Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures †
Abstract
:1. Introduction
2. Conservation Equations for Stochastic Process
3. Sets of Stochastic Equations
4. Equations for Critical Reynolds Number
5. The Equation for the Critical Point
6. The Solution for the First Critical Reynolds Number
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 1941, 32, 16–18. [Google Scholar]
- Kolmogorov, A.N. A new metric invariant of transitive dynamic sets and automorphisms of the Lebesgue spaces. Dokl. Akad. Nauk SSSR 1958, 119, 861–864. [Google Scholar]
- Kolmogorov, A.N. About the entropy per time unit as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 1958, 124, 754–755. [Google Scholar]
- Kolmogorov, A.N. Mathematical models of turbulent motion of an incompressible viscous fluid. Uspekhi Mat. Nauk 2004, 59, 5–10. [Google Scholar] [CrossRef]
- Landau, L.D. Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 1944, 44, 339–342. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Ruelle, D.; Takens, F. On the nature of turbulence. Commun. Math. Phys. 1971, 20, 167–192. [Google Scholar] [CrossRef]
- Feigenbaum, M. The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 1980, 77, 65–86. [Google Scholar] [CrossRef]
- Klimontovich, Y.L. Problems of the statistical theory of open sets: Criteria of the relative degree of the ordering of states in the self-organization processes. Usp. Fiz. Nauk. 1989, 158, 59–91. [Google Scholar] [CrossRef] [Green Version]
- Haller, G. Chaos Near Resonance; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Struminskii, V.V. Origination of turbulence. Dokl. Akad. Nauk SSSR 1989, 307, 564–567. [Google Scholar]
- Samarskii, A.A.; Mazhukin, V.I.; Matus, P.P.; Mikhailik, I.A. Z/2 conservative schemes for the Korteweg–de Vries equations, Dokl. Akad. Nauk 1997, 357, 458–461. [Google Scholar]
- Orzag, S.A.; Kells, L.C. Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 1980, 96, 159–205. [Google Scholar] [CrossRef] [Green Version]
- Vishik, M.I.; Zelik, S.V.; Chepyzhov, V.V. Regular attractors and nonautonomous perturbations of them. Sb. Math. 2013, 204, 3–46. [Google Scholar] [CrossRef]
- Carvalho, A.N.; Langa, J.A.; Robinson, J.C.; Su’arez, A. Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system. J. Differ. Equ. 2007, 236, 570–603. [Google Scholar] [CrossRef] [Green Version]
- Vishik, M.I.; Chepyzhov, V.V. Trajectory attractors of equations of mathematical physics. Uspekhi Mat. Nauk. 2011, 66, 3–102. [Google Scholar] [CrossRef]
- Vishik, M.I.; Chepyzhov, V.V. Trajectory attractors of equations of mathematical physics. Russ. Math. Surv. 2011, 66, 637–731. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. On a dynamical system generated by Navier–Stokes equations. J. Sov. Math. 1975, 3, 458–479. [Google Scholar] [CrossRef]
- Vishik, M.I.; Zelik, S.V. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Commun. Pure Appl. Anal. 2014, 13, 2059–2093. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshits, E.F. Fluid Mechanics; Perg. Press Oxford: London, UK, 1959. [Google Scholar]
- Constantin, P.; Foais, C.; Temam, R. On dimensions of the attractors in two-dimensional turbulence. Phys. D Nonlinear Phenom. 1988, 30, 284–296. [Google Scholar] [CrossRef]
- Vishik, M.I.; Komech, A.I. Kolmogorov equations corresponding to a two-dimensional stochastic Navier–Stokes system. Tr. Mosk. Mat. Obs. 1983, 46, 3–43. [Google Scholar]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–715. [Google Scholar] [CrossRef]
- Malraison, B.; Berge, P.; Dubois, M. Dimension of strange attractors: An experimental determination for the chaotic regime of two convective systems. J. Phys. Lett. 1983, 44, L897–L902. [Google Scholar] [CrossRef]
- Procaccia, I.; Grassberger, P. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar]
- Procaccia, I.; Grassberger, P. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 1983, 28, 2591–2593. [Google Scholar]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Phys. D Nonlinear Phenom. 1984, 13, 34–54. [Google Scholar] [CrossRef]
- Rabinovich, M.I.; Reiman, A.M.; Sushchik, M.M. Correlation dimension of the flow and spatial development of dynamic chaos in the boundary layer. JETP Lett. 1987, 13, 987. [Google Scholar]
- Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, D.J.; Jen, E.; Crutchfield, P.J. Low-dimensional chaos in hydrodynamic system. Phys. Rev. Lett. 1983, 51, 1442–1446. [Google Scholar] [CrossRef]
- Sreenivasan, K.R. Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 1991, 23, 539–600. [Google Scholar] [CrossRef]
- Priymak, V.G. Splitting dynamics of coherent structures in a transitional round-pipe flow. Dokl. Phys. 2013, 58, 457–465. [Google Scholar] [CrossRef]
- Mayer, C.S.J.; von Terzi, D.A.; Fasel, H.F. Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 2011, 674, 5–42. [Google Scholar] [CrossRef]
- Newton, P.K. The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 2016, 786, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Fursikov, A.V. Moment theory for Navier–Stokes equations with a random right-hand side. Izv. Ross. Akad. Nauk. 1992, 56, 1273–1315. [Google Scholar]
- Davidson, P.A. Turbulence; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Millionshchikov, M.D. Turbulent Flow in Boundary Layers and in Pipes; Nauka: Moscow, Russia, 1969. [Google Scholar]
- Hinze, J.O. Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Schlichting, H. Boundary-Layer Theory, 6th ed.; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Fundamentals of Heat and Mass Transfer and Hydrodynamics of Single-Phase and Two-Phase Media. Criterial Integral Statistical Methods and Direct Numerical Simulation; Galleya Print: Moscow, Russia, 2008; Available online: http://search.rsl.ru/ru/catalog/record/6633402 (accessed on 24 December 2020).
- Dmitrenko, A.V. Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 2007, 52, 384–387. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Calculation of the boundary layer of a two-phase medium. High. Temp. 2002, 40, 706–715. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Heat and mass transfer and friction in injection to a supersonic region of the Laval nozzle. Heat Transf. Res. 2000, 31, 338–399. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Film cooling in nozzles with large geometric expansion using method of integral relation and second moment closure model for turbulence. In Proceedings of the 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 97–2911, Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Heat and mass transfer in combustion chamber using a second-moment turbulence closure including an influence coefficient of the density fluctuation in film cooling conditions. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 98–3444, Cleveland, OH, USA, 13–15 July 1998. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Nonselfsimilarity of a boundary-layer flow of a high-temperature gas in a Laval nozzle. Aviats. Tekh. 1993, 1, 39–42. [Google Scholar]
- Dmitrenko, A.V. Computational investigations of a turbulent thermal boundary layer in the presence of external flow pulsations. In Proceedings of the 11th Conference on Young Scientists, Moscow, Physicotechnical Institute, Part. 2, Moscow, Russia, 10 November 1986; pp. 48–52, Deposited at VINITI 08.08.86, No. 5698-B8. [Google Scholar]
- Heisenberg, W. Zur statistischen Theorie der Turbulenz. Z. Phys. 1948, 124, 628–657. [Google Scholar] [CrossRef]
- Starikov, F.A.; Kochemasov, G.G.; Kulikov, S.M.; Manachinsky, A.N.; Maslov, N.V.; Ogorodnikov, A.V.; Soldatenkov, I.S. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor. Opt. Lett. 2007, 32, 2291–2293. [Google Scholar] [CrossRef]
- Starikov, F.A.; Khokhlov, S.V. Phase correction of laser radiation with the use of adaptive optical systems at the Russian Federal Nuclear Center–Institute of Experimental Physics. Optoelectron. Instr. Data Proc. 2012, 48, 134–141. [Google Scholar]
- Dmitrenko, A.V. Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 2013, 58, 228–235. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions-Equivalence of Measures; Scientific Discovery Diploma No. 458, Registration No. 583 of December 2; IAASD; Russian Federation: Moscow, Russia, 2013. [Google Scholar]
- Dmitrenko, A.V. Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator; Galleya-Print: Moscow, Russia, 2013; Available online: https://search.rsl.ru/ru/record/01006633402 (accessed on 24 December 2020). (In Russian)
- Dmitrenko, A.V. Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 2014, 8, 1101–1111. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2015, 88, 1569–1576. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of critical Reynolds numbers for nonisothermal flows using stochastic theory of turbulence and equivalent measures. Heat Transf. Res. 2016, 47, 41–48. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 2016, 43, 182–187. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 2016, 43, 82–91. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical determination of the heat transfer coefficient for gas, liquid and liquidmetal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 2017, 29, 1197–1205. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2017, 90, 1288–1294. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. J. Phys. Conf. Ser. 2018, 1009, 012017. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. The stochastic theory of the turbulence. IOP Conf. Ser. Mater. Sci. Eng. 2018, 468, 012021. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures. J. Phys.Conf. Ser. 2019, 1250. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Some aspects of the formation of the spectrum of atmospheric turbulence. JP J. Heat Mass Transf. 2020, 19, 201–208. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere. J. Phys. Conf. Ser. 2019, 1337. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The correlationdimension of an attarctor determined on the base of the theory of equivalence of measures and stochastic equations for continuum. Contin. Mechan. Thermod. 2020, 32, 63–74. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Uncertainty relation in turbulent shear flow based on stochastic equations of the continuum and the equivalence of measures. Contin. Mech. Thermod. 2020, 32, 161–171. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Formation of the turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2020, 93, 122–127. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures. Contin. Mech. Thermod. 2020. [CrossRef]
- Dmitrenko, A.V. The possibility of using low-potential heat based on the organic Rankine cycle and determination of hydraulic characteristics of industrial units based on the theory of stochastic equations. JP J. Heat Mass Transf. 2020, 21, 125–132. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theoretical solution for the Reynolds analogy based on the stochastic theory of turbulence. JP J. Heat Mass Transf. 2019, 18, 463–476. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012015. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The Spectrum of the turbulence based on theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012021. [Google Scholar] [CrossRef]
- Bunker, R.S. A review of turbine shaped film cooling technology. J. Heat Transf. 2005, 127, 441–453. [Google Scholar] [CrossRef]
- Srinath, E.; Hanb, J.-C. A review of hole geometry and coolant density effect on film cooling. Front. Heat Mass Transf. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, A.V. Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures. Fluids 2021, 6, 5. https://doi.org/10.3390/fluids6010005
Dmitrenko AV. Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures. Fluids. 2021; 6(1):5. https://doi.org/10.3390/fluids6010005
Chicago/Turabian StyleDmitrenko, Artur V. 2021. "Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures" Fluids 6, no. 1: 5. https://doi.org/10.3390/fluids6010005
APA StyleDmitrenko, A. V. (2021). Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures. Fluids, 6(1), 5. https://doi.org/10.3390/fluids6010005