Numerical Simulation of Multiphase Multicomponent Flow in Porous Media: Efficiency Analysis of Newton-Based Method
Abstract
:1. Introduction
2. Mathematical Modeling
3. Numerical Method
- Equation (11) is substituted into the finite difference form of a system of nonlinear equations of 6 variables.
- We obtain a system of linear equations with unknown and solve it using the GMRES method.
- Further, using the known , we find the unknown ( is found by relation (5)), , , , .
- Next, and are calculated according to (5).
- Next, the unknowns , , , , , are found using (10).
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pederson, K.S.; Christensen, P.L. Phase Behavior of Petroleum Reservoir Fluids; CRC Press: Boca Raton, FL, USA, 2006; p. 422. [Google Scholar]
- Ahmed, T. Reservoir Engineering Handbook, 3rd ed.; Gulf Professional Publishing: Oxford, UK, 2006; p. 1376. [Google Scholar]
- Maurand, N.; Mayoura, S.; Parra, T.; Araujo, C.; Furtado, C. Coupling Compositional Flow, Thermal Effects and Geochemistry Reactions when Injecting CO2 in a Carbonated Oil Field. Energy Procedia Elsevier 2014, 51, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Farshidi, S.; Fan, Y.; Durlofsky, L.; Tchelepi, H. Chemical Reaction Modeling in a Compositional Reservoir-Simulation Framework. Soc. Pet. Eng. 2013. [Google Scholar] [CrossRef]
- Delshad, M.; Thomas, S.G.; Wheeler, M.F. Parallel numerical reservoir simulations of non-isothermal compositional flow and chemistry. Soc. Pet. Eng. 2011, 16, 239–248. [Google Scholar] [CrossRef]
- VBorisov, E.; Kritskiy, B.V.; Marchenko, N.A.; Mitrushkin, D.A.; Savenkov, E.B. Nonisothermal Compositional Flow Model with Chemical Reactions and Active Solid Phase for Reservoir Simulation; Keldysh Institute of Applied Mathematics: Moscow, Russia, 2013; Volume 91. [Google Scholar]
- Chen, Z. Reservoir Simulation: Mathematical Techniques in Oil Recovery; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006. [Google Scholar]
- Chen, Z.; Huan, G.; Ma, Y. Computational Methods for Multiphase Flows in Porous Media; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Aceto, L.; Pandolfi, R.; Trigiante, D. One parameter family of linear difference equations and the stability problem for the numerical solution of ODEs. Adv. Differ. Equ. 2006, 2006, 019276. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.A.S. Nonlinear Convection in a Partitioned Porous Layer. Fluids 2016, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Pawar, S.; San, O. CFD Julia: A Learning Module Structuring an Introductory Course on Computational Fluid Dynamics. Fluids 2019, 4, 159. [Google Scholar] [CrossRef] [Green Version]
- El Ouafa, M.; Vincent, S.; Le Chenadec, V. Monolithic Solvers for Incompressible Two-Phase Flows at Large Density and Viscosity Ratios. Fluids 2021, 6, 23. [Google Scholar] [CrossRef]
- Lacroix, S.; Vassilevski, Y.; Wheeler, J.; Wheeler, M. Iterative Solution Methods for Modeling Multiphase Flow in Porous Media Fully Implicitly. SIAM J. Sci. Comput. 2003, 25, 905–926. [Google Scholar] [CrossRef]
- Vabishchevich, P.N.; Vasilyeva, M.V. Iterative methods for solving the pressure problem at multiphase filtration. arXiv 2011, arXiv:1107.5479. [Google Scholar]
- Wang, B.; Wu, S.; Li, Q. Applications of BILU0-GMRES in reservoir numerical simulation. Acta Pet. Sin. 2013, 34, 954–958. [Google Scholar]
- Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
- Vinsome, P.K.W. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. Soc. Pet. Eng. 1976. [Google Scholar] [CrossRef]
- Saad, Y.; Schults, M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Klie, H.; Sudan, H.; Li, R.; Saad, Y. Exploiting capabilities of many core platforms in reservoir simulation. SPE RSS Reserv. Simul. Symp. 2011, 21–23. [Google Scholar] [CrossRef]
- Mittal, R.C.; Al-Kurdi, A.H. An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method. Comput. Math. Appl. 2003, 185, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Chen, Z.; Huan, G.; Wang, H. Computer Simulation of Compositional Flow Using Unstructured Control Volume Finite Element Methods. Computing 2006, 78, 31–53. [Google Scholar] [CrossRef]
- Chow, E.; Saad, Y. Experimental study of ILU preconditioners for indefinite matrices. J. Comput. Appl. Math. 1997, 86, 387–414. [Google Scholar] [CrossRef] [Green Version]
Matrices Number | #1 | #2 | #3 | #4 | #5 | #6 |
---|---|---|---|---|---|---|
Number of nodes | 3,240,000 | 1,2960,000 | 29,160,000 | 81,000,000 | 129,960,000 | 190,440,000 |
Nonzero elements | 8338 | 16,738 | 25,138 | 41,938 | 53,138 | 64,338 |
Matrices Number | GMRES Runtime(s) | ILU(0)-GMRES Runtime(s) | Acceleration |
---|---|---|---|
#1 | 7.03 | 1.23 | 5.715447154 |
#2 | 53.54 | 11.07 | 4.836495032 |
#3 | 169.28 | 36.86 | 4.592512208 |
#4 | 746.1 | 164.54 | 4.534459706 |
#5 | 1641.1 | 349.72 | 4.692611232 |
#6 | 3009.45 | 643.71 | 4.675164282 |
Matrix #3 | CPU time(s) | Residual | Inner iteration |
---|---|---|---|
GMRES(100) | 23.374 | 0.00982457 | 5286 |
GMRES(200) | 56.605 | 0.00997898 | 5502 |
GMRES(300) | 49.395 | 0.0099962 | 2942 |
GMRES(400) | 50.373 | 0.00999233 | 2184 |
GMRES(500) | 16.83 | 0.00994755 | 512 |
GMRES(600) | 24.017 | 0.00939816 | 604 |
Matrix #4 | CPU time(s) | Residual | Inner iteration |
---|---|---|---|
GMRES(100) | 35.4249 | 0.00993622 | 5788 |
GMRES(200) | 184.447 | 0.00993313 | 10513 |
GMRES(300) | 281.269 | 0.00999677 | 10751 |
GMRES(400) | 200.089 | 0.00999497 | 5471 |
GMRES(500) | 218.66 | 0.00999747 | 4473 |
GMRES(600) | 260.9249 | 0.00999968 | 4435 |
Matrices Number | #1 | #2 | #3 | #4 | #5 | #6 |
---|---|---|---|---|---|---|
Appropriate m value | 200 | 300 | 500 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imankulov, T.; Lebedev, D.; Matkerim, B.; Daribayev, B.; Kassymbek, N. Numerical Simulation of Multiphase Multicomponent Flow in Porous Media: Efficiency Analysis of Newton-Based Method. Fluids 2021, 6, 355. https://doi.org/10.3390/fluids6100355
Imankulov T, Lebedev D, Matkerim B, Daribayev B, Kassymbek N. Numerical Simulation of Multiphase Multicomponent Flow in Porous Media: Efficiency Analysis of Newton-Based Method. Fluids. 2021; 6(10):355. https://doi.org/10.3390/fluids6100355
Chicago/Turabian StyleImankulov, Timur, Danil Lebedev, Bazargul Matkerim, Beimbet Daribayev, and Nurislam Kassymbek. 2021. "Numerical Simulation of Multiphase Multicomponent Flow in Porous Media: Efficiency Analysis of Newton-Based Method" Fluids 6, no. 10: 355. https://doi.org/10.3390/fluids6100355
APA StyleImankulov, T., Lebedev, D., Matkerim, B., Daribayev, B., & Kassymbek, N. (2021). Numerical Simulation of Multiphase Multicomponent Flow in Porous Media: Efficiency Analysis of Newton-Based Method. Fluids, 6(10), 355. https://doi.org/10.3390/fluids6100355