Using Experimentally Calibrated Regularized Stokeslets to Assess Bacterial Flagellar Motility Near a Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Methods
2.1.1. Method of Regularized Stokeslets
2.1.2. Method of Images for Regularized Stokeslets
2.1.3. Force-Free and Torque-Free Models
2.2. Torque–Speed Motor Response Curve
2.3. Dynamically Similar Experiments
2.3.1. Fabricating Helices
2.3.2. Axial Torque Measurements
2.4. Summary of Algorithms and Data Analysis
3. Results
3.1. Verifying the Numerical Model and Determining the Optimal Regularization Parameters
3.1.1. Finding the Optimal Regularization Parameter for a Rotating Cylinder
3.1.2. Finding the Optimal Regularization Parameter for a Rotating Helix Far from a Boundary
3.1.3. Torque on Rotating Helices Near a Boundary
3.2. Speed Measurements to Assess Performance
3.2.1. Optimal Flagellar Wavelength
3.2.2. Boundary Effects
3.3. Energy Cost Measures to Assess Performance
3.3.1. Optimal Wavelength
3.3.2. Boundary Effects
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sowa, Y.; Berry, R.M. Bacterial flagellar motor. Q. Rev. Biophys. 2008, 41, 103–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauga, E. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 2016, 48, 105–130. [Google Scholar] [CrossRef] [Green Version]
- Ramia, M.; Tullock, D.; Phan-Thien, N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 1993, 65, 755–778. [Google Scholar] [CrossRef] [Green Version]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Higdon, J. The hydrodynamics of flagellar propulsion: Helical waves. J. Fluid Mech. 1979, 94, 331–351. [Google Scholar] [CrossRef] [Green Version]
- Shapere, A.; Wilczek, F. Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech. 1989, 198, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Shum, H.; Gaffney, E.; Smith, D. Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1725–1748. [Google Scholar] [CrossRef] [Green Version]
- Spagnolie, S.E.; Lauga, E. Comparative hydrodynamics of bacterial polymorphism. Phys. Rev. Lett. 2011, 106, 058103. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, A.; Yesilyurt, S. Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels. Biophys. J. 2014, 106, 1537–1547. [Google Scholar] [CrossRef] [Green Version]
- He-Peng, Z.; Bin, L.; Rodenborn, B.; Swinney, H.L. Propulsive matrix of a helical flagellum. Chin. Phys. B 2014, 23, 114703. [Google Scholar]
- Bet, B.; Boosten, G.; Dijkstra, M.; van Roij, R. Efficient shapes for microswimming: From three-body swimmers to helical flagella. J. Chem. Phys. 2017, 146, 084904. [Google Scholar] [CrossRef] [Green Version]
- Schuech, R.; Hoehfurtner, T.; Smith, D.J.; Humphries, S. Motile curved bacteria are Pareto-optimal. Proc. Natl. Acad. Sci. USA 2019, 116, 14440–14447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, S.; Moldovan, R.; Yeung, C.; Wu, X. Swimming efficiency of bacterium Escherichiacoli. Proc. Natl. Acad. Sci. USA 2006, 103, 13712–13717. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Tang, J.X. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophys. J. 2006, 91, 2726–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.; Kim, Y.C.; Yim, D.; Yoo, J.Y.; Jin, S. Flow visualization and performance measurements of a flagellar propeller. J. Bionic Eng. 2012, 9, 322–329. [Google Scholar] [CrossRef]
- Lighthill, M. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 1952, 5, 109–118. [Google Scholar] [CrossRef]
- Li, C.; Qin, B.; Gopinath, A.; Arratia, P.E.; Thomases, B.; Guy, R.D. Flagellar swimming in viscoelastic fluids: Role of fluid elastic stress revealed by simulations based on experimental data. J. R. Soc. Interface 2017, 14, 20170289. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Berg, H.C. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 2000, 78, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Sowa, Y.; Hotta, H.; Homma, M.; Ishijima, A. Torque—Speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 2003, 327, 1043–1051. [Google Scholar] [CrossRef]
- Xing, J.; Bai, F.; Berry, R.; Oster, G. Torque–speed relationship of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 2006, 103, 1260–1265. [Google Scholar] [CrossRef] [Green Version]
- Darnton, N.C.; Berg, H.C. Force-Extension Measurements on Bacterial Flagella: Triggering Polymorphic Transformations. Biophys. J. 2007, 92, 2230–2236. [Google Scholar] [CrossRef] [Green Version]
- Cortez, R.; Fauci, L.; Medovikov, A. The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming. Phys. Fluids 2005, 17, 0315041–14. [Google Scholar] [CrossRef]
- Ainley, J.; Durkin, S.; Embid, R.; Boindala, P.; Cortez, R. The method of images for regularized Stokeslets. J. Comput. Phys. 2008, 227, 4600–4616. [Google Scholar] [CrossRef]
- Das, D.; Lauga, E. Computing the motor torque of Escherichia coli. Soft Matter 2018, 14, 5955–5967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martindale, J.D.; Jabbarzadeh, M.; Fu, H.C. Choice of computational method for swimming and pumping with nonslender helical filaments at low Reynolds number. Phys. Fluids 2016, 28, 021901. [Google Scholar] [CrossRef] [Green Version]
- Rodenborn, B.; Chen, C.H.; Swinney, H.L.; Liu, B.; Zhang, H. Propulsion of microorganisms by a helical flagellum. Proc. Natl. Acad. Sci. USA 2013, 110, E338–E347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffrey, D.; Onishi, Y. The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Math. 1981, 34, 129–137. [Google Scholar] [CrossRef]
- Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 2006, 70, 660–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbarzadeh, M.; Fu, H.C. A numerical method for inextensible elastic filaments in viscous fluids. J. Comput. Phys. 2020, 418, 109643. [Google Scholar] [CrossRef]
- Olson, S.D.; Suarez, S.S.; Fauci, L.J. Coupling biochemistry and hydrodynamics captures hyperactivated sperm motility in a simple flagellar model. J. Theor. Biol. 2011, 283, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.; Koehl, M.A.R.; Oakes, C.; Bustamante, G.; Fauci, L. Effects of cell morphology and attachment to a surface on the hydrodynamic performance of unicellular choanoflagellates. J. R. Soc. Interface 2019, 283, 20180736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmann, A.; Fauci, L.J.; Leiderman, K.; Strawbridge, E.; Zhao, L. Mixing and pumping by pairs of helices in a viscous fluid. Phys. Rev. E 2018, 97, 023101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzarth, E.L.; Minion, M. Modeling slender bodies with the method of regularized Stokeslets. J. Comput. Phys. 2011, 230, 3929–3947. [Google Scholar] [CrossRef]
- Purcell, E.M. The efficiency of propulsion by a rotating flagellum. Proc. Natl. Acad. Sci. USA 1997, 94, 11307–11311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dynamic Viscosity of the Fluid | μ | Distance of Flagellum to Wall | d |
---|---|---|---|
Cylindrical cell body | Helical flagellum | ||
Geometrical parameters | Geometrical parameters | ||
Length | ℓ | Axial length | L |
Radius | r | Helix radius | R |
Wavelength | λ | ||
Filament radius | a | ||
Computational parameters | Computational parameters | ||
Optimal discretization factor | γc | Optimal filament factor | γf |
Regularization parameter | ϵc | Regularization parameter | ϵf |
Discretization size | dsc | Discretization size | dsf |
Body mass | m | Motor angular frequency | Ωm |
Axial drag force | F | Axial torque | τ |
Swimming speed | U | Purcell inefficiency | |
Energy per distance traveled | Metabolic energy cost |
Parameter | Value | Unit | Reference |
---|---|---|---|
μ | 0.93 | 10−3 Pa·s | |
Cell body | |||
ℓ | (a) | [21] | |
r | (b) | [21] | |
Flagellum | |||
L | [21] | ||
(c) | |||
R | [21] | ||
a | [21] | ||
154 | [21] | ||
d | (d) |
2.26 ± 0.13 | 22.3 ± 0.5 |
3.88 ± 0.01 | 24.3 ± 0.5 |
5.86 ± 0.08 | 30.0 ± 0.5 |
8.65 ± 0.01 | 23.3 ± 0.5 |
10.91 ± 0.01 | 24.2 ± 0.5 |
11.88 ± 0.01 | 23.1 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shindell, O.; Nguyen, H.; Coltharp, N.; Healy, F.; Rodenborn, B. Using Experimentally Calibrated Regularized Stokeslets to Assess Bacterial Flagellar Motility Near a Surface. Fluids 2021, 6, 387. https://doi.org/10.3390/fluids6110387
Shindell O, Nguyen H, Coltharp N, Healy F, Rodenborn B. Using Experimentally Calibrated Regularized Stokeslets to Assess Bacterial Flagellar Motility Near a Surface. Fluids. 2021; 6(11):387. https://doi.org/10.3390/fluids6110387
Chicago/Turabian StyleShindell, Orrin, Hoa Nguyen, Nicholas Coltharp, Frank Healy, and Bruce Rodenborn. 2021. "Using Experimentally Calibrated Regularized Stokeslets to Assess Bacterial Flagellar Motility Near a Surface" Fluids 6, no. 11: 387. https://doi.org/10.3390/fluids6110387
APA StyleShindell, O., Nguyen, H., Coltharp, N., Healy, F., & Rodenborn, B. (2021). Using Experimentally Calibrated Regularized Stokeslets to Assess Bacterial Flagellar Motility Near a Surface. Fluids, 6(11), 387. https://doi.org/10.3390/fluids6110387