Numerical Simulation of a Periodic Quasi-Switching Mode of Flow around a Conical Dimple with a Slope Angle of 10 Degrees on the Wall of a Narrow Channel Using URANS
Abstract
:1. Introduction
2. Problem Statement and Solution Method
- a rectangular channel (with a minimum step along the longitudinal coordinate— and along the transverse coordinate—) mesh with thickening towards the wall, designed to display the flow within the channel;
- detailed region, designed for detailing the flow in the near wake of the dimple, a Cartesian grid covering the vicinity of the dimple with dimensions of (with the front boundary at a distance of from the center);
- a cylindrical, curvilinear, elliptical mesh, adjacent to the irradiated wall, matched to the surface of a spherical hole, thickening towards the wall;
- an oblique mesh covering the axis of a cylindrical hole mesh—patches in size (see [18]).
3. Analysis of the Obtained Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iaccarino, G.; Durbin, P. Unsteady 3D RANS Simulations Using the v2-f Model; Technical Report; Center for Turbulence Research, Stanford University: Stanford, CA, USA, 2000. [Google Scholar]
- Iaccarino, G.; Ooi, A.; Durbin, P.; Behnia, M. Reynolds averaged simulation of unsteady separated flow. Int. J. Heat Fluid Flow 2003, 24, 147–156. [Google Scholar] [CrossRef]
- Isaev, S.; Lysenko, D. Calculation of unsteady flow past a cube on the wall of a narrow channel using URANS and the Spalart—Allmaras turbulence model. J. Eng. Phys. Thermophys. 2009, 82, 488–495. [Google Scholar] [CrossRef]
- Isaev, S.; Baranov, P.; Usachov, A. Multiblock Computational Technologies in the VP2/3 Package on Aerothermo-Dynamics; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013; 316p. [Google Scholar]
- Guvernyuk, S.; Egorichev, O.; Isaev, S.; Kornev, N.; Poddaeva, O. Numerical and physical simulation of wind influence on group of high-altitude buildings. Proc. Mosc. State Univ. Civ. Eng. 2011, 3, 185–191. [Google Scholar]
- Isaev, S.A.; Baranov, P.A.; Zhukova, Y.V.; Tereshkin, A.A.; Usachov, A.E. Simulation of the Wind Effect on an Ensemble of High-Rise Buildings by means of Multiblock Computational Technologies. J. Eng. Phys. Thermophys. 2014, 87, 112–123. [Google Scholar] [CrossRef]
- Rodi, W.; Ferziger, J.H.; Breuer, M.; Pourquié, M. Status of Large Eddy Simulation: Results of a Workshop. J. Fluids Eng. 1997, 119, 248–262. [Google Scholar] [CrossRef]
- Shah, K.B.; Ferziger, J.H. A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle. Comput. Wind. Eng. 1997, 67–68, 211–224. [Google Scholar] [CrossRef]
- Shah, K.B. Large Eddy Simulations of Flow Past a Cubic Obstacle. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1998. [Google Scholar]
- Krajnovic, S.; Davidson, L. Large eddy simulation of the flow around a surface mounted cube using a dynamic one-equation subgrid model. In First Symposium on Turbulence and Shear Flow Phenomena; TSFP Digital Library Online: Santa Barbara, CA, USA, 1999; pp. 741–746. [Google Scholar]
- Yakhot, A.; Liu, H.; Nikitin, N. Turbulent flow around a wall-mounted cube: A direct numerical simulation. Int. J. Heat Fluid Flow 2006, 27, 994–1009. [Google Scholar] [CrossRef]
- Hussein, H.J.; Martinuzzi, R.J. Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys. Fluids 1996, 8, 764–780. [Google Scholar] [CrossRef]
- Martinuzzi, R.; Tropea, C. The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow (Data Bank Contribution). J. Fluids Eng. 1993, 115, 85–92. [Google Scholar] [CrossRef]
- Isaev, S.; Baranov, P.; Kudryavtsev, N.; Lysenko, D.; Usachev, A. Comparative analysis of the calculation data on an unsteady flow around a circular cylinder obtained using the VP2/3 and fluent packages and the Spalart-Allmaras and Menter turbulence models. J. Eng. Phys. Thermophys. 2005, 78, 1199–1213. [Google Scholar] [CrossRef]
- Snedeker, R.S.; Donaldson, C.D. Observation of a bistable flow in a hemispherical cavity. AIAA J. 1966, 4, 735–736. [Google Scholar] [CrossRef]
- Terekhov, V.I.; Kalinina, S.V.; Mshvidobadze, Y.M. Heat Transfer Coefficient and Aerodynamic Resistance on a Surface with a Single Dimple. J. Enhanc. Heat Transf. 1997, 4, 131–145. [Google Scholar] [CrossRef]
- Turnow, J.; Kornev, N.; Zhdanov, V.; Hassel, E. Flow Structures and Heat Transfer on Dimples in a Staggered Arrangement. In Proceedings of the 7th Symposium on Turbulence & Shear Flow Phenomena (TSFP7), Ottawa, ON, Canada, 28–31 July 2011; Volume 35, pp. 168–175. [Google Scholar] [CrossRef]
- Isaev, S.; Nikushchenko, D.; Sudakov, A.; Tryaskin, N.; Iunakov, L. Transformation of a separated turbulent flow in a conical dimple at the wall of a narrow channel and reduction in hydraulic losses as conicity increases. Tech. Phys. Lett. 2021, 47, 21–25. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Isaev, S.; Nikushchenko, D.; Sudakov, A.; Tryaskin, N.; Egorova, A.; Iunakov, L.; Usachov, A.; Kharchenko, V. Standard and Modified SST Models with the Consideration of the Streamline Curvature for Separated Flow Calculation in a Narrow Channel with a Conical Dimple on the Heated Wall. Energies 2021, 14, 5038. [Google Scholar] [CrossRef]
- Menter, F.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Menter, F.; Ferreira, J.C.; Esch, T.; Konno, B. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 2–7 November 2003. [Google Scholar]
- Isaev, S.A. Experience of application of SST-model-2003 with correction on streamline curvature according to Rodi-Leshziner-Isaev approach for (U)RANS calculations of separated and vortex sub- and supersonic flows. AIP Conf. Proc. 2018, 2027, 020015. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Leschziner, M.; Rodi, W. Calculation of Annular and Twin Parallel Jets Using Various Discretization Schemes and Turbulence-Model Variations. J. Fluids Eng. 1981, 103, 352–360. [Google Scholar] [CrossRef]
- Isaev, S.; Leontiev, A.; Chudnovsky, Y.; Nikushchenko, D.; Popov, I.; Sudakov, A. Simulation of Vortex Heat Transfer Enhancement in the Turbulent Water Flow in the Narrow Plane-Parallel Channel with an Inclined Oval-trench Dimple of Fixed Depth and Spot Area. Energies 2019, 12, 1296. [Google Scholar] [CrossRef] [Green Version]
- Isaev, S.; Schelchkov, A.; Leontiev, A.; Gortyshov, Y.F.; Baranov, P.; Popov, I. Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area. Int. J. Heat Mass Transf. 2017, 109, 40–62. [Google Scholar] [CrossRef]
- Leonard, B. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Rhie, C.M.; Chow, W.L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Pascau, A.; Garcia-Polanco, N. Consistency of Simplec Scheme in Collocated Grids. In Proceedings of the Fifth European Conference on Computational Fluid Dynamics, Lisbon, Portugal, 14–17 June 2010. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
- Demidov, D. AMGCL—A C++ library for efficient solution of large sparse linear systems. Softw. Impacts 2020, 6, 100037. [Google Scholar] [CrossRef]
- Isaev, S.; Kornev, N.; Leontiev, A.; Hassel, E. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Int. J. Heat Mass Transf. 2010, 53, 178–197. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaev, S.; Nikushchenko, D.; Sudakov, A.; Tryaskin, N.; Egorova, A.; Iunakov, L.; Usachov, A.; Kharchenko, V. Numerical Simulation of a Periodic Quasi-Switching Mode of Flow around a Conical Dimple with a Slope Angle of 10 Degrees on the Wall of a Narrow Channel Using URANS. Fluids 2021, 6, 385. https://doi.org/10.3390/fluids6110385
Isaev S, Nikushchenko D, Sudakov A, Tryaskin N, Egorova A, Iunakov L, Usachov A, Kharchenko V. Numerical Simulation of a Periodic Quasi-Switching Mode of Flow around a Conical Dimple with a Slope Angle of 10 Degrees on the Wall of a Narrow Channel Using URANS. Fluids. 2021; 6(11):385. https://doi.org/10.3390/fluids6110385
Chicago/Turabian StyleIsaev, Sergey, Dmitry Nikushchenko, Alexandr Sudakov, Nikita Tryaskin, Ann Egorova, Leonid Iunakov, Alexandr Usachov, and Valery Kharchenko. 2021. "Numerical Simulation of a Periodic Quasi-Switching Mode of Flow around a Conical Dimple with a Slope Angle of 10 Degrees on the Wall of a Narrow Channel Using URANS" Fluids 6, no. 11: 385. https://doi.org/10.3390/fluids6110385
APA StyleIsaev, S., Nikushchenko, D., Sudakov, A., Tryaskin, N., Egorova, A., Iunakov, L., Usachov, A., & Kharchenko, V. (2021). Numerical Simulation of a Periodic Quasi-Switching Mode of Flow around a Conical Dimple with a Slope Angle of 10 Degrees on the Wall of a Narrow Channel Using URANS. Fluids, 6(11), 385. https://doi.org/10.3390/fluids6110385