallest grid spacing, and the model behaves like LES. For the
present study, a coarse mesh and large time step have been used in order to check the accuracy of
the SSTKWSAS model operating under URANS conditions. This greatly reduces the computational
time required for an industrial, complex gas turbine simulation, compared to the time needed for LES
simulation in the literature [26].

2.2. Combustion Modeling

The combustion simulation relies on the partially premixed finite-rate chemistry combustion
model, ZTFSC (Zimont Turbulent Flame Speed Closure) [25], which has been proven to be more
accurate than the non-premixed infinitely fast chemistry combustion models [26]. The superior
performance of ZTFSC over other mathematical models is attributed to the control of the flame and
flow dynamics by the important gas turbine features, such as the swirler and primary holes. The flame
residence time in the main flame region of a practical gas turbine combustor is much greater than
that of other simplified combustors, leading to a possible co-existence of burnt and unburnt mixture
packages. Therefore, a flame front tracking method is needed to detect the local mixture status.

The mixture fraction theory [4] is employed to transform the flame characteristics from a real
physical space to an imaginary mixture fraction space, for the purpose of using comprehensive chemical
reactions [30] simplified with the steady laminar flamelet modeling (SLFM) method [31]. The ZTFSC
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combustion model was originally designed for premixed flame modeling [32], and is blended with
non-premixed models to form a partially premixed combustion model. Following the mixture fraction
theory and ZTFCS, two transport Equation (4) are numerically solved with Equation (2) added to
remedy the defect of Equation (1). This is because the first equation has no explicit introduction of the
chemical reaction term

.
ωc, such that the chemical reactions are essentially infinitely fast. To limit the

chemical reaction rate, the chemical reaction term is introduced in Equation (2). Equation (5) is then
used to calculate interested reacting flow quantities (q) such as temperature, species fractions, etc. ∂ρθ

∂t +∇·(ρukθ) = ∇·(ραθ∇θ)
∂ρC
∂t +∇·(ρukC) = ∇·(ραc∇C) + ρ

.
ωc

(4)

q = C
∫ 1

0
∅b(θ)p(θ)dθ+ (1−C)

∫ 1

0
∅u(θ)p(θ)dθ (5)

where p(θ) represents a presumed beta PDF to account for the turbulent chemistry interaction [33]
given in Equation (6). The constants a and b are calculated by introducing an extra transport equation
for the variance of the mixture fraction.

P(θ) =
Γ(a + b)θa−1(1− θ)b−1

Γ(a)Γ(b)
(6)

In Equation (5), when the progress variable (or reaction progress) C is equal to 1, the mixtures are
fully burnt and are solved by invoking an SLFM method. When C equals 0, the mixed but unburnt
mixtures are solved by simply using non-reacting mixture fraction theory. The chemical reaction rate,

.
ωc, is closed and modeled following the work in [32], given as

ρωc = ρuUt|∇C| (7)

3. Experimental Conditions and Numerical Methods

The simulated Tay-model combustor is identical to that described by Bicen et al. [34], representing
a practical industrial-used can type gas turbine combustor (see Figure 1). The combustor includes
the important components of a practical gas turbine combustor, such as 10 fuel holes, a combustor
liner (porous wall), a swirler, 6 primary holes and 6 secondary or dilution holes. The diameters of the
primary and secondary holes were originally 10 mm and 20 mm, but the diameter for the former is
reasonably scaled to 8.6 mm in the present study, consistent with that introduced by Zhang et al. [25].
This strategy was introduced to compensate for the plug flow assumption for the six primary holes [35].
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The swirler vanes are simulated via computing axial and tangential velocity components, based on
the effective area of the annular shape in Figure 1b. Following the suggestion of Crocker et al. and
Lefebvre [36,37], Equation (8) is used to calculate tangential velocity.

ω = η
Wsw

AseρCd(1− b)
tanα (8)

where the blockage factor b, turning efficiency η and discharge coefficient Cd are 0.1, 0.92 and 0.75,
respectively. More details about the swirler can be found in the work of Bicen and Palma [38]. The swirl
number of 1.01 for the straight vane swirler is obtained using Equation (9), corresponding to a high
swirling strength.

S =
2
(
1−

(
d1
d2

)3
)

3
(
1−

(
d1
d2

)2
) tanθ′ (9)

The swirler inner and outer diameter d1 and d2 are 10.64 mm and 28 mm, respectively. The θ′ is
the geometric real angle without the influence of blockage factors, the discharge coefficients and the
turning efficiencies. Hence, the swirler angle chosen for representing the swirler and its associated
swirl effect is 54◦, corresponding to the ratio between the flow tangential component (0.809) and the
axial component (0.588).

A summary of the experimental conditions used for the present study is provided in Table 1,
and the numerical boundary conditions are summarized in Table 2. The flow condition leads to a
Reynolds number of 79,000, based on the mass flow rate of air and the diameter of the barrel.

Table 1. Experimental condition.

Experiment
.

Mair (Kgs)
.

Mpropane (Kgs)
Swirler Vane

Angle
P

(atm) Tinlet (K) Air-to-Fuel Ratio
AFR

1 0.1 0.00176 45◦ 1 315 57
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Table 2. Numerical boundary conditions.

Primary
Jets

Dilution
Jets

Swirler
Jets

Fuel
Jets

Porous
Wall Jet
(Head)

Porous
Wall Jet
(Barrel)

Porous
Wall Jet
(Nozzle)

.
M (Kg/s) 0.0136 0.0533 0.0069 0.00176 0.0066 0.0138 0.0058

T (K) 315 315 315 315 315 315 315

nO2/nN2
0.21/
0.79

0.21/
0.79

0.21/
0.79 - 0.21/

0.79
0.21/
0.79

0.21/
0.79

nC3H8 - - - 1 - - -

In terms of the numerical schemes, bounded second order implicit temporal and central differencing
(BCD) [39,40] momentum discretization schemes are used for the SSTKWSAS modeling, because the
model is able to push eddy viscosity down to the limit of grid resolution. This requires a non-dissipative
BCD scheme to ensure all dissipations are produced from the turbulent model itself. The second order
upwind [41] scheme is used for the discretizing reaction progress or progress variable, the mixture
fraction and its variance, the same as that used in the previous work [25].

In the present study, the average grid size corresponding to the use of 2 million cells is about
0.0226 mm, and the chosen time step is 0.0001 s. Because the performance of the SSTKWSAS turbulent
model does not have an explicit mesh size and time step dependency, the performance of the model is
comparable to that of LES simulation using a time step of 1× 10−7s [26]. The SSTKWSAS model-based
simulation is performed on the Solon cluster, City University of London. Statistical data is collected
using the last 0.6 s of 1.6 s of total simulation time, considering that the flame residence time is 0.01 s.
Readers might refer to [25] to gain more information about the simulation settings, such as the solver,
mesh independency, cell quality, etc.

4. Results and Discussions

The instantaneous contour plot of a typical swirling strength [42] equaling 2222.24/s, and the
time-averaged reaction progress at y = 0 m, a horizontal cutting plane, are presented in Figure 2.
The SSTKWSAS model resolves more swirling eddies in the main flame region of the combustor
compared to the two URANS models. The reason is well-recognized in the combustion science
community: that the widely used URANS models have limited mechanisms to resolve the turbulent
spectrum up to high wavenumbers. However, with a von Karman length scale introduced into SSTKW
to form the SSTKWSAS model, the latter model well resolves the turbulent spectrum and generates a
precessing vortex core (PVC) with a larger radius [43]. The occurrence of the PVC is a result of the
vortex breakdown phenomenon [44] concerning the intensive swirling flows in the center recirculation
zones (CRZs). The CRZs predicted by SSTKWSAS are hence more intensive and larger than those
obtained from the URANS-based modeling methods. This leads to a faster or larger reaction progress
for the SSTKWSAS model, as shown in Figure 2f. The fully combusted region (reaction progress equal
to 1) is larger than the region obtained from the URANS simulation.
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Besides, Figure 3 presents the time-averaged mixture fraction distribution in the main flame
region of the combustor. The fuel jets have clearly penetrated further towards the porous wall in
the SSTKWSAS model, due to the CRZs inducing a higher momentum in its outer layers. The inner
layers of the CRZs with negative axial velocity bring more oxygen from the primary holes back to the
combustor head near the fuel holes, leading to a reduced mixture fraction distribution (the dark blue
region). This also demonstrates that the CRZs obtained from the SSTKWSAS simulation are much
stronger than those from the other URANS models-based simulations.
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Figure 3. Time-averaged mixture fraction distribution in the main flame region of the combustor
(y = 0 mm). Left: SSTKW, Middle: RSM, Right: SSTKWSAS.

The net effect of the intensive swirling eddies and the CRZs is a widening of the high-temperature
zone in the main flame region of the combustor, as shown in Figure 4. The increased quantity of
eddies resolved by the SSTKWSAS model act to prevent the high-temperature zone, predicted by
the SSTKW model, from penetrating from the secondary region back into the primary region of the
combustor. To the author’s knowledge, such phenomena have not previously been highlighted because
most researchers have preferred to focus only on simplified burners, with no sufficient important
features of a practical gas turbine combustor, such as the primary and secondary holes. The penetrating
flame predicted by the SSTK model does not only change the wall temperature distribution in the
secondary region of the combustor, but also changes the hot fluid flow at the nozzle exit (the outlet of
the combustor). This finding is believed to be important for turbine designers, though no detailed
comparisons with experimental data are provided in the present study due to insufficient information
about the geometric shape of the transition nozzle.
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In fact, Figure 5 shows that in the main flame region of the combustor, the SSTKWSAS model-based
data fits reasonably well with the experimental data. The result supports the speculation made in our
previous work [25] that a scale adaptive simulation such as SSTKWSAS may provide a more accurate
representation of the flame behavior within the combustor head when the model is combined with a
partially premixed finite-rate combustion model. An accurate representation of the flame behavior
and its corresponding temperature in the main flame region is of the utmost importance in designing
advanced gas turbines, and has been acknowledged to be difficult due to the insufficient validation
of turbulent combustion models in a practical, industrial-used gas turbine combustor configuration.
Moreover, in Figure 5, the less accurate LES result from Di Mare et al. [26] is due to the two reasons
discussed in [25]: the use of an inappropriate, non-premixed, infinitely fast chemistry combustion
model, and the lack of experimental data at the primary holes. In addition, an interesting phenomenon
is observed in Figure 5b, such that the distribution of mixture fractions in the primary region is very
similar when comparing the two predictions from SSTKWSAS and LES. This demonstrates that the
SSTKWSAS model has an equal or at least similar ability to resolve the turbulent spectrum to that
of the LES model, and can be considered a trustfworthy model to be employed in future industrial
combustor simulation. It must be noted that, despite a similar mean mixture fraction distribution
being observed, the two turbulent models do not present the same temperature distribution, clearly
due to the coupling with different combustion models.
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Figure 6 shows that in the main flame region of the combustor, the species mole fractions predicted
by SSTKWSAS outperform those obtained from the URANS models and even the LES model-based



Fluids 2020, 5, 126 10 of 14

works [26]. The less accurate prediction of CO2 level may imply that the chemistry closure method
employed is not suitable for the slow CO oxidization reaction.
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Finally, it is worth emphasizing that the chosen time step of 0.001 s for SSTKWSAS the modeling
method is far larger than that used by Di Mare et al. in their LES work [26]. Hence, the present
simulation requires far less computational power compared to the power requirement of the LES
simulation. Due to the lack of information, such as software design, methodologies used etc., from the
literature, more detailed comparisons of computational cost cannot be provided, but the reduction in the
total time iterations used for the present study clearly represent a huge saving of computational power.

5. Conclusions

A scale-resolving simulation of a propane-fuelled industrial gas turbine combustor using finite-rate
tabulated chemistry is performed, and the result is compared with that obtained from the two widely
used URANs models, the SSTKW and RSM models. The chosen geometry includes important
features of a commercial industrial-used gas turbine combustor, and provides an excellent test case to
demonstrate the advantages of coupling a spectrum-resolving turbulent model, called SSTKWSAS,
with a partially premixed, finite-rate chemistry-based combustion model in a very complex, multi-jet,
3D swirling flow environment. To reduce the computational time, a tabulated chemistry method is
employed in conjunction with the SLFM method to simplify the employed comprehensive chemical
kinetics. The turbulent strain-induced local chemical non-equilibrium is considered by taking into
account the so-called scalar dissipation rate when the flamelets library is tabulated, and the pre-PDF
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method is chosen as a bridge to cover the interaction between the turbulence and combustion. The main
contributions and findings of the present study are:

(1) The spectrum-resolving SSTKWSAS model-based simulation is performed for the first time to
predict the turbulent combustion in a practical industrial-used gas turbine combustor, by using a
partially premixed, finite-rate chemistry combustion model.

(2) The SSTKWSAS model-based simulation outperforms the URANS-based simulation by having
provided a more accurate temperature and species concentration in the main flame region of the
combustor, contributing to its ability to resolve turbulence eddies at high wavenumbers.

(3) The inaccurate LES prediction of turbulent combustion in the main flame region of the combustor
found in the literature is improved via the solutions discussed and provided.

Overall, the present study emphasized the dominant advantages of employing a more efficient and
numerically accurate spectrum-resolving simulation model, SSTKWSAS, in simulating a 3D swirling
flame developing in a complex, multi-jet flow environment. The SSTKWSAS model-based simulation
was performed on the Solon cluster, City University of London. With 20 Computer Processing Units
(CPUs) used, the total wall-clock time of 160 h was spent achieving one prediction on 2 million mesh
cells. The total wall clock time of 26,432 h, using 64 CPUs, for one LES prediction of the same combustor
available in the literature is unaffordable by most industries (1 million cells), though the prediction
was done in 2004 [26].
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Nomenclatures

BCD Bounded central differencing
CRZ Center recirculation zone
CV Control volume (m3)
C Progress variable
Cd Discharge coefficient
d1, d2 Inner and outer diameter of swirler (m)
b Blockage factor
DES Detached eddy simulation
Dk, Dω Dissipation of k and ω
Eω Cross-diffusion term
EDC Eddy dissipation concept
Gk, Gω Generation of k and ω
k turbulent kinetic energy (m2

·s-2)
Lt Turbulent length scale (m)
Lvk Von Karman length scale (m)
LES Large eddy simulation
.

Mair Mass flow rate of air (Kg·s-1)
.

Mpropane Mass flow rate of propane (Kg·s-1)
PDF Probability density function
q Reacting flow quantity
RSM Reynolds stress transport model
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S Swirl number
SAS Scale adaptive simulation
SLFM Steady laminar flamelet modeling
Tinlet Inlet temperature of mixtures (K)
Ut Turbulent flame speed (m·s-1)
URANS Unsteady Reynolds-averaged Navier–Stokes
ZTFSC Zimont turbulent flame speed closure
Greek symbols
αθ,αc Turbulent Prandtl and Schmidt number
ω Vortex frequency (s−1)
∆ Mesh size (m)
ρ, ρu Fluid, and unburnt mixture density (Kg·m−3)
µe f f Effective viscosity (kg·m−1

·s−1)
κ Von Karman constant

.
ωc Chemical reaction rate (Kg·m−3

·s−1)
η Turning efficiency
θ′ Geometric real angle (degree)
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