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Abstract: Linear stability analysis of a steady convective flow in a tall vertical annulus caused by
nonlinear heat sources is conducted in the paper. Heat sources are generated as a result of a chemical
reaction. The effect of radial cross-flow through permeable porous walls of the annulus is analyzed.
The problem is relevant to biomass thermal conversion. The base flow solution is obtained by solving
nonlinear boundary value problem. Linear stability analysis is performed, using collocation method.
The calculations show that radial inward or outward flow has a stabilizing effect on the flow, while the
increase in the Frank–Kamenetskii parameter (proportional to the intensity of the chemical reaction)
destabilizes the flow. The increase in the Reynolds number based on the radial velocity leads to
the appearance of the second minimum on the marginal stability curves. The rate of increase in the
critical Grashof number with respect to the Reynolds number is different for inward and outward
radial flows.

Keywords: linear stability; convective flow; nonlinear heat sources; collocation method

1. Introduction

The analysis of instability of a steady convective flow generated by internal heat
sources is important for many problems in science and engineering. The stability of a
steady convective flow in an annulus caused by heat sources with constant density is
analyzed in [1]. The case of heat sources of non-uniform density is considered in [2,3].
It is shown in these papers that for annual flow, two types of instability exist: (a) shear
instability and (b) buoyant instability, discovered earlier in [4,5] for the vertical planar
layer and circular pipe, respectively. Recent interest in biomass thermal conversion [6,7]
stimulated research in the stability of flows driven by nonlinear heat sources. The base
flow solution in this case cannot be found analytically as in many classical problems
in hydrodynamic stability (see [8], for example). Bifurcation theory [9] can be used to
determine the number of solutions and the region in the parameter space where solutions
exist. In a recent paper [10], bifurcation theory is used to analyze nonlinear boundary
value problem in an annulus. It is found that for each radius ratio, between the radii, there
exists the value of the Frank–Kamenetskii parameter F∗ (proportional to the intensity of
the chemical reaction) such that there are two solutions in the domain 0 < F < F∗, one
solution for F = F∗ and no solutions in the region of F > F∗.

The stability of viscous flow between two concentric cylinders with a radial flow
through permeable porous walls of the annulus is analyzed in [11]. Such models (in the
presence of rotation) are motivated by applications to dynamic filtration devices and vortex
flow reactors [12,13]. The stability of such flows is investigated in [14–16]. In the case of
non-isothermal conditions, the presence of radial flow can alter the perturbation dynamics.
The stability of a combined flow caused by internal heat sources with constant density
and a radial inflow or outflow between the permeable walls of the annulus is analyzed
in [17], where it is shown that radial flow can stabilize or destabilize the convective flow. In
a recent study, the linear stability of a flow in porous medium with permeable boundaries
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in a vertical layer of annular cross-section is analyzed by [18] for the isothermal case and
in [19] for the case where the walls of the layer are maintained at different temperatures. It
is shown that for non-isothermal case the flow becomes more and more unstable as the
aspect ratio increases.

Linear stability of a steady convective flow in an annulus generated by non-homogeneous
heat sources is studied in [20]. The effect of nonlinear internal heat sources on the stability
boundary of a vertical flow in an annulus is investigated in [21] for both asymmetric and
axisymmetric perturbations for wide range of radius ratios, Prandtl numbers and Frank–
Kamenetskii parameters (proportional to the intensity of a chemical reaction). Such models
are used to investigate processes in biomass thermal conversion. Different factors (as shown
experimentally in [22]) affect the process: external electric field, the degree of swirl of the
flow, and convection in the chamber. Complex physical processes are analyzed in nature
and engineering, using three basic approaches: (a) experimental analysis, (b) numerical
modeling ([23]), and (c) stability analysis. In the present paper, we consider linear stability
of a steady convective flow in an annulus caused by nonlinear heat sources. In addition,
there is a radially inward or outward flow through porous walls of the annulus. In this case,
we are looking for flow instability since it results in more intensive mixing and (hopefully)
more efficient energy conversion. The stability of a combined flow (vertical flow due to heat
sources and radial flow through the walls) is analyzed. Wide gaps are not used in the study;
therefore, the linear stability is analyzed with respect to axisymmetic perturbations. The
corresponding nonlinear boundary value problem for the base flow is solved numerically.
Using the method of normal modes, we reduce the linear stability problem to the solution
of a system of ordinary differential equations with variable coefficients. The collocation
method based on Chebyshev polynomials is used to discretize the problem. Calculations
show that both inward and outward radial flows stabilize the convective flow in the
vertical direction. On the other hand, the Frank–Kamenetskii parameter has a destabilizing
influence on the flow. It is shown that a second minimum appears on the marginal stability
curve as the Reynolds number increases. For larger values of the Reynolds number, the
second minimum disappears.

2. Mathematical Formulation of the Problem

Suppose that a viscous incompressible fluid is situated in the region D = {R1 < r̃ <
R2, 0 ≤ ϕ < 2π,−∞ < z̃ < +∞} between two infinitely long concentric cylinders, where
(r̃, ϕ, z̃) is a system of cylindrical polar coordinates centered at the axes of the cylinders. The
cylinders’ walls are maintained at a constant and equal temperature θ0. Heat is generated
inside the annulus, due to the exothermal chemical reaction described by Arrhenius’ law:

Q = Q0e−E/(RT̃), (1)

where E is the activation energy, R is the universal gas constant, Q0 is a constant and T̃
is the absolute temperature. Models with internal heat generation given by (1) are used
in practice in order to describe processes during biomass thermal conversion [20,21,23]
with the objective to obtain cleaner and more efficient sources of energy. Instability is a
desirable phenomenon in this case since it enhances fluid mixing, which, in turn, leads to
more efficient energy conversion. One of the factors that affects the stability characteristics
is the radial flow in the transverse direction. We assume that there is a radial inward or
outward flow through the permeable walls r̃ = R1 and r̃ = R2. The following convention
is used in the paper: the variables with tildes are dimensional while the variables without
tildes are dimensionless.
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The problem is described by the system of the Navier–Stokes equations under the
Boussinesq approximation. The dimensionless form of the system is as follows:

∂v
∂t

+ Gr(v · ∇)v = ∇p + ∆v + Tek, (2)

∂T
∂t

+ Grv · ∇T =
1

Pr
∆T +

F
Pr

eT , (3)

∇ · v = 0, (4)

where v is the velocity of the fluid, T is the temperature, p is the pressure and ek = (0, 0, 1).
The Frank–Kamenetskii transformation is used [24] to transform the source term in (1).
The idea is to expand the exponent in the Taylor series and take into account only the
linear terms of the expansion. The accuracy of the Frank–Kamenetskii transformation is
analyzed in [24,25], where it is shown that for typical values of the parameters in (1), the
transformation is quite accurate. The advantage of using it is related to the fact that the
source term in (3) is mathematically easier to work with than the term in (1).

The following values are chosen as the measures, respectively, of length, h = (R2 − R1)/2,
time, h2/ν, velocity, gβh2Rθ2

0/(νE) , temperature, Rθ2
0/E , and pressure, ρgβhRθ2

0/E. Here,
ρ is the density of the fluid, g is the acceleration due to gravity, β is the coefficient of the
thermal expansion and ν is the viscosity of the fluid. In addition, we introduce the notations
η = R1/R2, r1 = R1/h and r2 = R2/h.

Equations (2)–(4) admit a steady solution of the following form:

v0 = (U0(r), 0, W0(r)), T0 = T0(r), p0 = p01(r) + p02(z). (5)

The radial inflow or outflow through porous cylinders r = r1 and r = r2 is described
by the function U0(r). It follows from (4) that U0(r) satisfies the following equation:

dU0

dr
+

U0

r
= 0.

Hence,

U0 =
D
r

,

where D is an arbitrary constant. The boundary conditions are as follows:

U0|r=r1 =
Re
Gr

, U0|r=r2 =
Reη

Gr
. (6)

The following four dimensionless parameters are used to describe the problem:
the Grashof number, Gr = gβRθ2

0h3/(ν2E), the Prandtl number,Pr = ν/κ, the Frank–
Kamenetskii parameter, F = [(Q0k0Eh2)/(κRθ2

0)] exp [−E/(Rθ0)], and the radial Reynolds
number Re = Uh/ν, where the radial component of the base flow in dimensionless form is
given by the following:

U0(r) =
Re

rGr
. (7)

Here, U is the velocity of the fluid at r̃ = R1. It follows from (6) that the velocity at
the inner boundary (the first boundary condition in (6)) is fixed. In this case, it is required
from continuity (Equation (4)) that the second condition in (6) must be satisfied. Radial
outflow (Re > 0) corresponds to the case where fluid enters the domain through the inner
boundary r = r1 and leaves it at r = r2. Radial inflow (Re < 0) corresponds to the flow in
the opposite direction.
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Substituting (6) and (7) into (2)–(4), we obtain the system of equations describing the
base flow:

W
′′
0 +

W
′
0

r
(1− Re) + T0 = C, (8)

T
′′
0 +

T
′
0

r
(1− PrRe) + FeT0 = 0, (9)

where C = dp02/dz. The function p01(r) is not determined since it will not be used
in sequel.

The boundary conditions are the following:

W0(r1) = 0, W0(r2) = 0, T0(r1) = 0, T0(r2) = 0. (10)

It is assumed that the annulus is closed so that the total fluid flux through the cross-
section of the annulus is zero: ∫ r2

r1

rW0(r) dr = 0. (11)

The nonlinear boundary value problem of (8)–(11) is solved, using Matlab routine
bvp4c for different values of the parameters, F, Pr, and Re. The graphs of the base flow
velocity and temperature distributions are shown in Figures 1 and 2, respectively, for three
values of the Reynolds number. The parameters R and F are fixed at η = 0.6 and F = 0.5,
respectively.

r

W
0

Base flow velocity

Re=0

Re=2

Re=4

Figure 1. Base flow velocity distribution for F = 0.5 and η = 0.6.
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Figure 2. Base flow temperarture distribution for F = 0.5 and η = 0.6.

Instability is expected here since the velocity profiles contain inflection points. For
Re = 0, there is one flow upstream in the middle portion of the channel and two flows
downstream near the boundaries. As the Reynolds number increases, the intensity of
the downstream flow near the outer boundary decreases. Velocity gradients also become
smaller as the Reynolds number grows. Thus, it is expected that radial flow will have a
stabilizing influence on the stability boundary. This fact is confirmed later by numerical
calculations. The base flow temperature distribution becomes more asymmetric as the
Reynolds number grows.

3. Numerical Results

Consider a perturbed motion of the following form:

v = v′ + W0ek + U0er, T = T′ + T0, p = p′ + p0, (12)

where v′, T′, and p′ are small unsteady perturbations and er is the unit vector in the
positive r-direction. Using a standard linearization procedure, we represent the perturbed
quantities in the form of axisymmetric normal modes as follows:

v′(r, z, t) = u(r) exp (ikz− λt), (13)

T(r, z, t) = θ(r) exp (ikz− λt), (14)

where k is the wave number, λ = λr + iλi is a complex eigenvalue and u = (u(r), 0, w(r)).
The flow (8)–(11) is linearly stable if all λr > 0 and is unstable if at least one λr < 0. The
flow (8)–(11) is marginally stable if one eigenvalue has λr = 0, while all other eigenvalues
have positive real parts. Eliminating the pressure and longitudinal velocity perturba-
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tions from the linearized system, we obtain the following system of ordinary differential
equations:

u(4) +

(
2
r
−U0Gr

)
u′′′ −

(
3
r2 + 2k2 + U′0Gr−U0

Gr
r
− ikW0Gr

)
u”

+

(
3
r3 −

2k2

r
−

U′0Gr
r

+
2U0Gr

r2 − ikGr
W0

r
+ k2GrU0

)
u′

+

(
2k2

r2 −
3
r4 + k4 +

U′0Gr
r2 − 2GrU0

r3 − ikGr
W ′0
r

+ ikGr
W0

r2

+ k2GrU′0 + ik3GrW0 + ikGrW ′′0

)
u− ikθ′

= −λ

(
u” +

u′

r
− u

r2 − k2u
)

, (15)

θ′′ +
θ′

r
− k2θ + F exp(T0)θ − PrGr(uT′0 + U0θ′ + ikW0θ) = −λPrθ. (16)

The boundary conditions are as follows:

u(r1) = u(r2) = 0, u′(r1) = u′(r2) = 0, θ(r1) = θ(r2) = 0. (17)

The eigenvalue problem of (15)–(17) is solved numerically, using the collocation
method based on Chebyshev polynomials. In particular, the interval [r1, r2] is transformed
to the interval [−1, 1] by means of the following transformation:

r =
r2 − r1

2
ξ +

r2 + r1

2
,

where ξ ∈ [−1, 1]. The functions u and θ (in terms of the variable ξ) are approximated as
follows:

u(ξ) =
N

∑
m=0

am(1− ξ2)2Tm(ξ), θ(ξ) =
N

∑
m=0

bm(1− ξ2)Tm(ξ), (18)

where Tm(ξ) = cos m arccos(ξ) is the Chebyshev polynomial of the first kind of order m.
The collocation points are the following:

ξ j = cos
π j
N

, j = 0, 1, . . . , N (19)

In order to estimate the number of collocation points needed for accurate determina-
tion of the Grashof number, we performed calculations for one set of parameters, namely,
k = 1, Pr = 2, R = 0.6, Re = 2, F = 0.7, and different number of collocation points N.
The results are shown in Table 1. It is seen from the table that 50 collocation points are
sufficient for the calculation of Gr, accurate to within 6 decimal places after the decimal
point. Similar calculations are performed for other sets of parameters. The calculations
show that it is sufficient to use N = 60 for all cases considered in the paper.

Table 1. The values of the Grashof number Gr for different number of collocation points N.

N Gr

30 977.416134
40 977.387524
50 977.392292
60 977.392292
70 977.392292
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All stability characteristics are calculated below for the case η = 0.6 and η = 0.7.
It is shown in [1] that only axisymmetric perturbations are the most unstable for small
and moderate gaps, while the first asymmetric mode is the most unstable for the range
0 < η < 0.3. This is the reason we restrict ourselves with axisymmetric perturbations.

Marginal stability curves for η = 0.6 and different values of F and Re are shown in
Figure 3. The dots on the curves correspond to the calculated points, while solid lines are
the interpolating curves.The flow is linearly stable in the regions below the curves and
unstable in the regions above the curves. On the marginal stability curve, one eigenvalue
has zero real part, while all other eigenvalues have positive real parts. The point of an
absolute minimum on each marginal stability curve corresponds to the critical values of
the parameters Gr and k, denoted by Grc and kc, respectively. Thus, the flow is linearly
stable for all k if Gr < Grc.

Several conclusions can be drawn from the graphs in Figure 3. First, the increase
in F has a destabilizing influence on the flow (the critical Grashof numbers decrease as
F increases). Second, for each fixed F, there is a continuous transformation of marginal
stability curves as the Reynolds number increases. For Re = 0 (no radial cross-flow), the
marginal stability curve has one minimum. As the Reynolds number increases (see the
range 2 ≤ Re ≤ 4), the second minimum appears on the curves. The increase in the
Reynolds number (up to Re = 4) leads to a shift of the minimum point to the region of
smaller k. Whether the second minimum is the global minimum depends on the value of
the Reynolds number.

It is seen from Figure 3 that the minimum corresponding to smaller k is the global
minimum in the range 0 < Re < Re∗, where the value of Re∗ depends on F, R, and Pr.
Calculations show that for the case η = 0.6, Pr = 2, and F = 0.5, we have Re∗ = 3.625 . . .
The corresponding marginal stability curve is plotted in Figure 4, where the presence of
two equal minima is clearly seen.

The second minimum, which is seen in Figure 3, seems to disappear for higher Re. In
order to check what happens for larger values of Re, we perform calculations for F = 0.5 in
the range 5 ≤ Re ≤ 11. The results are shown in Figure 4.

It is seen from Figure 5 that for large Re, the marginal stability curves have the same
shape as for Re = 0 (with one minimum). In addition, the increase in Re stabilizes the flow
(the critical value Grc increases as Re grows).

The effect of both outward and inward radial flows is investigated further. Figure 6
plots the marginal stability curves for the case F = 0.5, η = 0.7 and both negative and
positive Reynolds numbers. It is seen from the graph that the outward radial flow (positive
Re) is less stable than the inward radial flow (negative Re).

The critical Grashof numbers versus Re are plotted in Figure 7. The Reynolds number
has a stabilizing effect on the convective flow since Grc is increasing as Re grows. However,
the rate of growth is not the same. The critical Grashof numbers increase faster in the
range 0 < Re < Re∗ = 3.625 . . . where instability is associated with small wave number
perturbations. Then, there is a relatively small growth in Grc for Re∗ < Re < 6, and then
Grc increases faster.
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Figure 3. Marginal stability curves for different values of F and Re.
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

k

2000

4000

6000

8000

10000

12000

14000

16000

G
r

F=0.5

Re=5

Re=7

Re=9

Re=11

Figure 5. Marginal stability curves for F = 0.5 and η = 0.6 (the Reynolds numbers are in the range
5 ≤ Re ≤ 11).
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Figure 6. Marginal stability curves for F = 0.5 and η = 0.7 (the Reynolds number is in the range
−3 ≤ Re ≤ 3).
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Figure 7. Critical Grashof numbers versus Re for F = 0.5.

Critical wave numbers versus Re are shown in Figure 8. The finite jump at Re = Re∗
is associated with the transition to perturbations with larger k as indicated in Figure 4.
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Figure 8. Critical Grashof numbers versus Re for F = 0.5.

Figure 9 plots the critical Grashof numbers versus positive and negative values of Re
in the range −8 ≤ Re ≤ 8 for four different values of the Frank–Kamenetskii parameter
F, namely, F = 0.1, 0.3, 0.5 and 0.7. The values of R and Pr are fixed at η = 0.6 and
Pr = 2, respectively. Several conclusions can be drawn from the graphs in Figure 9.
First, both inward and outward radial flows (negative and positive Reynolds numbers)
have a stabilizing influence on the stability boundary. Second, for each F, three different
intervals characterizing the rate of increase in the Grashof number with respect to Re can
be identified. The first interval (approximately from Re = −2 to Re = 3.6) is associated
with relatively strong stabilization of the base flow. The second interval (Re > 3.6) appears
right after the transition to a larger wave number takes place (see Figures 4 and 5 for
details). The critical Grashof numbers continue to grow, but at a lower rate. However, as
Re increases further, stabilization becomes stronger (the rate of increase in Grc with respect
to Re increases). A similar situation takes place around the value Re = −2. Here, again,
transition to a larger wave number takes place. As a result, the rate of growth of Grc with
respect to Re decreases, but then increases again as the Reynolds number becomes more
and more negative. Third, the rate of increase in Grc with respect to Re is not the same
for positive and negative Reynolds numbers. Fourth, base flow stabilization also depends
on the value of the Frank–Kamenetskii parameter F. Stabilization is much stronger for
small F (see the graph for F = 0.1 in Figure 9) and less pronounced for larger F. Fifth, as F
increases, the critical Grashof number approaches zero. The last conclusion is consistent
with the fact that a steady convective flow in the vertical direction generated by internal
heat sources exists only in the range 0 < F < F∗ (see [10] for the case Re = 0), where F∗
depends on R and Re, and there is no steady solution for F > F∗.
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Figure 9. Critical Grashof numbers versus Re in the range −8 ≤ Re ≤ 8 for different values of F.

4. Discussion

Linear stability of a steady convective flow caused by nonlinear heat sources in a tall
vertical annulus is analyzed in the paper. It is assumed that there is a radial inward or outward
flow through the permeable walls of the annulus. The base flow is obtained numerically as
a solution of the nonlinear boundary value problem for the system of ordinary differential
equations. The linear stability problem is solved by the collocation method for different
values of the parameters of the problem. The Prandtl number is fixed at Pr = 2. Analysis of
the base flow velocity profiles suggests that the Reynolds number (proportional to radially
inward or outward velocity) will stabilize the flow. This fact is confirmed by calculation of
the marginal stability curves. It is shown that the second minimum appears in the region
of smaller wave numbers as the Reynolds number increases. This minimum may or may
not be the global minimum. However, for large Reynolds numbers, the second minimum
disappears. The other parameter that affects stability characteristics is the Frank–Kamenetskii
parameter (proportional to the intensity of the rate of a chemical reaction). The increase in the
Frank–Kamenetskii parameter destabilizes the flow. In addition, there exists the value F∗ such
that steady flow exists only in the range 0 < F < F∗. There is no steady flow in the domain
F > F∗ (this fact is denoted as the thermal explosion in the literature). In the region where
steady flow exists, the stability characteristics are determined by the concurrence of the two
factors: (a) stabilizing effect of the radial flow (both inward and outward) and (b) destabilizing
effect of the intensity of the chemical reaction (the Frank–Kamenetskii parameter).

Wide gaps between the walls of the annulus are not considered in the present study
(the values of η that are used in the paper are η = 0.6 and η = 0.7). As was shown in [1,20],
asymmetric perturbations (depending on the angular coordinate ϕ) are the most unstable
for very large gaps (small values of η), which is why only axisymmetric perturbations
are considered in the present paper. In the future, we plan to investigate the role of the
radius ratio on the stability boundary as well as to consider different Prandtl numbers by
analyzing both axisymmetric and asymmetric perturbations. In addition, weakly nonlinear
theory can be used to analyze the development of instability beyond the threshold. The
authors are currently working on these topics.
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