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Abstract: Hydrocolloid-based films are a good alternative in the development of biodegradable films
due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In
this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated,
evaluating their dynamic rheological behavior and creep and recovery. Maxwell’s classical and
fractional rheological models were implemented to describe its viscoelastic behavior, using the
Vortex Search Algorithm for the estimation of the parameters. The hydrocolloid-based films showed
a viscoelastic behavior, where the behavior of the storage modulus (G′) and loss modulus (G′′ )
indicated a greater elastic behavior (G′ > G′′ ). The Maxwell fractional model with two spring-pots
showed an optimal fit of the experimental data of storage modulus (G′) and loss modulus (G′′ ) and a
creep compliance (J) (Fmin < 0.1 and R2 > 0.98). This shows that fractional models are an excellent
alternative for describing the dynamic rheological behavior and creep recovery of films. These results
show the importance of estimating parameters that allow for the dynamic rheological and creep
behaviors of hydrocolloid-based films for applications in the design of active films because they
allow us to understand their behavior from a rheological point of view, which can contribute to the
design and improvement of products such as food coatings, food packaging, or other applications
containing biopolymers.

Keywords: fractional rheological model; hydrocolloid films; metaheuristic optimization; parameter
estimation; Vortex Search Algorithm; viscoelastic behavior

1. Introduction

Recently, the development of edible food packaging and biodegradable films from
natural polymeric materials has attracted the attention of researchers due to environmental
pollution caused by the use of conventional non-biodegradable plastic [1]. The functionality
of edible films has been improved and diversified through the development of different film
formulations, and knowledge about them has continuously increased due to worldwide
research on their properties [2]. In general, polysaccharides, such as pectin, starch, cellulose,
alginates, and other hydrocolloids, have a good performance in film-forming due to their
chemical nature [2,3]. The addition of a plasticizer, such as glycerol or sorbitol, increases
the mobility of polymer chains because they reduce intermolecular forces, improving
the flexibility and extensibility of the film [3,4]. The edible films can be obtained from
edible materials through two different methods: wet and dry processes, also called solvent
casting and extrusion processes, respectively. The casting method (also called solvent
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casting) is the most commonly used method for film formation on laboratory and pilot
scales and its main advantage is an ease of manufacturing without the usage of low-cost
specialized equipment [5]. Hydrocolloids, particularly gellan gum, carrageenan, and guar
gum, are biodegradable and non-toxic products based on renewable resources. Gellan
gum is composed of repeating tetrasaccharide (1,3-β-D-glucose, 1, 4-β-d-glucuronic acid,
1, 4-β-D-glucose, and 1, 4-α-l-rhamnose) units containing one carboxyl side group. It is
used as a gelling agent and occurs in two steps with the addition of salts or acids. In the
first step, double helices form during cooling, and in the second step, this is followed by
a cation-mediated aggregation of the double helices that leads to gelation. The gelation
conditions bring about a wide variety of textures and mechanical properties. This extends
the application of gellan gum to many fields, such as biomedicine, pharmacology, and the
food industry [6–10]. Carrageenan is a natural sulfated polysaccharide that is extracted
from Rhodophyceae seaweed and consists of a disaccharide repeating unit of alternating
α-(1–3)-D-galactose and β-(1–4)-3,6-anhydro-D-galactose [11]. Variation in the derivatives
and position of carrageenan sulfates can alter the rheological properties of gels in food
applications [12], but kappa carrageenan and iota carrageenan are the most common types
used in the industry due to their good gelling properties [13].

Blending two or more different hydrocolloids can change both the physical and
rheological properties of film-forming solutions and, consequently, of films, strongly. These
changes occur due to compatibility/incompatibility between two macromolecules, which
depend on their molecular weights, chemical structures, conformations, and hydration
behaviors, as well as the addition of various chemicals or additives [14,15].

The rheological characterization of foods provides important information for food
scientists, namely, ingredient selection strategies to design, improve, and optimize their
products, to select and optimize their manufacturing processes, and to design packaging
and storage strategies [16]. As a complex matrix, food generally cannot be described
by an ideal model, such as an ideal liquid, if the matrix is viscous, or an ideal solid, if
it is elastic, nor as an ideal plastic, a state between liquid and solid. To determine and
quantify the viscoelastic behavior of a matrix, quasi-static (transient) and dynamic tests
can be carried out [2]. To describe the viscoelastic nature of food products, rheological
models based on mechanical analogues consisting of spring elements (elastic behaviour)
and dash-pot elements (viscous behaviour) are used [17–19]. Different combinations of
spring and dash-pot elements represent different constitutive rheological models [20].

The main limitation of the classical models, such as generalized Maxwell models,
is that these require many parameters to get the best fit with the experimental data [19].
Furthermore, more elements of the rheological model mean that more parameters must be
evaluated, increasing the complexity of associating the numerical values of the coefficients
with the viscoelastic and textural properties of the materials [20], making it difficult to
understand the physical importance of all parameters found in the classical models [21].
As an alternative approach, fractional calculus has been an empirical method of analyz-
ing the linear viscoelastic response of polymeric materials [22,23], food products, and
ingredients such as fruits, vegetables, gums, and emulsifiers [20,24–26] in an increasing
number of research articles. By this approach, the capacity of conventional viscoelastic
models can be enhanced, and their well-known limitations can be overcome, while a satis-
factory description of viscoelastic response can be obtained by a reduced number of model
parameters [23].

The objective of this work was to develop films based on hydrocolloids, evaluate, and
describe their viscoelastic behavior (dynamic rheological and creep recovery) using classic
and fractional rheological models with a new metaheuristic approach to estimate their
parameters. Previous studies have implemented metaheuristic algorithms, such as Genetic
Algorithms (GA), to estimate the parameters of fractional rheological models [27–29]. In
this study, we propose the application of the Vortex Search Algorithm (VSA) for the
estimation of the parameters of the proposed rheological models, such as the generalized
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Maxwell and Kelvin models and the fractional Maxwell and Kelvin models, with one and
two spring-pots.

2. Materials and Methods
2.1. Material

Gellan gum, carrageenan, and guar gum was supplied by Química Aromática Andina
SAS (Medellin, Colombia), Tecnas S.A (Medellin, Colombia) and ABC Laboratories (Bogota,
Colombia) respectively. Glycerol, sorbitol, potassium chloride, and calcium chloride were
supplied by ABC Laboratories (Bogota, Colombia).

2.2. Film Preparation

The hydrocolloid-based films were prepared from a mixture of guar gum, gellan gum
and carrageenan with a solution-casting technique. A simple mixture design was used, as
shown in Table 1. The film preparation procedures are described as follows: guar gum,
gellan gum, and carrageenan were dissolved in 80 mL of distilled water with the addition of
potassium citrate and calcium chloride. This mixture was heated to 80 ◦C for 15 min under
constant agitation. Guar gum was added with a concentration of 0.8% p/v. A mixture of
plasticizers (sorbitol and glycerol) was used, which were added with a concentration of 6%
p/v into the hydrocolloid solution film. The mixture was then stirred for 15 min at 85 ◦C
and the resulting suspension was casted in a Petri dish. These samples were dried for 36 h
at room temperature.

Table 1. Sample code and formulation of hydrocolloid-based film.

Sample Code Gellan Gum (%) Carrageenan (%) Potassium Citrate (%) Calcium Chloride (%)

F1 0.25 1.35 0.2 0.4
F2 0.25 1.35 0.4 0.2
F3 0.4 1.2 0.2 0.4
F4 0.4 1.2 0.4 0.2

2.3. Viscoelastic Tests

The viscoelastic characterization of the samples’ films was analyzed using a HAAKE
MARS Modular Advanced Rheometer System 60 with Peltier and the geometry of a rough
dish of 35 mm diameter with 0.3 mm gap was used. Stress sweeps were carried out at a
frequency of 1 Hz, applying an ascending series of stress values from 0.1 to 100 Pa for the
determination of the linear viscoelasticity interval.

2.3.1. Dynamic Rheological Tests

Oscillatory shear tests were performed to obtain the viscoelastic response of the mate-
rial. Frequency sweeps were performed to obtain the mechanical spectrum by applying a
stress value, within the linear viscoelastic range, in an angular frequency range comprising
between 10−1 and 102 rad/s. The tests were carried out at 30 ◦C. The obtained viscoelastic
parameters were storage modulus (G′), loss modulus (G′′ ), and tan (δ).

2.3.2. Creep and Recovery Tests

Creep and recovery tests were performed to determine the values of compliance in
the creep and recovery phases. Creep and recovery analyses of hydrocolloid films were
performed at 30 ◦C for each sample. In the creep phase, hydrocolloid film samples were
subjected to constant stress for 60 s. In the recovery phase, the applied stress was suddenly
removed, and the sample was analyzed for recoverable shear for 240 s.

3. Rheological Model

Viscoelastic models can be used to represent rate-dependent behaviors [30], where the
stress-strain relation is a function of the rate of strain, and the creep compliance J behavior,
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where the strain increases under a constant applied load. When the material is subjected
to harmonic stress or strain, another important part of the theory of viscoelasticity is the
useful concept [31] of the complex modulus G∗, where the real part, G′, of this modulus
is associated with the amount of energy stored in the element during a complete loading
cycle and is called the storage modulus. The imaginary part, G′′ , relates to the energy
dissipated per cycle and is called the loss modulus [32].

3.1. The Generalized Maxwell Model

The generalized Maxwell model is a typical classic viscoelastic model composed of
multiple Maxwell elements connected in parallel, as shown in Figure 1 [33].
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The constitutive equation for generalized Maxwell model can be expressed in the
general form:

N

∑
n=0

an
dnσ(t)

dtn =
M

∑
m=0

bn
dmγ(t)

dtm (1)

where N = M and b0 = 0. For N = 1, Equation (1) is expressed as follows:

σt + τ
dσ(t)

dt
= G1

dε(t)
dt

(2)

where G1 is the elastic modulus in Pa, τ is the characteristic time in seconds, given by the
following expression τ = η1

G1
, η1 being the viscosity in Pa seconds. The complex modulus

can be derived by transforming Equation (1) into the frequency domain. Applying the
Fourier transformation to Equation (1), considering that

F
{

d
dt

f(t)
}

= (iω)̃f(ω), (3)

we obtain the following:

G∗(ω) =
σ̃(ω)

ε̃(ω)
=

G1τωi
1 + τωi

(4)

where G∗(ω) is the complex modulus. Separating the real and imaginary parts, we can
obtain the storage and loss modulus, respectively:

G′(ω) = G1(τω)2

1+(τω)2

G′′ (ω) = G1τω

1+(τω)2

(5)
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The creep compliance J is obtained by applying the Laplace transformation to
Equation (1), obtaining:

J(s) =
ε(s)

s σ(s)
=

1
G1

(
1
s
+

1
τs2

)
(6)

Applying the inverse Laplace transformation, we obtain:

J(t) =
1

G1

(
1 +

t
τ

)
(7)

Now, for N = 2, Equation (1) is expressed as follows:

σt + (τ1+τ2)
dσ(t)

dt
+ τ1τ2

dσ2(t)
dt2 = (G1τ1 + G2τ2)

dε(t)
dt

+ (G1 + G2)
dε2(t)

dt2 (8)

where G1 and G2 are elastic modules corresponding to Maxwell elements connected in
parallel in Pa, τ1 and τ2 are the characteristics’ times in seconds, given by the following
expression τ1 = η1

G1
and τ2 = η2

G2
, being η1 and η2 are viscosities in Pa seconds. The complex

modulus can be derived applying Equations (3)–(8), obtaining:

G∗(ω) =
σ̃(ω)

ε̃(ω)
=

G1τ1ωi
1 + τ2ωi

+
G2τ2ωi

1 + τ2ωi
(9)

Separating the real and imaginary parts, we can obtain the storage and loss
modulus, respectively:

G′(ω) = G1(τ1ω)2

1+(τ1ω)2 +
G2(τ2ω)2

1+(τ2ω)2

G′′ (ω) = G1τ1ω

1+(τ1ω)2 +
G2τ2ω

1+(τ2ω)2

(10)

The creep compliance J is obtained by applying the Laplace transformation to
Equation (8) and then the inverse Laplace transformation to obtain the following:

J(t) =
(

1
G1 + G2

)
e
−t
τr +

(
τ1 + τ2 − τr

τ1 G1 + τ2 G2

)(
1− e

−t
τr

)
+

t
τ1 G1 + τ2 G2

(11)

where τr =
τ1τ2(G1+G2)
(τ1G1+τ2G2)

.

3.2. The Fractional Maxwell Model

The fractional Maxwell model with one spring-pot consists of a spring connected in
series with one spring-pot. In this model, the dash-pots of the conventional Maxwell model
have been replaced with a Scott-Blair element, as shown in Figure 2a.
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The constitutive equation is given by:

σ(t) + τα dασ(t)
dtα = Geτ

α dαε(t)
dtα

(12)
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where α is fractional exponents (0 < α < 1), Ge is the elastic modulus, τ is the characteristic
time, given by the following expression τα = G1τ1

Ge
. The fractional derivative of order

0 < α < 1 is defined according to the Caputo definition as [25]:

Dαt f(t) = 1
Γ(1−α)

∫ t
0

df(τ)
dt (t− τ)−αdτ (13)

where Γ(1− α) denotes the Euler Gamma function. According to the fractional differential
Fourier transformation [34]:

F
{

dα
dα f(t)

}
= (iω)α f̃(ω) (14)

where f̃(ω) = F{f(t);ω} [35], the complex modulus of the model can be derived applying
Equations (12)–(14), obtaining:

G∗(ω) =
σ̃(ω)
ε̃(ω)

= Ge(iτω)α

1+(iτω)α
(15)

Separating the real and imaginary parts, we can obtain the storage modulus and
loss modulus:

G′(ω) = Ge
(ωτ)2α+(ωτ)α cos(πα/2)

1+2(ωτ)α cos(πα/2)+(ωτ)2α

G′′ (ω) = Ge
(ωτ)α sin(πα/2)

1+2(ωτ)α cos(πα/2)+(ωτ)2α

(16)

The creep compliance is obtained by applying the Laplace transform to Equation (12),

J(s) = ε(s)
s σ(s) =

1
Ge

(
1
s +

s−α −1

τα

)
(17)

Applying the inverse Laplace transformation, we obtain:

J(t) = 1
Ge

+
( t
τ )
α

GeΓ(α+1)
(18)

The Maxwell fractional model with two spring-pots consists of two Scott-Blair ele-
ments or spring-pots connected in series, as shown in Figure 2b. The constitutive equation
is given by:

σ(t) + τα−β dα−βσ(t)
dtα−β

= Gτ
α dαε(t)

dtα
(19)

where G is an elastic modulus in Pa given by the following expression, G = G1
(τ1
τ

)α, and
τ is the characteristic time of the model in seconds, defined by the following expression:

τ =

(
G1τ

α
1

G2τ
β
2

) 1
α−β

. In Equation (19), we assumed α > β without a loss of generality [36].

Applying the Fourier transformation to Equation (19), we obtain:

G∗(ω) =
σ̃(ω)
ε̃(ω)

= G (iτω)α

1+(iτω)α−β
(20)

where G∗(ω) is the complex modulus. Separating the real and imaginary parts, we can
obtain the storage and loss modulus, respectively:

G′(ω) = G (ωτ)α cos(πα/2)+(ωτ)2α−β cos(πβ/2)
1+2(ωτ)α−β cos(π(α−β)/2)+(ωτ)2(α−β)

G′′ (ω) = G (ωτ)α sin(πα/2)+(ωτ)2α−β sin(πβ/2)
1+2(ωτ)α−β cos(π(α−β)/2)+(ωτ)2(α−β)

(21)
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The creep compliance is obtained by applying the Laplace transform to
Equation (37), obtaining:

J(s) = ε(s)
sσ(s) =

1
G

(
s−α−1

τα + s−β−1

τβ

)
(22)

Applying the inverse Laplace transformation, we obtain:

J(t) = ( t
τ )
α

GΓ(α+1) +
( t
τ )
β

GΓ(β+1)
(23)

3.3. The Generalized Kelvin Model

The generalized Kelvin model is a typical classic viscoelastic model composed of
multiple Kelvin elements connected in series, as shown in Figure 3.
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The constitutive equation for the generalized Kelvin model can be expressed in the
general form:

M

∑
m=0

am
dmσ(t)

dtm =
N

∑
n=0

bn
dnε(t)

dtn (24)

where M = N− 1 and a0 = 1. For N = 1, Equation (24) is expressed as follows:

σ(t) = G1ε(t) + G1τ
dε(t)

dt
(25)

where G1 is the elastic modulus in Pa, τ is the retardation time in seconds, given by the
following expression τ = η1

G1
, being η1 the viscosity in Pa seconds. The complex modulus

can be derived applying (3) to (25), obtaining the following:

G∗(ω) =
σ̃(ω)

ε̃(ω)
= G1(1 + τωi) (26)

Separating the real and imaginary parts, we can obtain the storage modulus and loss
modulus, respectively:

G′(ω) = G1
G′′ (ω) = G1τω

(27)

The creep compliance J is obtained by applying the Laplace transform to the
Equation (25), obtaining:

Js =
ε(s)

sσ(s)
=

1
G1s(τs + 1)

(28)

Applying the inverse Laplace transformation, we obtain:

J(t) = 1
G1

(
1− e−

t
τ

)
(29)
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Now, for N = 2, Equation (25) is expressed as follows:

σ(t) +
G1τ1 + G2τ2

G1 + G2

dσ(t)
dt

=
G1 G2

G1 + G2
ε(t) +

G1 G2

G1 + G2
(τ1 + τ2)

dε(t)
dt

+
G1 G2τ1τ2

G1 + G2

dε2(t)
dt2 . (30)

where G1 and G2 are elastic modules corresponding to Maxwell elements connected
in parallel in Pa, τ1 and τ2 are the characteristics times in seconds, given by the following
expression τ1 = η1

G1
and τ2 = η2

G2
, and η1 and η2 are viscosities in Pa seconds. In the

generalized Kelvin model, the dynamic storage and loss modulus are usually expressed by
the storage compliance J′ and loss compliance J′′ , respectively. The equations of J′ and J′′

for the generalized Kelvin model, when N = 2 is given by [33], are:

J′(ω) = 1
G1(1+(τ1ω)2)

+ 1
G2(1+(τ2ω)2)

J′′ (ω) = τ1ω
G1(1+(τ1ω)2)

+ τ2ω
G2(1+(τ2ω)2)

(31)

Therefore, the moduli of storage and loss can be expressed as:

G′(ω) =
J′(ω)

(J′(ω))
2
+(J′′ (ω))2

G′′ (ω) =
J′′ (ω)

(J′(ω))
2
+(J′′ (ω))2

(32)

The creep compliance J is obtained by applying the Laplace transformation to
Equation (30), and then inversely applying the Laplace transformation to obtain:

J(t) = 1
G1

(
1− e−

t
τ1

)
+ 1

G2

(
1− e−

t
τ2

)
(33)

3.4. The Fractional Kelvin Model

The fractional Kelvin model with one spring-pot consists of a spring connected in
parallel with one spring-pot. In this model, the dash-pots of the conventional Kelvin model
have been replaced by a Scott-Blair element, as shown in Figure 4a.
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The constitutive equation is given by:

σ(t) = Geτ
α dαε(t)

dtα + Geε(t) (34)

where α is fractional exponents (0 < α < 1), Ge is the elastic modulus, τ is the characteristic
time, given by the following expression τα = G1τ1

Ge
. The complex modulus of the model

can be derived applying Equations (14)–(34), obtaining the following:

G∗(ω) =
σ̃(ω)

ε̃(ω)
= Ge(1 + (τωi)α) (35)
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Separating the real and imaginary parts, we can obtain the storage modulus and loss
modulus, respectively:

G′(ω) = Ge(1 + (τω)α cos (πα2 ))

G′′ (ω) = Ge(τω)α sin
(
πα

2
) (36)

The creep compliance J is obtained by applying the Laplace transform to
Equation (34), obtaining:

J(s) =
ε(s)

s σ(s)
=

1
Ges

(
1− ταsα

1 + ταsα

)
(37)

Applying the inverse Laplace transformation, we obtain:

J(t) = 1
Ge

(
1− Eα

(
−
( t
τ

)α)) (38)

where Eα is the Mittag-Leffler function, with β = 1, given by the expression:

Eα,1(x) =
∞

∑
n=0

xn

Γ(αn + 1)
(39)

The fractional Kelvin model with two spring-pots consists of two Scott-Blair elements
or spring-pots connected in parallel, as shown in Figure 4b. The constitutive equation is
given by:

σ(t) = Gτα dαε(t)
dtα + Gτβ dβε(t)

dtβ
(40)

where G is an elastic modulus in Pa given by the following expression, G = G1
(τ1
τ

)α
and τ is the characteristic time of the model in s, defined by the following expression

τ =

(
G1τ

α
1

G2τ
β
2

) 1
α−β

. Applying the Fourier transformation to Equation (40), we obtain:

G∗(ω) =
σ̃(ω)

ε̃(ω)
= G((τωi)α + τωi)β (41)

Separating the real and imaginary parts, we can obtain the storage modulus and loss
modulus, respectively:

G′(ω) = G
(
(τω)α cos (πα2 ) + (τω)β cos (πβ2 )

)
G′′ (ω) = G

(
(τω)α sin (πα2 ) + (τω)β sin (πβ2 )

) (42)

The creep compliance J is obtained by applying the Laplace transformation to
Equation (40), obtaining:

J(s) =
ε(s)

s σ(s)
=

1
G

(
τ−αs−β−1

τβ−α + sα−β

)
(43)

Applying the inverse Laplace transformation, we obtain:

J(t) = 1
G
( t
τ

)αEα−β,1+α

(
−
( t
τ

)α−β) (44)

where Eα,β is the Mittag-Leffler function of two parameters, given by the expression:

Eα,β(x) =
∞

∑
n=0

xn

Γ(αn + β)
(45)
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4. Vortex Search Algorithm (VSA)

The VSA algorithm is a recently developed metaheursistic optimization technique
that works with continuous nonlinear non-convex optimization problems in a multidimen-
sional space with dimension d [37]. This optimization approach works with Gaussian
distributions and gamma functions to explore and exploit the solution space. The VSA
was inspired by the vortex pattern created by the vortical flow of stirred fluids. In the
specialized literature, the VSA has been used in multiple optimization problems as fol-
lows: optimal power flow studies in power systems [38,39], optimal location and sizing of
capacitor banks and distributed generation in electrical distribution grids [40,41], nonlin-
ear non-convex constrained optimization [42,43], and the selection of analog active filter
components, among others. The main aspects of the VSA for numerical optimization are
presented below [38]:

1. Initial Solution: The VSA works with the vector radius (
→
r t where t is the iteration

counter) that generates a hyperellipsoid in a d-dimensional space. To center the
hyperellipsoid in the solution space, let us define its center as µ0, where:

µ0 = xmax+xmin
2 (46)

and xmin ∈ Rd×1 and xmax ∈ Rd×1 are the minimum and maximum bounds of the
solution variables x.

2. Candidate Solutions: To generate a set of candidate solutions Ct
i(x) = st

i = x1.x2, . . . , xd
(where subscript i is associated with the i-th individual in the population) a Gaussian
distribution is used as follows:

st
i = p

(
ζt

i ,µt, v
)
=
(
(2π)d|ν|

)
e(−

1
2
(ζt

i−µt)
T
(ζt

i−µt)
ν ) (47)

where ζt
i ∈ Rd×1 is a vector of random variables, µt ∈ Rd×1 is a current center of

the hyperellipsoid in the iteration t, and ν ∈ Rd×1 is a matrix of covariances. Here,
we simplified this matrix with identical variances σ0 in diagonal null covariance, as
recommended in [37]:

σ0 = max{xmax}−min{xmin}
2 (48)

where µ = σ0Id×d, with I being an identity matrix with appropriate dimensions. Note
that for initializing the radius vector (rt with t = 0), the VSA approach recommends
assigning it as σ0. Note that the vector radius is important in the VSA algorithm, since
it governs the random vector of variables ζt

i as ζt
i rand (d), where rand (d) generates

a vector of random variables between 0 and 1 with dimension d.
3. Bounding the Candidate Solutions: Note that a Gaussian distribution can generate

a set of solutions st
i outside of the solution’s space bounds, which implies that a

bounding procedure is always required, as presented below:

st
i =

{
st

i xmin ≤ x ≤ xmax
xmin + (xmax − xmin)rand otherwhise

(49)

where rand is a random number between 0 and 1.
4. Selection of the new center: To advance through the solution space, it is necessary to

select the new center of the hyperellipsoid as a function of the best solution attained
in the population, i.e., µt+1 must be selected as the individual in Ct

i(x), such that
it produces the minimum (maximum) solution of the current population, which
implies that µt+1 = st

i,best. Observe that the selection of the new center implies that all
individuals in the current population have been evaluated in the objective function or
in its equivalent [44] to determine the direction of exploration and exploitation of the
solution space.
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5. The Radius Step-Down Process: To decrease the radius of the hyperellipsoid cen-
tered at µt+1, use the incomplete inverse gamma function [42]; notwithstanding,
here we propose an alternative decreasing method using an exponential function as
follows [39]:

rt+1 = σ0

(
1− t

tmax

)
e(a

t
tmax ) (50)

where a is a constant parameter that governs the reduction speed of the radius of the
hyperellipsoid that represents the solution space;

6. Stopping criteria: The VSA algorithm stops its search process in the solution space
when each of the following conditions is reached:

• If all the iterations have been made, i.e., t = tmax;
• If during k consecutive iterations the best fitness function has not been modified,

with kmax being the maximum consecutive iterations without improvement, i.e.,
k = kmax.

The Vortex Search Algorithm (VSA) was implemented in MATLAB 2019a software. In
the parameterization of the VSA a population size of 1000 was considered for the classic
and fractional models and several iterations of 500 and 2000 were considered for the classic
and fractional models, respectively.

5. Optimization Problem

The parameters of the storage modulus, loss modulus and creep compliance calculated
from classical and fractional Maxwell and Kelvin models are estimated using the Vortex
Search Algorithm (VSA), based on the minimization of the mean square error between the
predicted values (G′(ωj), G′′ (ωj), J

(
tj
)
) and the measured data (G′j , G′′j , Jj). The objective

minimization function is given by:

Fmin =
M
∑

j=1

((
G′(ωj)

G′j
− 1
)2

+

(
G′′ (ωj)

G′′j
− 1
)2

+

(
J(tj)

Jj
− 1
)2
)

subject to 0 < β < α < 1
(51)

6. Results and Discussion
6.1. Viscoelastic Behavior

The storage modulus (G′) and the loss modulus (G′′ ) characterize the system in the
study of rheological dynamics. G′ is a measure of the energy temporarily stored in a
material and G′′ is a measure of the energy used to activate a flow, energy that is dissipated
and transformed into heat [45]. Figure 5a shows the variation of the storage modulus (G′),
loss modulus (G′′ ), and tan δ in relation to the angular frequency for formulation sample
studies. It can be seen that the elastic behavior for F1, F2, F3, and F4 samples were greater
than the viscous behavior (G′ > G′′ ) and no crossing points were observed in the angular
frequency interval in the study, indicating typical solid viscoelasticity, which is consistent
with that reported by González Cuello et al. [46], where it was found that biofilms based
on binary mixtures of gellan gum and concentrated whey protein had a viscoelastic solid
behavior. The behavior of the modulus G′ for F1, F2, F3, and F4 is observed to increase and
decrease by about the concentration of potassium and calcium ions, respectively, keeping
constant the concentrations of carrageenan, gellan gum, and guar gum. A comparison of
the values of G′ of F4 and F3 with F2 and F1, respectively, shows that F2 and F4 show higher
G′. This can be explained because F2 and F4 have a higher concentration of potassium ions
in carrageenan than F3 and F1, respectively, which is related to gel formation with greater
cross-link formation [13,47,48]; that is, by decreasing the concentration of Carrageenan
and potassium ions, the G′ decreases as well. The presence of calcium ions exerts an
influence on the formation of cross-links in gellan gum [49–51], observing that, when
comparing F2 and F4 with F3 and F1, respectively, when their concentration increases,
the values of G′ decrease, independent of gellan concentration. This may be because the
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concentrations used were above the optimal gelation value [50]. Studies developed by
MacArtain et al. [50] and Meng et al. [49] concluded that, starting with low concentrations
of calcium ions, there is an increase in G′, but as this concentration increases and goes
beyond the optimal value, the G′ values tend to decrease, due to the excess of calcium ions.
The third parameter that described the viscoelastic behavior of a material is tan δ, which
is also a function of frequency. Tan δ indicates the relationship between the amounts of
dissipated and stored energy, i.e., the quantitative relationship between the viscous and
the elastic components of a system; then, values of tan δ > 1 represent a dominant viscous
behavior (liquid-like behavior), whereas values of tan δ < 1 indicate a predominant elastic
behavior (solid-like behavior) [52]. The values of tan δ for F1, F2, F3, and F4 are in the
range 0.1 to 0.25, indicating that the films under study have an elastic rather than viscous
behavior (tan δ < 1). Figure 5b shows the creep and recovery curves for the hydrocolloid
films in the study. It can be seen that all of the samples showed a recovery when the
applied stress was removed, showing a solid viscoelastic behavior consistent with the
results obtained with the storage and loss modulus. Gonzalez Cuello et al. [46] reported
similar results for films prepared from binary mixtures.
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Figure 5. Viscoelastic properties of hydrocolloids films: (a) behavior of dynamic module (G′, G′′ ) and tangent of the phase
angle (Tan δ) in relation to frequency; (b) creep and recovery curves of hydrocolloid films.

6.2. Validation of the Viscoelastic Rheological Model

Figures 6 and 7 show the fit of the experimental data of the dynamic rheological and
creep behaviors with the Maxwell and Kelvin generalized models for N = 1 and N = 2 and
with the fractional Maxwell and Kelvin models. From the models evaluated to describe the
viscoelastic behavior of hydrocolloid-based films, we can observe that Maxwell’s fractional
model with two spring-pots shows a good fit for the experimental data of G′, G′′ , and creep
compliance. Table 2 shows the optimal value of the objective function (Equation (51) for
the models under study. For the generalized Maxwell and Kelvin models, the value of Fmin
decreases as the value of N increases, and in the same way for fractional models, this can
be explained by the increase in the number of parameters of the models. Comparing the
results of Fmin of the classical models with the fractional ones according to the number
of parameters, we can observe that the generalized Maxwell and Kelvin models for N = 1
and N = 2 show high values compared to the fractional models. Between the Maxwell
and Kelvin models with one and two spring-pots, Maxwell’s fractional model with two
spring-pots was the one that presents the lowest values of Fmin, indicating that this model
is the one that shows the best fit of the experimental data of G′ and G′′ .
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Table 2. Optimal values Fmin.

Rheological Model F1 F2 F3 F4

Generalized Maxwell N = 1 52.751 55.906 52.974 57.504
Generalized Maxwell N = 2 4.853 5.044 5.624 5.487

Fractional Maxwell with one spring-pot 0.343 0.222 0.605 0.122
Fractional Maxwell with two spring-pot 0.031 0.033 0.087 0.044

Generalized Kelvin N = 1 32.151 34.272 46.119 26.171
Generalized Kelvin N = 2 4.390 3.882 3.856 2.751

Fractional Kelvin with one spring-pot 1.623 0.828 3.288 0.371
Fractional Kelvin with two spring-pot 1.117 0.413 2.240 0.141
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Generalized Maxwell N = 1 52.751 55.906 52.974 57.504 
Generalized Maxwell N = 2 4.853 5.044 5.624 5.487 

Fractional Maxwell with one spring-pot 0.343 0.222 0.605 0.122 
Fractional Maxwell with two spring-pot 0.031 0.033 0.087 0.044 

Generalized Kelvin N = 1 32.151 34.272 46.119 26.171 
Generalized Kelvin N = 2 4.390 3.882 3.856 2.751 

Fractional Kelvin with one spring-pot 1.623 0.828 3.288 0.371 
Fractional Kelvin with two spring-pot 1.117 0.413 2.240 0.141 

Table 3. Rଶ for creep compliance models. 

Rheological Model 𝐅𝟏 𝐅𝟐 𝐅𝟑 𝐅𝟒 

Generalized Maxwell N = 1 / / / / 
Generalized Maxwell N = 2 0.79 0.83 0.15 0.58 

Fractional Maxwell with one spring-pot 0.90 0.95 0.98 0.98 
Fractional Maxwell with two spring-pot 0.99 0.99 0.98 0.98 

Generalized Kelvin N = 1 / / / / 
Generalized Kelvin N = 2 0.21 0.12 0.71 0.07 

Fractional Kelvin with one spring-pot 0.65 0.76 0.60 0.88 
Fractional Kelvin with two spring-pot 0.72 0.85 0.71 0.95 

Figure 7. The experimental values of creep compliance and generalized Maxwell and Kelvin models (N = 1 and N= 2),
fractional Maxwell models with one and two spring-pots, and fractional Kelvin models with one and two spring-pots:
(a) F1; (b) F2; (c) F3; (d) F4. (GMN1: Generalized Maxwell model (N = 1); GMN2: Generalized Maxwell model (N = 2);
FMOS: Fractional Maxwell Model with One Spring-pot; FMTS: Fractional Maxwell Model with Two Spring-pots; GKN1:
Generalized Kelvin model (N = 1); GKN2: Generalized Kelvin model (N = 2); FKOS: Fractional Kelvin Model with One
Spring-pot; FKTS: Fractional Kelvin Model with Two Spring-pots).

Table 3 shows the values of R2 for the adjustment of the experimental data of creep
compliance and the rheological models under study. For the Maxwell and Kelvin general-
ized models with N = 1, values of R2 < 0 were obtained, indicating no adjustments to the
experimental data. For F2, the generalized Maxwell model with N = 2 shows a value of
R2 = 0.15, indicating a poor fit to the experimental data.

The generalized Kelvin model with N = 2 presented R2 values between 0.07 and 0.71,
which indicates that the model does not show a good fit for all the formulations under
study. Maxwell’s fractional model with two spring-pots for all the formulations under
study presented values of R2 > 0.98, which indicates a good fit of the experimental data of
creep compliance.
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Table 3. R2 for creep compliance models.

Rheological Model F1 F2 F3 F4

Generalized Maxwell N = 1 / / / /
Generalized Maxwell N = 2 0.79 0.83 0.15 0.58

Fractional Maxwell with one spring-pot 0.90 0.95 0.98 0.98
Fractional Maxwell with two spring-pot 0.99 0.99 0.98 0.98

Generalized Kelvin N = 1 / / / /
Generalized Kelvin N = 2 0.21 0.12 0.71 0.07

Fractional Kelvin with one spring-pot 0.65 0.76 0.60 0.88
Fractional Kelvin with two spring-pot 0.72 0.85 0.71 0.95

These results show that the fractional models fit the experimental data of G′, G′′ , and
creep compliance J better than the classical models, using a lesser or equal number of
parameters. Bonfanti et al. [53] reported similar results in their review, where they con-
cluded that fractional viscoelastic models can accurately capture the rheological responses
of a wide range of materials using fewer parameters than traditional viscoelastic models.
Table 4 shows the parameters fitted to the Maxwell model with two spring-pots. It is
observed that for a fixed composition of 0.25 and 1.35 of gellan gum and carrageenan, the G
modulus tends to increase its magnitude when the concentrations of potassium citrate and
calcium chloride increase and decrease respectively, while at fixed compositions of 0.4 and
1.2, the G modulus tends to decrease in magnitude when the concentrations of potassium
citrate and calcium chloride increase and decrease, respectively. It is also observed that if
the concentration of gellan gum and carrageenan is increased and decreased for the fixed
concentrations of 0.2 and 0.4, the magnitude of the G modulus tends to increase, and for
concentrations of 0.4 and 0.2, when increasing and decreasing the concentration of gellan
gum and carrageenan, respectively, the magnitude of the G modulus tends to decrease.
The above shows that the G modulus is influenced by the concentrations of the gums used
and the concentrations of potassium citrate and calcium chloride.

Table 4. Estimate of the Maxwell fractional parameter with the two spring-pot model.

Sample Code G (Pa) τ (s) α β

F1 8487.75 139.65 0.57 0.09
F2 11171.42 557.46 0.56 0.12
F3 13335.38 41.03 0.42 0.08
F4 5145.16 1537.85 0.89 0.12

7. Conclusions

The hydrocolloid-based films obtained in this study presented viscoelastic-type rhe-
ological behavior. The results of the dynamic tests showed that the elastic component
of the hydrocolloid-based films was greater than the viscous component (G′ > G′′ ). The
hydrocolloid-based films showed recovery when the applied stress was suspended, show-
ing a viscoelastic solid behavior. The presence of calcium and potassium ions showed an
influence on the viscoelastic behavior of hydrocolloid-based films. It was observed that
the elastic modulus G increases and decreases with increasing concentrations of calcium
and potassium ions, respectively. The rheological model parameters for dynamic and
creep behavior were adjusted using the Vortex Search Algorithm (VSA). The results of the
objective function Fmin and R2 for the films obtained with formulations F1, F2, F3, and
F4 show that the Maxwell fractional model with two spring-pots optimally adjusts the
dynamic and creep rheological behaviors.

The above shows the importance of estimating parameters that allow for a description
of the dynamic rheological and creep behaviors of hydrocolloid-based films for future
applications in the design of active films, since they allow for an understanding of their
behavior, from a rheological point of view, which can contribute to the design and improve-
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ment of products, such as food coatings, food packaging or other applications containing
biopolymers. Therefore, this work could allow the design of biodegradable packaging
from new hydrocolloid formulations.
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