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Abstract: We derive a new computational model for the simulation of viscous incompressible
flows bounded by a thin, flexible, porous membrane. Our approach is grid-free and models the
boundary forces with regularized Stokeslets. The flow across the porous membranes is modeled
with regularized source doublets based on the notion that the flux velocity across the boundary
can be viewed as the flow induced by a fluid source/sink pair with the sink on the high-pressure
side of the boundary and magnitude proportional to the pressure difference across the membrane.
Several validation examples are presented that illustrate how to calibrate the parameters in the model.
We present an example consisting of flow in a closed domain that loses volume due to the fluid
flux across the permeable boundary. We also present applications of the method to flow inside a
channel of fixed geometry where sections of the boundary are permeable. The final example is a
biological application of flow in a capillary with porous walls and a protein concentration advected
and diffused in the fluid. In this case, the protein concentration modifies the pressure in the flow,
producing dynamic changes to the flux across the walls. For this example, the proposed method is
combined with finite differences for the concentration field.

Keywords: regularized stokeslets; regularized source-dipoles; permeable membranes; permeable
channel flow

1. Introduction

We present a new model for a type of problem in which a thin flexible porous boundary,
such as a membrane, interacts with an incompressible viscous fluid. Problems of this nature
arise in numerous biological applications such as in modeling cell membranes [1,2], microvas-
culature [3,4], and specialized anatomical structures such as the renal tubule [5–7]. Membranes
are used in numerous medical applications such as drug delivery [2,8], biosensors [9,10] and
tissue engineering [11]. Other more general engineering applications include membrane
distillation processes [12], water filtration [8], and wastewater treatment [13]. There are
widespread applications of microfiltration processes that take advantage of selective tuning
of membrane permeability [14,15], and many theoretical and experimental investigations
have focused on the swelling and permeability of gel dispersions in the microfluidic do-
main [16]. Theoretical studies have investigated the dynamics of particle interactions with
deformable permeable membranes [17] as well as the behaviors of these membranes in
complex flows [18].

There are numerical methods available for fluid flows bounded by a porous domain
where the porous boundary does not deform [19,20]. Our goal is to address the case when
an infinitely thin, flexible porous membrane divides the fluid domain. Some of the most
closely related methods to our approach are described in [21,22]. Stockie [21] uses the
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immersed boundary method to model the Navier–Stokes equations with immersed elastic
membranes and incorporates the porosity of the membrane by introducing a flux velocity
across the boundary proportional to the hydrostatic pressure jump. A similar strategy
is employed in [23] where the immersed boundary method and Darcy’s law are used to
simulate the aerodynamics of a 2-D parachute, and in [24] to investigate effects of porosity
on the motion of a flapping filament. Layton [22] uses a Cartesian grid method combined
with Mayo’s technique [25], similar to the immersed interface method [26], to incorporate
jump conditions into the finite-difference stencils. This formulation also incorporates a
solute concentration into the model so that the flux velocity across the membrane can be a
function of the hydrostatic pressure jump or the solute concentration differences across the
boundary, a condition often encountered in biological settings. Using a coupled immersed
boundary–lattice Boltzmann method, Pepona calculates fluid flow through and around a
volumetric porous body that deforms elastically [27].

Exact solutions of Stokes flow through a permeable tube have been considered in
several works. In particular, the seminal work of Berman [28] considered laminar Stokes
flow near a porous boundary and has since been expanded to model flows in permeable
cylinders [29–31]. These models assume low permeability and a small ratio between
transverse and axial velocities. More recent studies have relaxed this assumption by
deriving an exact solution for Stokes flow through a pipe of arbitrary permeability [19].
This work was later expanded to consider Stokes flow through a pipe of temporally
dynamic radius to simulate “pumping” mechanisms encountered in numerous biological
systems [20]. These analytical solutions assume that the position of the porous boundary is
independent of the flow, as such they are useful for validation of numerical methods with
a similar assumption.

Here, we present a grid-free method to model the motion of Stokes flows bounded by
a flexible, elastic, porous membrane. The formulation of the model, as presented in the next
section, applies to both two and three dimensions. The rest of the article focuses on the
implementation and examples in two dimensions. The approach is based on the method
of regularized Stokeslets, augmented with regularized source doublets on the porous
boundaries. The latter is based on the notion that the flux velocity across the boundary
can be considered as the flow induced by a fluid source/sink pair with the source on the
high-pressure side of the boundary and magnitude proportional to the pressure difference
across the membrane.

2. The Model Formulation

We consider a closed elastic membrane Γ that encloses a two-dimensional domain
Ω. The membrane is given parametrically by X(s) where s is arc length, and is permeable
to the fluid, whose motion is assumed to be described by the Stokes equations in R2/Γ.
Since the membrane is elastic, it supports a force density given by f(s). The equations of
motion are

µ∆u = ∇p− F, ∇ · u = 0 in R2/Γ

F(x) =
∫

Γ
f(s)δ(x− X(s))ds for x ∈ R2

A fluid particle moves with velocity u so that dx/dt = u(x). Due to the permeability,
the membrane moves with a different velocity field, namely dX/dt = u(X) + U, where U
is normal to the membrane and depends on the jump across the membrane of pressure or
some other quantity.
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2.1. A Different Formulation of the Problem

Given that the velocity of the fluid and the membrane differ by U, we can write a
general expression for the velocity field in the fluid domain including material points on
the membrane as

dx
dt

= u(x) +
∫

Γ
U(s)δ(x− X(s))ds

where the last term on the right represents the membrane velocity. This term can also be
interpreted as a velocity field whose divergence is

∫
Γ U(s) · ∇δ(x− X(s))ds. This leads to

the formulation

µ∆u = ∇p− F, ∇ · u = A in R2 (1)

F(x) =
∫

Γ
f(s)δ(x− X(s))ds for x ∈ R2 (2)

A(x) =
∫

Γ
U(s) · ∇δ(x− X(s))ds for x ∈ R2 (3)

2.2. The Proposed Regularized Formulation of the Problem

We use the linearity of the Stokes equations to separate the formulation in Equations (1)–(3)
into two different problems whose solutions are added together. Let (u, p) satisfy the in-
compressible Stokes equations with regularized external forcing

µ∆u = ∇p− F, ∇ · u = 0 in R2/Γ

F(x) =
∫

Γ
f(s)φδ(x− X(s))ds for x ∈ R2 (4)

and let (v, q) satisfy the Stokes equations without external forcing but with divergence
given by a regularized source doublet distribution on the membrane

µ∆v = ∇q, ∇ · v = A in R2

A(x) = −
∫

Γ

b(s)
µ

n̂(s) · ∇φδ(x− X(s))ds for x ∈ R2
(5)

Then the fluid particles move with dx/dt = u(x) and the membrane moves with
dX/dt = u(X) + v(X). The divergence of v may be defined by the density function
b(s) = β(f · n̂), where n̂ is the outward unit normal vector and β is a coefficient that
determines the membrane’s permeability, and is subject to the membrane properties.

Figure 1 shows a generic situation of the type considered in the next section. The
figure shows the velocity field in a neighborhood of the membrane (top panel) as well as the
divergence of the velocity (bottom panel) and the source doublet distribution that generates
the flow. The bottom panel shows the vectors −b(s)n̂(s) (black arrows) and the divergence
of the velocity (colormap). The latter is negative just inside the membrane, indicating a
distribution of sinks, and positive just outside, indicating a distribution of sources.
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Figure 1. General setting of the problems considered in this article. The figure shows a section
of a circular permeable membrane. The top panel shows a neighborhood of the membrane and
the velocity field across the membrane from the inside to the outside. This flow is generated by
a distribution of source doublets on the membrane, −b(s)(n̂(s) · ∇)∇Gδ with b(s) < 0 and n̂ is
the outward unit normal. The bottom panel shows the vectors −b(s)n̂(s) (black arrows) and the
divergence of the velocity (colormap).

The function φδ(x) is used in the method of regularized Stokeslets [32,33] and is
characterized by being smooth, radially symmetric functions concentrated at its center,
like narrow Gaussians. The total integral is 1 and the parameter δ controls the spread of
the function. In the formulation in (4) and (5), one could choose two different functions
φδ(r) or use different values of δ even for the same function. In practice, the size of δ is
influenced by the singularity of the corresponding singular kernel.

The solution of the problem in (4) is a regularized Stokeslet, given by [32,33]

u(x) =
1
µ

∫
Γ
(f(s) · ∇)∇Bδ(x− X(s))− f(s)Gδ(x− X(s))ds (6)

p(x) =
∫

Γ
f(s) · ∇Gδ(x− X(s))ds (7)

where the regularized Green’s and biharmonic functions, Gδ(r) and Bδ(r), corresponding
to a radially symmetric blob φδ(r) are defined as the solutions of ∆Gδ(r) = φδ(r) and
∆Bδ(r) = Gδ(r) in R2.

Derivation of the Source Doublet Solution

Take the divergence of the Stokes Equation (5) to get µ∆(∇ · v) = ∆q, and substitute
the divergence expression from Equation (5), from which we find that the pressure is
given by

q(x) = −µ 1
µ

∫
Γ

b(s)n̂(s) · ∇φδ(x− X(s))ds. (8)

Now the Stokes equation becomes

µ∆v = −µ
∫

Γ

b(s)
µ

(n̂(s) · ∇)∇φδ(x− X(s))ds

which leads to the velocity

v(x) = −
∫

Γ

b(s)
µ

(n̂(s) · ∇)∇Gδ(x− X(s))ds (9)
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For convenience we set x̂ = x− X(s), r = |x̂| and summarize the solutions above as

Stokeslet: u(x) =
1
µ

∫
Γ

f(s)H1(r) + (f(s) · x̂)x̂ H2(r) ds

p(x) =
∫

Γ
(f(s) · x̂)P(r) ds

Source Doublet: v(x) = − 1
µ

∫
Γ

b(s)[n̂(s)S1(r) + (n̂(s) · x̂)x̂ S2(r)] ds

q(x) = −
∫

Γ
b(s)(n̂(s) · x̂)Q(r) ds

where the regularizing functions are given by

H1(r) =
Bδ
′(r)
r
− Gδ(r) +

1
8π

, H2(r) =
rBδ
′′(r)− Bδ

′(r)
r3

S1(r) =
Gδ
′(r)
r

, S2(r) =
rGδ
′′(r)− Gδ

′(r)
r3 (10)

P(r) =
Gδ
′(r)
r

, Q(r) =
φδ
′(r)
r

2.3. Choice of Blobs

For a radially symmetric blob φδ(r) the minimum requirement is to have total integral
equal to one

1 = 2π
∫ ∞

0
rφδ(r)dr.

We use conditions derived in the first numerical example as part of the process of
calibrating the source doublet coefficient β. In all cases, we choose a blob φδ(r) and we
use Equation (10) to find all necessary regularizing functions. Table 1 summarizes the blob
functions used in this article.

Table 1. Summary of regularizing functions. The blob φδ(r) satisfies only the condition that its
integral be one. The function ψ(r) satisfies two more conditions for higher accuracy as described in
example 1.

φδ(r) =
2δ4

π(r2 + δ2)3 ψδ(r) =
2δ4(r4 − 10δ2r2 + 5δ4)

π(r2 + δ2)5

3. Numerical Examples

In order to assess the method, we present first two numerical examples whose exact
solutions are known.

3.1. Example 1: A Circular Permeable Membrane under Tension

Consider a circular permeable membrane Γ given initially by X(s) = (R0 cos( s
R0
),

R0 sin( s
R0
)), where s is arclength. The force density is given by f(s) = κ(s)n̂(s), where κ is

curvature. The equations of motion are

µ∆u = ∇p− F, ∇ · u = 0 in R2/Γ

F(x) =
∫

Γ
f(s)δ(x− X(s))ds for x ∈ R2

U = − α

µ
JpKn̂ for x ∈ Γ

Here, α is a permeability parameter and JpK represents the jump in pressure across
the membrane, JpK = p(X+)− p(X−). The parameters in this example were assumed to be
dimensionless and given by R0 = 1, α = 0.1 and µ = 1.
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Exact solution. In this simple example, the membrane will remain circular for all
times as it shrinks to a point in finite time. Due to incompressibility, the tension in the
membrane serves to increase the pressure inside the circle but produces no fluid motion, so
u = 0. The added membrane velocity is

U = − α

µ
JpKn̂

where the pressure jump is computed from JpK = f(s) · n̂(s) = κ. Therefore U = − α
µκn̂.

For a circular membrane, this reduces to an equation for its radius

dR
dt

= − α

µR
, R(0) = R0 (11)

with solution

Rexact(t) =

√
R2

0 −
2α

µ
t for 0 ≤ t ≤

R2
0µ

2α
.

Calibrating β. The membrane velocity v(s) is normal to the membrane and v(s) · n̂(s)
is independent of position s along the membrane due to the circular symmetry. Thus, we
compute it at s = 0, corresponding to X(0) = (r(t), 0). At this location, Equation (9) and
b(s) = βκ give

dR
dt

= v · n̂ = − 1
µ

∫
Γ

b(s)(n̂(s) · ∇) ∂

∂x
Gδ(x− X(s))ds

= − β

µ
κ
∫

Γ
(n̂(s) · ∇) ∂

∂x
Gδ(x− X(s))ds

= − β

µ
κR
∫ 2π

0
(n̂(θ) · ∇) ∂

∂x
Gδ(x− X(θ))dθ

Using the particular blob φδ(r) = 2δ4

π(r2+δ2)3 we find that

v · n̂ = − β

µ
κR
∫ 2π

0

3R2(R2 + δ2) + (δ4 − 3δ2R2 − 4R4) cos(θ) + R4 cos(2θ)

π(δ2 + 2R2 − 2R2 cos(θ))3 dθ

= − β

µ
κ

12R3(2R2 + δ2)

δ(4R2 + δ2)5/2 = − βκ

δµ

(
3
4
− 3δ2

32R2 −
15δ4

512R4 + O(δ6/R6)

)
. (12)

In order for this velocity to be consistent with the exact velocity v · n̂ = −ακ/µ in
Equation (11), we choose

β =
4
3

δα.

The coefficient 4/3 depends on the blob used.
Based on the calculation of v · n̂, we set β = (4/3)δα and computed numerically

the solution of the single differential equation R′(t) = −β
12R2(2R2+δ2)
µδ(4R2+δ2)5/2 with R(0) = 1,

corresponding to the blob φδ(r). The solution using δ = 0.1 and µ = 1 is compared with
the exact solution in Figure 2.
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Figure 2. Numerical solution of the ODEs for R(t) for the blobs φδ(r) = 2δ4

π(r2+δ2)3 (black) and

ψ(r) = 2δ4(r4−10r2δ2+5δ4)
π(r2+δ2)5 (blue). The dashed curve is the exact solution of the problem. The left

panel shows results for a constant regularization δ = 0.1. The right panel shows results when the
regularization size is varied dynamically according to δ = 0.1R(t).

Notice that the two curves in the figure are nearly indistinguishable until the circle
has shrunk to a radius of about 0.1. Beyond this point, the blob size δ is equal to or larger
than the radius of the circle and we do not expect the regularized velocity to approximate
well the exact velocity. To ameliorate this issue we also computed the solution by scaling δ
dynamically with the circle radius and reduced the error from a maximum of 0.078 to a
maximum of 0.016.

We also computed the solution using a full simulation based on the velocity field

v(x) = − 1
µ

∫
Γ

b(s)[n̂(s)S1(r) + (n̂(s) · x̂)x̂ S2(r)] ds

with b(s) = βκ(s). We discretized the initial circle using N = 400 points equally spaced.
The first and second derivatives of the membrane discretization with respect to the arc
length parameter s ∈ [0, 2πR0), are approximated by

DXn =
(Xn+1 − Xn−1)

2∆s0
, D2Xn =

Xn+1 − 2Xn + Xn−1

∆s2
0

where ∆s0 = 2πR0/N. They are used to approximate the outer normal vectors and
curvature

Nn =
(DYn,−DXn)

|DX| , Kn =
DXn D2Yn − DYn D2Xn

|DX|3 .

For t > 0, we set ∆s(t) = 2πR(t)/N, where R(t) = 1
N ∑n |Xn|. Using the notation

x̂ = Xj − Xn and rjn = |Xj − Xn|, the membrane points are evolved with the equation

dXj

dt
= − 1

µ

N

∑
n=1

β Kn

(
Nn S1(rjn) + (Nn · x̂)x̂ S2(rjn)

)
∆s(t), j = 1, 2, . . . N (13)

The calibration method for β allows for the introduction of two parameters a1 and a2
as unknown coefficients in the definition of the blob. We define a blob with integral equal
to 1

ψ =
2δ4((6− a1 − 3a0)r4 + a1r2δ2 + a0δ4)

π(r2 + δ2)5

Following the same calibration procedure as before leads to a version of Equation (12)
of the form

v · n̂ = − βκ

µδ

(
9 + 13a0 + a1

32
+

3(−15 + 5a0 + a1)

256
δ2

R2 +
15(−35 + 17a0 + 5a1)

4096
δ4

R4 + O(
δ6

R6 )

)
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and we select the parameters a1 = −10 and a0 = 5 to make −15 + 5a0 + a1 = −35 + 17a0 +
5a1 = 0 and reduce the expression to

v · n̂ = − βκ

µδ

(
2 + O(

δ6

R6 )

)
(14)

which leads to β = 1
2 δα and the blob

ψδ(r) =
2δ4(r4 − 10δ2r2 + 5δ4)

π(r2 + δ2)5 .

We mention that Beale and collaborators [34,35] have derived conditions for regular-
ized single and double layer potentials that increase the order of the regularization error.
The conditions are that even moments of a certain function must be zero. Specifically, for
each k = 0, 1, 2, . . . , the condition∫ ∞

0
(F(r)− 1)r2kdr = 0, where F(r) = 2π

∫ r

0
sφδ(s)ds (15)

increases the order of accuracy by two. Using these conditions (for k = 0 and k = 1) leads
to the same two equations for a0 and a1, so that the two procedures are equivalent.

The results are shown in Figure 3 using both blobs φδ(r) = 2δ4

π(r2+δ2)3 and the more
accurate ψδ reducing the maximum error from 0.0827 to 0.0216 with fixed δ = 0.1.

Figure 3. Computation of the radius of the circle using the method in Equation (13) and the two
blobs φδ(r) (dash-dot) and ψδ(r) (solid) from Table 1. The dashed curve is the exact solution of the
problem. The radius is shown in logarithmic scale to appreciate the difference between the solutions.
The inset shows the results in linear scale near t = 5, when the exact solution shrinks to a point.

3.2. Example 2: A Circular Permeable Membrane with Circular Equilibrium

We consider the same circular membrane as in the previous example except that the
force density along the membrane is given by f(s) = (

Req
R(t) − 1)n̂(s), where Req is the

equilibrium radius assumed to satisfy 0 ≤ Req < R0. In this case, the circle will shrink from
initial radius R0 to an asymptotic value of Req. The exact solution of the problem is given
by [21]

Rexact(t) = Req

(
1 + W(ce−αt/µReq)

)
, where c =

(
R0

Req
− 1
)

exp
(

R0

Req
− 1
)

and W(x) is the Lambert W-function. Using the parameter values α = 0.1, µ = 1, R0 = 1
and Req = 0.75, we discretized the initial circle with N points Xn, as before. The normal
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vectors, particle spacing ∆s(t) and circle radius R(t) were computed as in the previous
example so that the membrane motion is given by

dXj

dt
= −

N

∑
n=1

β

(
Req

R(t)
− 1
)(

Nn S1(rjn) + (Nn · x̂)x̂ S2(rjn)
)

∆s(t), j = 1, 2, . . . N (16)

where x̂ = Xj−Xn and rjn = |Xj−Xn|. This system of equations is solved using a 4th order
Runge–Kutta method and the blob φδ(r) in Table 1. The computed radius was compared
to the exact solution resulting in the maximum errors shown in Table 2. The initial arc
length parameter is computed as ∆s0 = 2πR0/N where R0 = 1 and N is the number of
membrane points. There are several observations we can make about the errors. Notice that
the value of the regularization parameter δ is not constant in each column of the table since
it depends on N. The errors for constant δ are along diagonals of the table; for example, the
underlined values correspond to δ = π/50. With δ held constant, the errors decrease as
∆s0 decreases until the discretization error is small enough that the dominant error is due
to the regularization δ (lower right corner of the table). If δ is chosen proportional to ∆s0
with sufficiently large proportionality constant (rightmost column of the table), the errors
decrease by a factor of 4 as N doubles, indicating second-order convergence as expected
from the choice in Equation (12). If δ is too small compared to ∆s0, the errors reach a
plateau (leftmost columns). The corresponding results using the blob ψ(r) in Table 1 are
displayed in Table 3. Notice that the errors are smaller by several orders of magnitude.

Table 2. Errors in the circle radius in example 2 using the blob φδ. The errors were computed
as maxt |R(t)− Rexact(t)|. The initial arc length discretization is defined as ∆s0 = 2πR0/N. The
underlined values correspond to errors for a fixed value of δ.

N δ = 0.5∆s0 δ = ∆s0 δ = 2∆s0 δ = 4∆s0 δ = 8∆s0

50 1.3241× 10−2 5.2417× 10−4 9.9343× 10−4 4.2410× 10−3 1.8927× 10−2

100 1.3265× 10−2 6.6654× 10−4 2.4256× 10−4 9.9499× 10−4 4.2410× 10−3

200 1.3271× 10−2 7.0338× 10−4 5.9440× 10−5 2.4380× 10−4 9.9499× 10−4

400 1.3272× 10−2 7.1265× 10−4 1.3986× 10−5 6.0624× 10−5 2.4380× 10−4

800 1.3273× 10−2 7.1497× 10−4 2.7275× 10−6 1.5135× 10−5 6.0624× 10−5

Table 3. Errors in the circle radius in example 2 using the blob ψδ. The errors were computed
as maxt |R(t)− Rexact(t)|. The initial arc length discretization is defined as ∆s0 = 2πR0/N. The
underlined values correspond to errors for a fixed value of δ.

N δ = 0.5∆s0 δ = ∆s0 δ = 2∆s0 δ = 4∆s0 δ = 8∆s0

50 4.4493× 10−2 6.4214× 10−3 5.0403× 10−5 7.1866× 10−5 1.2301× 10−3

100 4.4493× 10−2 6.3945× 10−3 4.5526× 10−5 1.5954× 10−6 7.1866× 10−5

200 4.4493× 10−2 6.3877× 10−3 4.4542× 10−5 2.7675× 10−8 1.5951× 10−6

400 4.4493× 10−2 6.3861× 10−3 4.4301× 10−5 1.0104× 10−9 2.7490× 10−8

800 4.4493× 10−2 6.3856× 10−3 4.4240× 10−5 7.8814× 10−10 5.6394× 10−10

Each row corresponds to a fixed discretization of the membrane and we see that
for fixed N, as δ increases from 0.5∆s0 to 8∆s0, the errors decrease to a minimum and
eventually increase. The minimum values are smaller for finer discretizations (i.e., for
larger N) and they occur at values of δ that are not the same multiple of ∆s0. In other
words, the errors decrease as both δ and ∆s0 are decreased but the optimal value of δ is not
a fixed multiple of ∆s0. This can be observed in Figure 4 left, which shows a log-log plot of
the error versus δ. When δ is too small compared to ∆s0, the errors are large since the blobs
do not overlap sufficiently and fluid may leak between discretization nodes regardless of
the value of β. On the other hand, when δ is too large compared to ∆s0, the regularization
error is the largest contributor and the errors collapse onto a single line (in log-log scale)
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as long as the discretization is fine enough to approximate the smooth integral. Notice
that the slope of the line corresponds to the sixth order leading error term in the value of β
found from the asymptotic expansion in Equation (14).

Figure 4 right shows the same errors except that they are plotted as a function of
(δ/∆s). In this scaling, the errors on the left side of the figure collapse onto a curve
Error ∝ exp(−6δ/∆s), indicating that in this example the discretization error decreases
exponentially for the values tested when δ < 3∆s.

Figure 4. Errors in the circle radius in example 2 using the blob ψδ(r). The (left) panel shows the
errors plotted versus the discretization size δ. The (right) panel shows the errors plotted versus δ/∆s.

3.3. Example 3: Computing the Pressure

We consider an initially elliptical permeable membrane Γ given by X = (cos θ, 1/2 sin θ).
As before, the force density is given by f(s) = κ(s)n̂(s) and the equations of motion are

µ∆u = ∇p− F, ∇ · u = 0 in R2/Γ

F(x) =
∫

Γ
f(s)δ(x− X(s))ds for x ∈ R2

U = − α

µ
JpKn̂ for x ∈ Γ

The parameters used were α = 0.01, N = 400, and µ = 1. The exact solution is
unknown. The numerical solution at selected times is shown in Figure 5. Since the force
density is proportional to the local curvature, the points along the major axis, where the
curvature is largest, move in faster than other parts of the membrane. The two points along
the minor axis move outward, changing the membrane’s shape into a more circular one. If
the permeability is zero, no fluid can escape through the membrane and the membrane
approaches a circle with area equal to the area bounded by the initial condition. When the
permeability is nonzero, α > 0, fluid crosses the membrane as a function of the pressure
drop across the boundary. This leads to an ever shrinking shape until it approaches a single
point in finite time.

The computation proceeds as follows: for x̂ = x− X(s) and r = |x̂|, we compute the
fluid velocity

u(x) =
∫

Γ
f(s)H1(r) + (f(s) · x̂)x̂ H2(r) ds, f(s) = κ(s)n̂(s)

using the discretization

u(x) =
N

∑
n=1

Kn

[
Nn H1(r) + (Nn · (x− Xn))(x− Xn) H2(r)

]
∆s(t), (17)
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with r = |x− Xn|. The membrane velocity at Xj is given by

dXj

dt
= u(Xj)−

N

∑
n=1

β Kn

(
Nn S1(rjn) + (Nn · x̂)x̂ S2(rjn)

)
∆s(t), (18)

where x̂ = Xj − Xn and rjn = |Xj − Xn|. In this example, the formulas are derived for the
blob ψδ(r) from Table 1, where we used the value β = 1

2 δα based on the calibration with
this blob.

The pressure is given by

p(x) =
∫

Γ
κ(s)(n̂(s) · ∇)Gδ(|x− X(s)) ds

=
∫

Γ
(κ(s)− κ(s0))(n̂(s) · ∇)Gδ(|x− X(s)) ds + κ(s0)χ(x)

where χ(x) = −1 when x is inside the ellipse and 0 otherwise. A surface plot of the
pressure, along with its cross-section in the xz-plane and contours in the xy-plane are
shown in Figure 6.

Figure 5. Numerical solution of example 3 for the blob ψδ(r) in Table 1 using permeability parameter
α = 0.01, regularization parameter δ = 0.06, N = 400, and µ = 1. The initial membrane shape was
the ellipse of major axis 1 and minor axis 1/2. The figure shows the computed solution at times
t = 0, 0.5, 2, 7, 16, 22.

Figure 6. Numerical solution of the pressure in example 3 at time t = 1 for the blob ψδ(r) in Table 1
using permeability parameter α = 0.01, regularization parameter δ = 0.06, N = 400, and µ = 1. The
left panel shows the pressure in a region containing the membrane. The middle panel shows the
pressure along the line y = 0. The right panel shows contours of the pressure.

3.4. Example 4: Flow in a Channel with Permeable Walls

We consider flow in a channel with walls that are permeable or have permeable
sections, as depicted schematically in Figure 7. We assume that the flow at the inlet and
at impermeable sections of the channel walls is given. The goal is to determine the flow
within the channel for given boundary permeability. If the fluid velocity on the boundary
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of the channel were known, the flow in the channel could be computed using Stokeslets
by solving for the boundary force. In the current case however, the fluid flow along the
permeable boundary is unknown and satisfies u · n̂ = − α

µJpK, as in previous examples.
As a first step we use Stokeslets and source doublets to compute the velocity boundary

condition in the permeable sections of the channel walls. Let Γ represent the inlet, bottom
and top sides of the channel, which constitute the boundary of the computational domain
where forces are applied. Note that the channel outlet is not part of Γ. Let Γβ be the
permeable portion of Γ, where β 6= 0, and set X(s) to be a parametrization of Γ. We
look for a force distribution g(s) on the channel walls along with a distribution of source
doublets β(s)(g(s) · n̂(s)) in the permeable region, with β(s) given, in order to determine
the velocity on Γβ.

x = 0 x = L

y = 0

y = H

Γβ

Γ\Γβ

Inlet
(imposed velocity)

Outlet
(open)

Figure 7. Schematic of the channel. Parabolic flow given by u = 4 y
H (1− y

H ) for 0 ≤ y ≤ H enters the
channel at the left inlet. The height of the channel is H = 1 and the length is L = 5. Γβ, the portion of
the top wall within L/3 ≤ x ≤ 2L/3, is permeable and is represented by a dashed boundary; the
rest of the top wall and the entire bottom wall (Γ\Γβ) are solid. The right outlet is open. Dotted lines
show potential fluid particle paths as the fluid interacts with the channel walls.

The procedure starts by setting ub on Γ as

ub(s) =

{
U0(s), X(s) ∈ Γ\Γβ

unknown, X(s) ∈ Γβ

where U0(s) is known at the inlet (parabolic) and along impermeable boundaries (zero).
Setting x̂ = X(s0)− X(s) and r = |x̂| and using the following notation for the regularized
Stokeslet and source doublet kernels

St(x̂, s, s0) = g(s)H1(r) + (g(s) · x̂)x̂ H2(r)

SD(x̂, s, s0) = −β(s)(g(s) · n̂(s))
[
n̂(s)S1(r) + (n̂(s) · x̂)x̂ S2(r)

]
we enforce the boundary conditions{∫

Γ St(x̂, s, s0) + SD(x̂, s, s0) ds = µU0(s0), X(s0) ∈ Γ\Γβ∫
Γ St(x̂, s, s0) ds = 0, X(s0) ∈ Γβ

(19)

These are based on the assertion that the known boundary velocity is the sum of
contributions from the Stokeslets and source doublets, while the unknown velocity across
permeable channel walls is entirely due to the source doublets. The Stokeslets velocity
contribution in those sections is zero.

Equation (19) must be inverted to find g(s). Once the boundary force is known,
the fluid velocity at the permeable boundary Γβ is set to

∫
Γ SD(x̂, s, s0) ds. Now that all

boundary velocities ub are known, the second step is to invert the Stokeslet kernel∫
Γ

H1(r) + (f(s) · x̂)f̂ H2(r) ds = µub
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to find f(s) and use it to compute the flow in the channel.
Figure 8 shows the result of the velocity boundary condition computation as well

as the computed velocity near the outlet of the channel (right side) using the blob ψδ(r)
in Table 1. The figures are for three different values of β while the inlet flow is the same
in all cases. The viscosity was set to µ = 1 and the numerical parameters used were
δ = 0.0224 and wall discretization size h = 1/160. The figure shows that as |β| increases,
the permeability of the wall segment also increases, leading to more fluid escaping the
channel at the top wall. When β = −0.00024, more fluid escapes through the permeable
wall than comes in through the inlet, leading to flow reversal at the right end of the channel.
Figure 8 shows the velocity field in the channel computed from the Stokeslets f(s) that
result from imposing the velocity boundary conditions. For β = −0.0001, particles entering
the channel at the inlet will flow to the outlet except those that are near the top wall. These
get ejected out of the channel through the permeable top wall segment. The same is true
for β = −0.00018 although particles in a larger region of the channel will flow out of the
top. For β = −0.00024, particles entering the channel at the inlet will necessarily flow out
of the top permeable wall segment due to the flow reversal on the right side of the channel.

Figure 8. Computed velocity boundary conditions (arrows) and velocity field streamlines for different
values of β. The colors represent the magnitude of the velocity in the channel. The numerical
parameters used are h = 1/160 and δ = 0.0224.
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The flow rates shown in Table 4 were computed at the inlet, permeable wall, and
outlet by a midpoint rule approximation of the integral

Flow rate =
∫

Γ
u(s) · n̂(s)ds

Note that the exact flow rate at the inlet is
∫ 1

0 4y(1− y)dy = −2/3.

Table 4. Computed flow rates at inlet, top wall, and outlet for different values of β. The numerical
parameters used are h = 1/160 and δ = 0.0224.

Flow Rate β = −0.0001 β = −0.00018 β = −0.00024

inlet −0.66667 −0.66667 −0.66667
top 0.36402 0.65678 0.87733

outlet 0.30265 0.009889 −0.21067

3.5. Example 5: Flow in a Capillary with Protein Concentration

We consider a biological application of our formulation by modeling a single rat
glomerular capillary using source doublets to represent pores in the membrane walls. The
renal glomerulus is the structure responsible for filtering the blood in the kidney, and is
composed of a tortuous network of over 300 capillary segments, wrapped into a sphere
and surrounded by an outer capsule filled with the fluid filtrate from the capillaries [36].
Since this space is made up of fluid and not tissue, it is reasonable to model a glomerular
capillary as a channel filled with and surrounded by fluid. Filtration in the glomerular
capillaries is driven by a hydrostatic pressure Phyd [37]. The glomerular capillary walls are
selectively permeable to fluid and solutes such as sodium and potassium, but impermeable
to larger macromolecules including plasma proteins such as albumin. Due to the plasma
protein concentration differential across the capillary wall between the blood plasma and
filtrate, a colloid osmotic pressure, Π, is exerted in the direction of highest concentration,
in this case back into the capillary and thus in opposition to Phyd. An expression for Π has
been derived experimentally as a function of plasma protein concentration Cp:

Π = a1Cp + a2C2
p

where Cp is measured in g/dL and a1 = 1.629 mmHg g−1 dL, a2 = 0.2935 mmHg2 g−2

dL2 [37]. Many 1-D models have been developed to estimate fluid filtration along the length
of a glomerular capillary or the glomerulus as a whole [38–42]. Some computational fluid
dynamics models have been developed to investigate glomerular filtration, including a
model which used the immersed boundary method and finite element analysis to consider
solute filtration in an idealized glomerulus in 3-D [43]. This study, while robust and
detailed, did not consider the anatomy of the glomerulus and instead condensed the
glomerulus into five cylinders that filtered in parallel. A 2-D model of fluid and solute
filtration across a single portion of the glomerular membrane [44] studied intensely the
sieving of solutes through the membrane, but did not consider the fluid dynamics within
the capillary. To our knowledge the application of computational fluid dynamics to consider
the dynamics of fluid filtration in an anatomically-accurate glomerular capillary in 2-D has
not been performed.

To accomplish this task, we modify the previously-described channel algorithm (ex-
ample 4) by introducing a concentration of plasma proteins Cp that are transported by the
fluid within the channel domain and cannot pass through the membrane:

Cp(x, y) = 0 for (x, y) 6∈ {0 < x < L, 0 < y < H}

dCp

dt
+ u · ∇Cp = σ∆Cp,
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with homogeneous Neumann conditions on the boundaries of the domain. At the inlet and
outlet, the concentration is advected by the flow, so there is a need for an assumption on
the concentration upstream of the inlet. We assume that Cp(0−, y) is fixed at a high value
so that plasma proteins are continuously introduced into the channel at the inlet.

To obtain the fluid velocity u used to advect the concentration, we follow the algorithm
outlined in example 4 with some modifications. Namely, the initial boundary flow ub must
be modified to account for the influence of Πg driving fluid back into the capillary and Phyd
driving fluid out. Πg is computed based on the concentration nearest to the permeable wall:

Π(x, 0) = a1Cp(x, 0) + a2Cp(x, 0)2

Π(x, H) = a1Cp(x, H) + a2Cp(x, H)2

Assuming a constant Phyd along the length of the capillary [44] the effective filtration
pressure difference Pf ilt across the channel walls is:

Pf ilt(x, 0) = Π(x, 0)− Phyd

Pf ilt(x, H) = −(Π(x, H)− Phyd)

The resultant forces on the channel walls h are solved for by inverting the source
doublet kernel for the pressure:

Pf ilt(x) = −
∫

Γ
(h · n̂)(n̂ · x̂)Q(r) ds

Unlike previously described, this step assumes the constant β = 1 as part of the
formulation for pressure. This is because, in this case, the pressure-to-force relationship is
independent of the membrane permeability. The constant β is incorporated in the next step
using the source doublet notation:

SDh(x̂, s, s0) = −β(s)(h(s) · n̂(s))
[
n̂(s)S1(r) + (n̂(s) · x̂)x̂ S2(r)

]
and we enforce the boundary conditions{∫

Γ St(x̂, s, s0) + SD(x̂, s, s0) ds = µU0(s0)−
∫

Γ SDh(x̂, s, s0)ds, X(s0) ∈ Γ\Γβ∫
Γ St(x̂, s, s0) ds = 0. X(s0) ∈ Γβ

(20)

The additional term on the right hand side of the equation is known, as such Equation (20)
can be inverted to obtain g(s) and the boundary velocities in the permeable region Γβ are
set to

∫
Γ SD(x̂, s, s0) ds. The boundary velocities ub are known and the Stokeslet kernel is

subsequently inverted for the forces f which are used to find the channel fluid velocity. This
velocity is then used to advect the plasma protein concentration. In Figure 9, we perform a
temporal simulation in which an initial Gaussian concentration profile of protein (yellow
circles in top left panel) is advected by the fluid while the fluid is filtered at the wall. As
additional concentration is introduced at the inlet (yellow at the left wall in the bottom
panels), the concentration develops local maxima at different locations in the channel.
This simulation demonstrates the versatility of our method for predicting distribution of
proteins throughout the vessel, as the protein concentration can vary with both time and
location within the vessel. This is a significant improvement on previous models, which
only consider axial changes in plasma protein concentration [38–42].
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Figure 9. Advection of concentration of plasma protein, Cp, in a permeable channel with a constant velocity profile at the
left boundary. Sources of concentration include an initial gaussian of concentration in the channel which is then added to by
a constant protein concentration introduced at the left boundary. Red arrows indicate the velocity due to the hydrostatic
pressure, Phyd, while green arrows indicate that due to the colloid osmotic pressure Πg. Thus, these velocities are greatest
where the concentration is largest, and change with the transport of the concentration. Cyan indicates the net flow due to
both pressures in addition to the force exerted by the fluid moving with the velocity at the left boundary. The net velocity is
scaled by 5 so as to be visible, when it is dwarfed in comparison to the velocities due to Πg and Phyd. All three velocities are
scaled by 2 for visibility.

The velocity at the inlet is defined as

U0 = u0y(H − y) (21)

where u0 is chosen based on experimental data (Table 5). Parameters are chosen for the
model based on measured dimensions of rat glomerular capillaries, red blood cell velocities
and plasma viscosity [45].

Table 5. Parameters for glomerular capillary simulations.

Parameter Value Units Ref

Plasma velocity, u0 0.09 cm s−1 [45]
Capillary length, L 30 µm [45]
Capillary diameter, H 10 µm [45]
Plasma viscosity, µ 1.24 cP [45]
Plasma protein diffusivity, σ 68 µm2 s−1 [46]
Hydraulic conductivity, k 5× 10−3 nL min−1 mmHg−1 µm−2

Hydrostatic pressure, Phyd 39 mmHg [47]

As explained in example 3, we use the blob ψδ(r), β = 1
2

δα
µ . In this example, by

defining α = kµ we use the same equation for β and the dimensions of β remain consistent.
We calculate the fraction of filtered fluid to fluid entering the left end of the channel (FF)
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by integrating the normal velocity through the permeable section of the membrane and
dividing by the left velocity boundary condition:

FF =

∫
Γβ

u(s) · n̂(s)ds

U0(s0)
(22)

Additional analysis elucidates a nonlinear relationship between the hydraulic conduc-
tivity k and the filtered fluid volume (Figure 10). This nonlinearity is transferred to the
forces exerted on the wall in the normal and tangential directions (Figure 11). For forces in
the tangential direction, a loss of fluid due to permeability reduces the force magnitude on
the length of the vessel. The difference between these tangential stress profiles is nonlinear,
corresponding to the nonlinear relationship between k and FF. For forces in the normal
direction, a linear drop in force across the vessel is seen for all values of k. This is expected
due to the necessary pressure drop across the vessel to facilitate the flow imposed at the
left boundary. However with increasing k the force in the normal direction is reduced
nonlinearly, corresponding to the nonlinear relationship between k and FF.

Figure 10. Filtration fraction, FF as a function of the hydraulic conductivity k of the vessel wall which
ultimately dictates the value of β.

Inherent to our current application of Stokeslets and source doublets to compute
the fluid dynamics within a permeable glomerular capillary is the assumption that the
walls are not deflected by flow through the capillary such that the capillary diameter
remains constant in time. In reality, the glomerular capillary walls change in time due to
the pulsatility of blood pressure. We have previously estimated the magnitude of strain of
the glomerular capillary walls using a mathematical model of blood flow through an entire
anatomically accurate glomerular capillary network [48], and found that the magnitude of
glomerular capillary wall strain is, under physiological conditions, less than 1%. Future
models will investigate dynamics of adding flexibility to the vessel wall as well as changing
the diameter of the vessel as a function of length.
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Figure 11. Tangential forces (left) and normal forces (right) on the vessel length for varied values of hydraulic conductivity k.

4. Discussion and Conclusions

We have presented a model for computing flows bounded by thin permeable mem-
branes in which the amount of fluid that is filtrated across the membrane depends on local
flow properties such as the pressure drop across the membrane, the concentration of a
solute, and the membrane permeability.

The derivation was based on the concept of placing fluid sources on one side of the
membrane and corresponding sinks on the other side, creating a source doublet field along
the permeable parts of the membrane. We note that the resulting source doublet kernel is
the same as that of a flow proportional to the pressure gradient due to a force normal to
the boundary. Indeed, decomposing a force fφδ into a gradient ∇q and a zero-divergence
vector u field gives

fφδ = ∇q + u ⇒ (f · ∇)∇Gδ = ∇q.

The kernel in Equation (9) is the same as this expression for ∇q.
Our model builds on the method of regularized Stokeslets through the use of regular-

ized sources. The resulting boundary integral formulation is free of singularities and the
regularization parameter δ provides a length scale for the thickness of the membrane. In
addition, the strength of the source doublet is proportional to the regularization param-
eter with proportionality constant that depends on the φδ used. Our numerical results
demonstrate that designing the regularization function φδ to satisfy the moment condition
in Equation (15) [34,35] leads to higher accuracy, in practice.

The last two examples present applications to channel flow. Example 4 involves
a channel with only a section of the boundary that is permeable to the fluid, while the
velocity field at the Inlet is assumed to be given and the no slip condition is enforced in the
impermeable portions of the boundary, the velocity boundary condition is unknown in the
permeable section, and therefore, unknown also at the outlet. We use the model proposed
here specifically to determine the velocity boundary condition at the permeable section of
the channel in a way that is consistent with the normal stress along the boundary. Once this
is known, the flow in the channel is computed using the method of regularized Stokeslets.
The example shows that if the permeability is high enough, more fluid escapes through the
permeable membrane than fluid comes in through the inlet, forcing fluid into the channel
at the outlet. The final example provides an application in which a concentration Cp flows
and diffuses in the channel, whose walls are permeable to the fluid but not to Cp, and the
concentration level affects the permeability locally.

There are extensions to this model that we expect to pursue in the future. Each wall
of the channel can be treated as a set of connected linear segments with a force density
that varies linearly on each segment. Then the integral in Equations (6) and (9) can be
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computed analytically, as explained in [49]. This would allow the use of substantially
smaller values of the regularization δ without increasing (in fact, decreasing) the number
of nodes discretizing the boundary. Finally, we note that our boundary integral model
describing the flow across a permeable membrane is valid in three dimensions as well, so
that extending the method to 3D is straight forward.
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