Thermodynamics Characterization of Lung Carcinoma, Entropic Study and Metabolic Correlations
Abstract
:1. Introduction
2. Methods
Polarization Vector
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATP: | Adenosine Triphosphate |
CT: | Computed Tomography |
PET: | Positron Emission Tomography |
MRI: | Magnetic Resonance Imaging |
G6P: | Glucose-6-Phosphate |
PPP: | Pentose Phosphate Pathway |
ROS: | Reduced Oxygen Products |
Appendix A
- a(00) and a(11) reciprocal dielectric constants.
- L(00) resistance.
- L(11) conductivity.
References
- Haussmann, H.J. Smoking and lung cancer: Future research directions. Int. J. Toxicol. 2007, 26, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scala, A.; Ficarra, S.; Russo, A.; Barreca, D.; Giunta, E.; Galtieri, A.; Grassi, G.; Tellone, E. A new erythrocyte-based biochemical approach to predict the antiproliferative effects of heterocyclic scaffolds: The case of indolone. Biochim. Biophys. Acta 2015, 1850, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Scala, A.; Ficarra, S.; Russo, A.; Barreca, D.; Giunta, E.; Galtieri, A.; Grassi, G.; Tellone, E. Alterations in Red Blood Cell Functionality Induced by an Indole Scaffold Containing a Y-Iminodiketo Moiety: Potential Antiproliferative Conditions. Oxidative Med. Cell. Longev. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Kim, T.; Oh, J.; Kim, B.; Lee, J.; Jeon, S. A study of dielectric properties of fatty, malignant and fibro-glandular tissues in female human breast. In Proceedings of the 2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 19–23 May 2008; pp. 216–219. [Google Scholar]
- O’Rourke, A.P.; Lazebnik, M.; Bertram, J.M.; Converse, M.C.; Hagness, S.C.; Webster, J.G.; Mahvi, D.M. Dielectric properties of human normal, malignant and cirrhotic liver tissue: In vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open ended coaxial probe. Phys. Med. Biol. 2007, 52, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Sun, B.Y.; Wang, H.X.; Pang, S.; Xu, X.; Sun, Q. Experimental Study of Dielectric Properties of Human Lung Tissue in Vitro. J. Med. Biol. Eng. 2014, 34, 598–604. [Google Scholar]
- Chen, X.; Lv, X.; Wang, H. Lung carcinoma recognition by blood dielectric spectroscopy. Bio-Med. Mater. Eng. 2015, 26, S895–S901. [Google Scholar]
- Farsaci, F.; Tellone, E.; Cavallaro, M.; Russo, A.; Ficarra, S. Low frequency dielectric characteristics of human blood: A non-equilibrium thermodynamic approach. J. Mol. Liq. 2013, 188, 113–119. [Google Scholar] [CrossRef]
- Farsaci, F.; Ficarra, S.; Russo, A.; Galtieri, A.; Tellone, E. Dielectric properties of human diabetic blood: Thermodynamic characterization and new prospective for alternative diagnostic techniques. J. Adv. Dielectr. 2015, 5, 1550021. [Google Scholar] [CrossRef] [Green Version]
- Farsaci, F.; Russo, A.; Ficarra, S.; Tellone, E. Dielectric properties of human normal and malignant liver tissue: A non-equilibrium thermodynamics approach. Open Access Libr. J. 2015, 2, 1395. [Google Scholar] [CrossRef]
- Farsaci, F.; Ficarra, S.; Russo, A.; Galtieri, A.; Tellone, E. On evaluation of electric conductivity by mean of non-equilibrium thermodynamic approach with internal variables. An application to human erythrocyte suspension for metabolic characterizations. J. Mol. Liq. 2016, 224, 1181–1188. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. Evaluation of the human blood entropy production: A new thermodynamic approach. J. Ultrasound 2016, 19, 265–273. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Russo, A.; Galtieri, A.; Ficarra, S. Rheological properties of human blood in the network of non-equilibrium thermodynamic with internal variables by means of ultrasound wave perturbation. J. Mol. Liq. 2017, 231, 206–212. [Google Scholar] [CrossRef]
- Farsaci, F.; Ficarra, S.; Galtieri, A.; Tellone, E. New non-equilibrium thermodynamic fractional visco-inelastic model to predict experimentally inaccessible processes and investigate pathophysiological cellular structures. Fluids 2017, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Molecular characterization of a peculiar blood clot fluidification by theoretical thermodynamic models and entropy production study. J. Mol. Liq. 2018, 265, 457–462. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Expanding the repertoire of dielectric fractional models: A comprehensive development and functional applications to predict metabolic alterations in experimentally-inaccessible cells or tissues. Fluids 2018, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Is a dangerous blood clot formation a reversible process? Introduction of new characteristic parameter for thermodynamic clot blood characterization: Possible molecular mechanisms and pathophysiologic applications. J. Mol. Liq. 2018, 262, 345–353. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Electromagnetic waves propagation in normal and pathological hemoglobins: Thermodynamic comparative study of the influence of the relative macromolecular variability. J. Mol. Liq. 2019, 291, 111319. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. A new model for thermodynamic characterization of hemoglobin. Fluids 2019, 4, 135. [Google Scholar] [CrossRef] [Green Version]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Phenomenological approach on electromagnetic waves propagation in normal and diabetic blood, influence of the relative macromolecular structures. J. Mol. Liq. 2019, 274, 577–583. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. A new model with internal variables for theoretical thermodynamic characterization of hemoglobin: Entropy determination and comparative study. J. Mol. Liq. 2019, 279, 632–639. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. A thermodynamic characterization of the phenomena evolving in cancer pathology by dielectric relaxation in blood: A new approach by construction of TTM (Thermodynamic Tumor Matrix). J. Mol. Liq. 2020, 113839. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellorofonte, C.; Vedruccio, C.; Tombolini, P.; Ruoppolo, M.; Tubaro, A. A non invasive detection of prostate cancer by electromagnetic interaction. Eur. Urol. 2005, 47, 29–37. [Google Scholar] [CrossRef]
- Sugitani, T.; Kubota, S.-I.; Kuroki, S.-I.; Sogo, K.; Arihiro, K.; Okada, M.; Kadoya, T.; Hide, M.; Oda, M.; Kikkawa, T. Complex permittivities of breast tumor tissues obtained from cancer surgeries. Appl. Phys. Lett. 2014, 104, 253702. [Google Scholar] [CrossRef]
- Joines, W.T.; Zhang, Y.; Li, C.; Jirtle, R.L. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 1994, 21, 547–550. [Google Scholar] [CrossRef]
- Foster, K.R.; Schepps, J.L. Dielectric properties of tumor and normal tissues at radio through microwavefrequencies. J. Micro. Power. 1981, 16, 107–119. [Google Scholar] [CrossRef]
- Sha, L.; Ward, E.R.; Story, B. A review of dielectric properties of normal and malignant breast tissue. In Proceedings of the IEEE SoutheastCon, Columbia, SC, USA, 5–7 April 2002; pp. 457–462. [Google Scholar]
- Redmann, K.; Müller, V.; Tanneberger, S.; Kalkoff, W. The membrane potential of primary ovarian tumor cells in vitro and its dependence on the cell cycle. Acta Biol. Med. Ger. 1972, 28, 853. [Google Scholar]
- Lobikin, M.; Chernet, B.; Lobo, D.; Levin, M. Resting potential, oncogene-induced tumorigenesis, and metastasis: The bioelectric basis of cancer in vivo. Phys. Biol. 2012, 9, 065002. [Google Scholar] [CrossRef] [Green Version]
- Warburg, O. On respiratory impairment in cancer cells. Science 1956, 124, 269–270. [Google Scholar]
- Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer 2016, 16, 635–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluitenberg, G.A. On dielectric and magnetic relaxation phenomena and non-equilibrium thermodynamics. Physica 1973, 68, 75–82. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. On dielectric and magnetic relaxation phenomena and vectorial internal degrees of freedom in thermodynamics. Phys. A Stat. Mech. Appl. 1977, 87, 302–330. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. On vectorial internal variables and dielectric and magnetic relaxation phenomena. Phys. A Stat. Mech. Appl. 1981, 109, 91–122. [Google Scholar] [CrossRef]
- McCrum, N.G.; Read, B.E.; Williams, G. An Elastic and Dielectric Effects in Polymeric Solids; John Wiley and Sons Ltd.: London, UK, 1967. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsaci, F.; Tellone, E.; Galtieri, A.; Ficarra, S. Thermodynamics Characterization of Lung Carcinoma, Entropic Study and Metabolic Correlations. Fluids 2020, 5, 164. https://doi.org/10.3390/fluids5040164
Farsaci F, Tellone E, Galtieri A, Ficarra S. Thermodynamics Characterization of Lung Carcinoma, Entropic Study and Metabolic Correlations. Fluids. 2020; 5(4):164. https://doi.org/10.3390/fluids5040164
Chicago/Turabian StyleFarsaci, Francesco, Ester Tellone, Antonio Galtieri, and Silvana Ficarra. 2020. "Thermodynamics Characterization of Lung Carcinoma, Entropic Study and Metabolic Correlations" Fluids 5, no. 4: 164. https://doi.org/10.3390/fluids5040164
APA StyleFarsaci, F., Tellone, E., Galtieri, A., & Ficarra, S. (2020). Thermodynamics Characterization of Lung Carcinoma, Entropic Study and Metabolic Correlations. Fluids, 5(4), 164. https://doi.org/10.3390/fluids5040164