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Abstract: In the present work, we study the normal shock wave flow problem using a combination of
the OBurnett equations and the Holian conjecture. The numerical results of the OBurnett equations for
normal shocks established several fundamental aspects of the equations such as the thermodynamic
consistency of the equations, and the existence of the heteroclinic trajectory and smooth shock
structures at all Mach numbers. The shock profiles for the hydrodynamic field variables were
found to be in quantitative agreement with the direct simulation Monte Carlo (DSMC) results in the
upstream region, whereas further improvement was desirable in the downstream region of the shock.
For the discrepancy in the downstream region, we conjecture that the viscosity–temperature relation
(µ ∝ Tϕ) needs to be modified in order to achieve increased dissipation and thereby achieve better
agreement with the benchmark results in the downstream region. In this respect, we examine the
Holian conjecture (HC), wherein transport coefficients (absolute viscosity and thermal conductivity)
are evaluated using the temperature in the direction of shock propagation rather than the average
temperature. The results of the modified theory (OBurnett + HC) are compared against the benchmark
results and we find that the modified theory improves upon the OBurnett results, especially in the
case of the heat flux shock profile. We find that the accuracy gain is marginal at lower Mach numbers,
while the shock profiles are described better using the modified theory for the case of strong shocks.

Keywords: normal shock; OBurnett equations; Holian conjecture; Mach number; non-equilibrium
flows

1. Introduction

In the continuum regime for vanishing Knudsen numbers (Kn(= λ/L) → 0), the
linear constitutive laws (Newton’s law of viscosity and Fourier’s law of heat conduction)
employed in the Navier-Stokes equations are sufficient to discern the flow physics. How-
ever, as we start moving into the slip regime (0.001 < Kn < 0.1) and the transition regime
(0.1 < Kn < 10) by virtue of the reduction in the characteristic length scale (L) or increase
in the mean free path (λ), these linear constitutive laws are shown to be inaccurate [1–5].
Several non-equilibrium flow phenomena [6–8] start arising in the flow that cannot be de-
scribed using the Navier-Stokes equations. For such flows, it becomes necessary to employ
particle methods such as the direct simulation Monte Carlo (DSMC) technique [9,10] or
formulate higher-order continuum theories starting from the Boltzmann kinetic equation,
for example, conventional Burnett equations [11,12], Grad 13 moment equations [13,14],
Onsager-Burnett equations [15], and Onsager 13 moment equations [16]. These higher-
order continuum theories have shown promise in modeling simple flow problems such
as force-driven plane Poiseuille flow [17,18], shear-driven Couette flow [19,20], and the
recently proposed Grad’s second problem [21,22]. However, the fundamental limitations
of some of these theories, such as conventional Burnett equations and Grad moment
equations, have also been exposed for shock waves, which have somewhat restricted the
mainstream adoption of these higher-order continuum theories.
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For the shock wave flow problem, the Mach number and Knudsen number are two
important dimensionless numbers that characterize the flow problem. The Mach number
is greater than unity and is defined as the ratio of the speed of the shock to the adiabatic
sound speed. The Knudsen number is of the order of unity and falls well within the
transition regime (0.1 < Kn < 10). With such a high degree of non-equilibrium across
the shock, the Navier-Stokes equations fail to quantitatively agree with the benchmark
results for Mach numbers (Ma) greater than 1.8 [23–28]. The solution to the same problem
within the higher-order continuum framework was also not successful. For example, the
conventional Burnett equations become invalidated for Ma > 2.69 owing to the unstable
nature of the equations, possible violation of the second law of thermodynamics, and
the non-existence of the heteroclinic trajectory [25,29–31]. In case of the hyperbolic Grad
13 moment equations, discontinuity (sub-shocks) is observed in the shock profiles for
Ma > 1.65 [4,32]. Furthermor, the Grad distribution function assumes unphysical negative
values for Ma > 4, invalidating the moment equations at higher Mach numbers [33]. Only
recently [34], we showed that the OBurnett equations based on the Onsager-consistent
approach do not suffer from these limitations and, at the same time, provide significant
improvement over the results of Navier-Stokes equations for all Mach numbers. Without
tweaking the equations in any way, the equations accurately resolved the upstream region
of the shock, whereas some discrepancy was observed in the downstream region. In the
present work, we modified the OBurnett equations by incorporating the Holian conjecture
(HC) [35–37] in order to achieve quantitative agreement in the downstream region. In
the present work, the modified theory (OBurnett + HC) was tested for a wide Mach
number range including the case of a very strong shock (Ma = 134), and the results were
benchmarked against the DSMC/non-equilibrium molecular dynamics (NEMD) results
for a dilute gas system composed of hard-sphere molecules.

The remainder of this paper is organized as follows: The OBurnett equations are
introduced in Section 2, with a brief introduction to the Onsager-consistent approach. In
Section 3, the significance and superiority of the OBurnett equations over other higher-
order continuum theories are highlighted. The problem definition for the normal shock
wave flow problem is introduced in Section 4, and the reduced form of the equations based
on the modified theory (OBurnett + HC) is dscribed in Section 5. The results are presented
in Section 6, followed by the important conclusions in Section 7.

2. OBurnett Equations

The Onsager-Burnett (OBurnett) equations belong to a class of higher-order continuum
transport equations that form a super-set of Navier-Stokes equations. In the derivation
of these equations, the Onsager-consistent approach forms the basis that is completely
independent of the Chapman-Enskog approach or the Grad moment method. In the
Onsager-consistent approach, we ignore the traditional phenomenological approach of
deriving continuum theories; rather, we start with the fundamental Boltzmann equation
from kinetic theory, which is given as:

∂ f
∂t

+ ck
∂ f
∂xk

+ Fk
∂ f
∂ck

= J( f , f1) (1)

where f (x, c, t) is the single particle distribution function, which represents the solution of
the Boltzmann equation; x is th location of a particle in physical space; c is the molecular
velocity; t is the time variable; Fi is the external force per unit mass acting on the molecules;
and J( f , f1) represents the collision integral.

The transition from microscopic to macroscopic dynamics can be achieved by taking
the appropriate moments of the Boltzmann equation. The macroscopic properties of
interest, such as density, bulk velocity, and temperature, are related to the distribution
function as

ρ(x, t) = m
∫

f (x, c, t)dc (2)
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ui(x, t) =
1
n

∫
ci f (x, c, t)dc (3)

T(x, t) =
1
3

m2

ρkB

∫
C2 f (x, c, t)dc (4)

where n is the number density of the molecules, m is the molecular mass, and kB is the
Boltzmann constant.

Multiplying the Boltzmann equation by {m, mci, mc2/2} and then integrating over
the velocity space, the basic conservation laws of mass, momentum, and energy can be
obtained as

∂ρ

∂t
+

∂ρuk
∂xk

= 0, (5)

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

+
∂p
∂xi

+
∂σik
∂xk

= ρFi, (6)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk
+

∂qk
∂xk

+ p
∂uk
∂xk

+ σij
∂ui
∂xj

= 0, (7)

where ρ is the mass density, uk is the bulk velocity vector, p is the thermodynamic pressure,
qi is the heat flux vector, σij is the stress tensor, Fi is the external body force per unit mass,
ε (= 3RT/2) is the internal energy, and T is the absolute temperature.

It is easily recognized that the above system of equations is not closed as we have
5 equations and 13 unknowns. To obtain a closed set of equations, we need to substitute the
constitutive relations for the stress tensor and the heat flux vector in terms of the primary
variables and their gradients. In the traditional phenomenological approach employed
while deriving the Navier-Stokes equations, the necessary closure is obtained by using
Newton’s law of viscosity and Fourier’s law of heat conduction. However, in the kinetic
approach, we evaluate the stress tensor and the heat flux vector as

σij(x, t) = m
∫

C〈iCj〉 f (x, c, t)dc (8)

qi(x, t) =
m
2

∫
CiC2 f (x, c, t)dc. (9)

Note that C is peculiar velocity given as Ci = ci − ui and the angular bracket denotes
the symmetric and trace-free part of the tensor, given as C〈iCj〉 = CiCj − 1

3 C2δij.
Expressions for the stress tensor (Equation (8)) and the heat flux vector (Equation (9))

can only be evaluated once we know the form of the distribution function, i.e., we need
to solve the Boltzmann equation for the distribution function. The Chapman-Enskog
approach, the Grad moment method, and the Onsager-consistent approach focus on
obtaining the form of the distribution function, and all these approaches are independent
of one another. In the Onsager-consistent approach [15], the distribution function is
represented in terms of the thermodynamic forces and fluxes [16,38,39] as

f|O = f (0) −
{

Υτ : Xτ + Υq · Xq
}︸ ︷︷ ︸

I order correction

+
{
(Υ′ττ � Xτ) : Xτ + (Υ′qq � Xq) · Xq

}
︸ ︷︷ ︸

II order correction

(10)

where f (0) represents the Maxwell–Boltzmann distribution function and the subscript O in
f|O signifies that the distribution function is consistent with Onsager’s reciprocity principle.
When the series is truncated until the Maxwell–Boltzmann distribution, we can obtain the
inviscid Euler equations. Taking into account the first-order correction terms, the Navier-
Stokes equations can be obtained, which are first-order accurate for Knudsen number. As
we extend one step further by considering the second-order correction terms, the OBurnett
equations can be obtained, which form a super-set of the Navier-Stokes equations and are
second-order accurate for Knudsen number.
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In the Onsager-consistent approach, the formulation of the distribution function is per-
formed carefully so that it is consistent with Onsager’s symmetry principle [40,41] and the
H-theorem. As these important principles are satisfied at the level of the distribution func-
tion, we ultimately obtain thermodynamically consistent theory at the macroscopic level.
Th Onsager-consistent distribution function also satisfies the linearized Boltzmann equation
and the collision invariance property. This particular form of the distribution function is
then utilized to derive the OBurnett [15] (Burnett-like) and O13 [16] (Grad-like) equations.

Substituting the expression for the Onsager-consistent distribution function (Equation (10))
in Equations (8) and (9), the OBurnett constitutive relations for the stress tensor and the
heat flux vector can be obtained as

σxx = σNS
xx + σB

xx

= µ

(
δ1

∂u
∂x

+ δ2
∂v
∂y

+ δ2
∂w
∂z

)
+ 4

µ2β

ρ

[
α1

(
∂u
∂x

)2
+ α2

(
∂u
∂y

)2
+ α3

(
∂u
∂z

)2

+ α4
∂u
∂y

∂v
∂x

+ α5
∂u
∂z

∂w
∂x

+ α6

(
∂w
∂x

)2
+ α7

(
∂v
∂x

)2
+ α8

∂u
∂x

∂v
∂y

+ α9

(
∂v
∂y

)2
+ α10

(
∂w
∂z

)2

+ α11
∂v
∂y

∂w
∂z

+ α12
∂u
∂x

∂w
∂z

+ α13
∂v
∂z

∂w
∂y

+ α14

(
∂w
∂y

)2
+ α15

(
∂v
∂z

)2]
, (11)

σxy = σNS
xy + σB

xy

= µδ3
∂u
∂y

+ µδ3
∂v
∂x

+ 4
µ2β

ρ

[
β1

∂u
∂x

∂u
∂y

+ β2
∂v
∂x

∂v
∂y

+ β3
∂u
∂z

∂v
∂z

+ β4
∂u
∂x

∂v
∂x

+ β5
∂u
∂y

∂v
∂y

+ β6
∂w
∂x

∂w
∂y

+ β7
∂v
∂z

∂w
∂x

+ β8
∂u
∂z

∂w
∂y

+ β9
∂u
∂y

∂w
∂z

+ β10
∂v
∂x

∂w
∂z

]
, (12)

qx = qNS
x + qB

x

= δ4k
1

2Rβ2
∂β

∂x
+ 4

µ2β

ρ

[
γ1

1
β

∂g
∂x

∂u
∂x

+ γ2
1
β2

∂β

∂x
∂v
∂y

+ γ3
1
β2

∂β

∂x
∂w
∂z

+ γ4
1
β

∂g
∂y

∂u
∂y

+ γ5
1
β

∂g
∂y

∂v
∂x

+ γ6
1
β

∂g
∂z

∂w
∂x

+ γ7
1
β2

∂β

∂x
∂u
∂x

+ γ8
1
β2

∂β

∂y
∂u
∂y

+ γ9
1
β2

∂β

∂z
∂u
∂z

+ γ10
1
β2

∂β

∂y
∂v
∂x

+ γ11
1
β2

∂β

∂z
∂w
∂x

+ γ12
1
β

∂g
∂x

∂v
∂y

+ γ13
1
β

∂g
∂x

∂w
∂z

]
+

(
2k(γ− 1)

Rγ

)2 1
ρβ

[
γ14

∂β

∂y
∂v
∂x

+ γ15
∂β

∂z
∂w
∂x

+ γ16
∂β

∂x
∂u
∂x

+ γ17
∂β

∂y
∂u
∂y

+ γ18
∂β

∂z
∂u
∂z

+ γ19
∂β

∂x
∂v
∂y

+ γ20
∂β

∂x
∂w
∂z

]
, (13)

where u, v, and w are the x, y, and z components of the bulk velocity vector, respectively; µ
is the absolute viscosity; k is the thermal conductivity of the gas; and γ is the specific heat
ratio. The expressions for β and g are given as

β =
1

2RT
, g = log

(
ρ

β

)
(14)

The coefficients, α, β, γ, and δ, with numerical subscripts, are functions of the type of
gas and the interaction potential between the molecules. The constants appearing in front
of the derivatives of flow field variables are

δ1 = −4
3

, δ2 =
2
3

, α1 =

(
125γ2 − 576γ + ϕ(110− 160γ + 50γ2) + 643

40

)
,

α2 =
4
5

, α3 =
4
5

, α4 =
1
5

, α5 =
1
5

, α6 = −3
5

, α7 = −3
5

,
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α8 =

(
100γ2 − 484γ + ϕ(90− 140γ + 50γ2) + 459

20

)
,

α9 =

(
125γ2 − 392γ + ϕ(70− 120γ + 50γ2) + 291

40

)
,

α10 = α9, α11 = α9 +
18
40

, α12 = α11, α13 = −2
5

,

α14 = −1
5

, α15 = α14,

δ3 = −1, β1 =
23γ + 5γϕ− 5ϕ− 37

10
, β2 = β1, β3 = −1, β4 = β1 −

14
10

,

β5 = β4, β6 = 4β4, β7 = − 3
10

, β8 = β7, β9 = β1

δ4 = 1, γ1 =

(
−47 + 25γ

8

)
, γ2 = ϕ

(
49− 35γ

8

)
, γ3 = γ2,

γ4 = −1
2

, γ5 = γ4, γ6 = γ4, γ7 = +ϕ

(
77− 35γ

8

)
, γ8 =

7ϕ

4
,

γ9 = γ8, γ10 = γ9, γ11 = γ8, γ12 =

(
−39 + 25γ

8

)
,

γ13 = γ12, γ14 = −1, γ15 = γ14, γ16 =

(
−77 + 35γ + 10ϕ(−1 + γ)

8

)
,

γ17 = −7
4

, γ18 = γ17, γ19 =
−59 + 35γ + 10ϕ(−1 + γ)

8
, γ20 = γ19.

To evaluate the Burnett contribution for other components of the stress tensor and
heat flux vector, we apply a suitable change in variables in an appropriate base equation as
given in Table 1.

Table 1. Base equation and change in variables to be followed while evaluating the Burnett-order
contribution for other components of the stress tensor and heat flux vector.

Variable Base Equation Change in Variables

σyy σxx u→ v, x → y, v→ u and y→ x

σzz σxx u→ w, x → z, w→ u and z→ x

σyz σxy u→ v, x → y, v→ w, y→ z, w→ u and z→ x

σzx σxy u→ w, x → z, v→ u, y→ x, w→ v and z→ y

qy qx u→ v, x → y, v→ u and y→ x

qz qx u→ w, x → z, w→ u and z→ x

3. Significance of the OBurnett Equations

The conventional Burnett equations, as is now well-known [31,39,42], are unstable,
known to violate the second law of thermodynamics, and require additional boundary
conditions for their complete solution, which are generally unknown. As such, the theory
is far from complete and cannot be applied to complex boundary value problems. All
these limitations associated with the conventional Burnett equations do not arise in the
OBurnett equations. With respect to the boundary conditions part, the OBurnett equations
require the same number of boundary conditions as the Navier-Stokes equations. This is
evident when we notice the absence of second- and higher-order derivatives of velocity
and temperature in the OBurnett constitutive relations. Stability is another important
aspect wherein the OBurnett equations score above the conventional Burnett equations.
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The OBurnett equations are unconditionally stable and, hence, accurate solutions can be
obtained on finer grids, which is not possible in the case of conventional Burnett equations.
Hence, it is safe to say that the OBurnett equations form a complete theory and can serve
as a monolithic solver for simulating flows starting from the continuum regime to the
transition regime without any restrictions.

The accuracy of the OBurnett equations in describing non-equilibrium flow phenom-
ena was successfully demonstrated in the force-driven plane compressible flow
problem [18]. The equations were shown to capture the non-constant pressure profile,
the tangential heat flux, and the presence of the normal stresses, in agreement with the
DSMC results. After this initial success, the equations were applied to the shock wave
flow problem, which is regarded as the most stringent test case for higher-order continuum
theories [34,43]. This flow problem helped to establish several fundamental aspects of the
OBurnett equations by providing strong evidence for the following:

1. Smooth shock structures at all Mach numbers;
2. Existence of the heteroclinic trajectory (a curve connecting the upstream and down-

stream equilibrium states);
3. Positive entropy generation at all Mach numbers, implying the thermodynamic

consistency of the equations.

It is important to highlight that neither the conventional Burnett equations nor the
Grad 13 moment equations satisfy all these claims. For example, the heteroclinic trajectory
does not exist for the conventional Burnett equations for Ma > 2.69 and the equations
predict negative entropy generation in the upstream region of the shock [25,30,43]. In the
case of moment equations, since the equations are hyperbolic, the issue of subshocks arise
and we cannot obtain smooth shock structures for Ma > 1.65 [2,4,32,33]. This properties
help to establish the superiority of the OBurnett equations over the conventional Burnett
equations and the Grad moment equations.

While describing the shock structures for the hydrodynamic field variables using the
OBurnett equations [34,43], the equations provide significant improvement over the results
of the Navier-Stokes equations for a wide range of Mach numbers. Further comparison with
the benchmark data (DSMC/NEMD results) revealed that the agreement is quantitative in
the upstream region, whereas further improvement is desirable in the downstream region.
This result was a bit surprising since the more rarefied upstream region is supposedly
more difficult to resolve than the downstream region. In order to explain this behavior, we
conjecture that the relation between the viscosity and the absolute temperature (µ ∝ Tϕ) is
insufficient to capture the flow physics in the high-temperature, downstream region. To
be more specific, the dissipation needs to be increased in the downstream region either by
enhancing the viscosity index, as in [27,28], or by employing the Holian conjecture [35–37].
In the present work, we apply the Holian conjecture in the OBurnett equations and aim
to verify whether the modified theory reasonably agrees with the benchmark data in the
downstream region of the shock.

4. Problem Definition

A typical normal shock wave consists of two equilibrium states, namely the upstream
state before the shock and the downstream state after the shock, as shown in Figure 1. The
shock wave propagates with a constant velocity; hence, modeling the problem in the shock
wave reference frame removes the time dependency in the governing equations. This
simplification reduces the complexity of the problem, and an important aspect of the time
of shock formation does not apply. Accordingly, all the hydrodynamic variables are now
functions of the x coordinate only; hence, the problem can be modeled in a one-dimensional
framework. As such, the velocity vector (ui), the stress tensor (σij), and the heat flux vector
(qi) have only their x components, which are u, σxx, and qx, respectively.
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Downstream state: ρ
1
, u

1
, T

1

Upstream state: ρ
0
, u

0
, T

0

Flow

Temperature, T

 Density, ρ

x

(ρ
0
+ρ

1
)/2

0

Velocity, u

Figure 1. Schematic of the internal structure of a one-dimensional normal shock wave.

The upstream state is characterized by supersonic velocity (u0), whereas the velocity at
the downstream state is subsonic (u1). The thermodynamic variables, density and tempera-
ture, rise sharply from the upstream state (ρ0, T0) to the downstream state (ρ1, T1) across the
narrow region of the shock. These strong gradients of the field variables induces dissipative
effects inside the shock region leading to the formation of a strong non-equilibrium region
across the narrow width of the shock. Accordingly, the mass, momentum, and energy
conservation equations (Equations (5)–(7)) can be readily obtained as

dρ

dx
= 0, (15)

ρu
du
dx

= −dp
dx
− dσ

dx
, (16)

u
dρε

dx
= − dq

dx
− p

du
dx
− σ

du
dx

(17)

where the normal stress σxx and x component of the heat flux vector qx are represented by
σ and q, respectively. The thermodynamic pressure p appearing in the momentum and
energy equation can be replaced using ideal gas equation as

p = ρRT (18)

Furthermore, for a dilute, monatomic gas system, the internal energy of a monatomic
gas without internal degrees of freedom is given as

ε =
3
2

RT (19)

Substituting for p and ε, the conservation Equations (15)–(17) can be written in a more
convenient form as

d
dx

[ρu] = 0, (20)

d
dx

[
ρu2 + ρRT + σ

]
= 0, (21)

d
dx

[
ρu3 + 5ρRTu + 2uσ + 2q

]
= 0 (22)

Noting that the stresses and heat fluxes are absent before and after the shock (σ = 0
and q = 0) owing to the zero gradients of the field variables, the Rankine-Hugoniot condi-
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tions can be obtained by performing integration between the upstream and downstream
equilibrium states as

ρ0u0 = ρ1u1 (23)

ρ0u2
0 + ρ0RT0 = ρ1u2

1 + ρ1RT1 (24)

u2
0 + 5RT0 = u2

1 + 5RT1 (25)

where we use Equation (23) to obtain Equation (25).
To obtain the variation in the hydrodynamic field variables across the shock, we need

to carry out the integration between the upstream state and any point inside the shock as

ρ0u0 = ρu, (26)

ρ0u2
0 + ρ0RT0 = ρu2 + ρRT + σ, (27)

ρ0u3
0 + 5ρ0RT0u0 = ρu3 + 5ρRTu + 2uσ + 2q (28)

Note that the above equations are not in a closed form, and we need to substitute the
constitutive relations for the normal stress and the heat flux. The OBurnett constitutive
relations for the normal shock wave flow problem can be obtained as

σ = −4
3

µ
du
dx

+ 2α1
µ2

ρRT

(
du
dx

)2
(29)

q = −k
dT
dx

+ 4γ1

(
µ

ρ

)2 dρ

dx
du
dx

+ 4
(

γ1 − γ7 −
γ16

Pr2

) µ2

ρT
du
dx

dT
dx

(30)

The space coordinate and other field variables are non-dimensionalized, as in [29,36]

s ≡ x
l

, l =
5m

12ρ0σ2
√

π
, τ ≡ kT

mu2
0

, u∗ ≡ u
u0

,

ρ∗ ≡ ρ

ρ0
, τ0 ≡

p0

ρ0u2
0

, σ∗ ≡ σ

ρ0u2
0

, q∗ ≡ q
ρ0u3

0

The quantities l and λ are different and related to each other as l = 1.04λ. Note that λ
is defined at the upstream point for the case of hard-sphere molecules, and the transport
coefficients are proportional to square root of temperature as [12]

µ =
5cµ

16σ2

(
mkT(x)

π

)1/2

, κ =
75cλ

64σ2

(
k3T(x)

πm

)1/2

(31)

where σ is the particle diameter and the coefficients cµ and cλ are taken as 1.
By substituting the OBurnett constitutive relations for normal stress (Equation (29))

and heat flux (Equation (30)), the closed form of the momentum (27) and energy (28)
equations can be obtained. The final non-dimensionalized form of the reduced OBurnett
equations was derived in our earlier work (see Equations (28) and (29) in [34]). Without
repeating the mathematical details, the final equations read as

√
τ

du∗

ds
− 9

8
α1u∗

(
du∗

ds

)2
=

τ

u∗
− τ0 − 1 + u∗ (32)

45
16
√

τ
dτ

ds
+

9
4

γ1τ

(
du∗

ds

)2
− 9

4
Ψu∗

dτ

ds
du∗

ds
=

3
2
(τ − τ0)−

1
2
(1− u∗)2 − τ0(1− u∗) (33)
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where Ψ =
(

γ1 − γ7 − γ16/Pr2
)

, where Pr is the Prandtl number, which is 2/3 for
monatomic gases. The relevant OBurnett coefficients for the case of hard-sphere molecules
(ϕ = 0.5) are obtained as

α1 =
8

15
, γ1 = −2

3
, Ψ =

119
48

. (34)

The Rankine-Hugoniot conditions in the non-dimensionalized form can be obtained as

u∗1 =
5
4

τ0 +
1
4

, τ1 =
7
8

τ0 +
3

16
− 5

16
τ2

0 , u∗0 = 1 (35)

5. Modified Theory: OBurnett + HC

In this section, we combine OBurnett theory and the Holian conjecture and present
the reduced form of the equations for the modified theory. The main idea of the Holian
conjecture [35,36] is to modify the viscosity–temperature relation (µ ∝ Tϕ) by replacing the
average temperature (T) with the component of temperature in the direction of the shock
propagation (Txx). The average temperature is related to the directional temperatures as

T =
Txx + Tyy + Tzz

3
. (36)

For a monatomic gas, the temperature component Txx can be extracted from the
normal component of pressure tensor Pxx as

Pxx = ρRTxx. (37)

Note that the pressure tensor is related to the stress tensor as Pij = σij + pδij, so that
the relation Pxx = σxx + p can be obtained.

The temperature in the direction of the shock propagation (Txx) is always greater than
the average temperature (T). By replacing T with Txx in the viscosity-temperature relation,
we are essentially increasing the viscosity across the shock region. This results in increased
dissipation, thereby broadening the shock profiles for the case of strong shocks. This
modification when applied to the Navier-Stokes equations provides reasonable agreement
with the NEMD results for strong shocks (Ma = 134), as shown in [36].

Here, we apply the Holian conjecture in OBurnett theory by correcting only the Navier-
Stokes-order terms of the stress tensor and the heat flux vector. We do not attempt to correct
the Burnett-order terms since the magnitude of these terms will be small compared to that
of the Navier-Stokes terms and most of the Burnett-order terms are actually independent
of temperature, as also noted in [37]. Following this procedure, it can be shown that the
term

√
τ appearing in the underlined terms of Equations (32) and (33) needs to be replaced

with
√

τxx, and the expression for
√

τxx is given as [35,36,44],

√
τxx = [u∗(τ0 + 1− u∗)]1/2. (38)

The final form of the system of the ordinary differential equations for the modified
theory (OBurnett + HC) then assumes the form

[u∗(τ0 + 1− u∗)]1/2 du∗

ds
− 9

8
α1u∗

(
du∗

ds

)2
=

τ

u∗
− τ0 − 1 + u∗ (39)

45
16

[u∗(τ0 + 1− u∗)]1/2 dτ

ds
+

9
4

γ1τ

(
du∗

ds

)2
− 9

4
Ψu∗

dτ

ds
du∗

ds
=

3
2
(τ − τ0)−

1
2
(1− u∗)2 − τ0(1− u∗) (40)

The Rankine-Hugoniot boundary conditions given in Equation (35) remain same for
the modified theory. The system of Equations (39) and (40) is tackled as an initial value
problem as performed in the literature [25,29,36,45]. The adopted numerical procedure is
the same as followed in our earlier works [34,43]. The MATLAB solver ode15i of order 5
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was selected to solve the implicit system of ordinary differential equations with the relative
and absolute errors set to 10−13 and 10−14, respectively. Once we obtain the solution for
velocity and temperature, other shock profiles for density, normal stress, and heat flux can
be readily obtained as

ρ∗ =
1

u∗
(41)

σ∗ = −[u∗(τ0 + 1− u∗)]1/2 du∗

ds
+

9
8

α1u∗
(

du∗

ds

)2
(42)

q∗ = −45
16

[u∗(τ0 + 1− u∗)]1/2 dτ

ds
− 9

4
γ1τ

(
du∗

ds

)2
+

9
4

Ψu∗
dτ

ds
du∗

ds
(43)

The results of the shock profiles for three Mach numbers (Ma = 3, 9, and 134) are
presented in the ensuing sections.

6. Results

In this section, the variation in the conserved variables (u∗, ρ∗, and τ) and the non-
conserved variable (q∗) across the narrow region of the shock, as obtained by combination
of the OBurnett equations and the Holian conjecture, is compared with the benchmark
DSMC results. To generate the DSMC results, Bird’s DSMC code [9] for the normal shock
wave flow problem was implemented; details are provided in our earlier work [43]. By
employing the combination of the OBurnett equations and the Holian conjecture, we first
verified the thermodynamic consistency of the modified theory and the existence of the
heteroclinic trajectory. The results indicate that the modified theory satisfies all these
fundamental aspects, similar to the OBurnett equations [34].

The shock profiles for the velocity, density, temperature, and the heat flux for two Mach
numbers, Ma = 3 and 9, are shown in Figures 2 and 3. The effect of the increased dissipation
that is achieved by employing the Holian conjecture is not that significant for the conserved
variables, as is evident from the velocity (Figures 2a and 3a), density (Figures 2b and 3b),
and temperature (Figures 2c and 3c) shock profiles. The modified theory marginally
improves upon the results of the OBurnett equations in the downstream region due to
increased dissipation. However, the same cannot be said for the upstream region, where
the results of the modified theory and the OBurnett equations are almost indistinguishable.
For the heat flux (Figures 2d and 3d), the modified theory accurately captures the peak of
the heat flux while improving upon the results of the OBurnett equations. An interesting
phenomenon of temperature overshoot is observed in the downstream region of the shock
where the temperature of the gas molecules exceeds that downstream. This behavior is
confirmed by the experiments as well as the DSMC method and is probably due to the
delayed relaxation of the transversal kinetic energy of the gas molecules. Although higher-
order terms are added in the constitutive relation of heat flux vector in OBurnett theory, we
observe a monotonous rise in the temperature across the shock as per the modified theory.

The case of a very strong shock with Ma = 134 is also studied using the modified
theory (Figure 4) and the results are compared against the non-equilibrium molecular
dynamics (NEMD) results, as obtained by Salamons and Mareschal [26]. For the velocity
(Figure 4a) and the density (Figure 4b) profiles, we observe that the modified theory
provides significant improvement in the downstream region compared with the results of
the OBurnett equations. However, the temperature profile is described much better by the
OBurnett equations than the modified theory, both in the upstream and the downstream
regions. With respect to the heat flux profile (Figure 4d), the results of the modified theory
are in good agreement with those of the NEMD with substantial improvement achieved
compared to the OBurnett results.
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Figure 2. Variation in hydrodynamics field (a) velocity, (b) density, (c) temperature, and (d) heat flux across the shock
for Ma = 3.
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Figure 3. Variation in hydrodynamics field (a) velocity, (b) density, (c) temperature, and (d) heat flux across the shock
for Ma = 9.

For all the three cases studied here (Ma = 3, 9, and 134), we observe that the shock
thickness increases only slightly with the Mach number. This observation is consistent
with the experimental and the DSMC results in the literature [46,47], where it is shown that
the for higher Mach numbers, the shock thickness based on density profiles increases only
slightly with Mach number.

In summary, the Holian conjecture when applied to OBurnett theory, a modified
theory, performs well for the case of a very strong shock. However, for weak shocks, the
modified theory provides marginal improvement over the results of the OBurnett equations.
Hence, our hypothesis that the modified theory will be able to resolve the downstream
region well only for the case of strong shocks. This also implies that the applicability of the
Holian conjecture is only for strong shocks, as also noted in the works of [37,48].
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Figure 4. Variation in hydrodynamics field (a) velocity, (b) density, (c) temperature, and (d) heat flux across the shock for
Ma = 134. Non-equilibrium molecular dynamics (NEMD) results were obtained from [26].

7. Conclusions

In the present work, we proposed a modified theory by combining the OBurnett
equations and the Holian conjecture (OBurnett + HC) to model the normal shock waves for
a dilute gas system of hard-sphere molecules. Rather than using the average temperature,
the longitudinal temperature in the direction of the shock propagation was used in the
evaluation of the transport coefficients. The sole aim of this modification was to achieve
increased dissipation in the hot region of the shock and thereby obtain better quantitative
agreement with the benchmark results than the previously obtained OBurnett results. The
modified theory still formed an entropic consistent system, a clear heteroclinic trajectory
existed, and smooth shock structures were obtained at all Mach numbers, similar to
OBurnett theory. For two Mach numbers tested (Ma = 3 and 9), the modified theory
improved upon the OBurnett results for the heat flux shock profiles. However, the accuracy
gain for the other hydrodynamic fields (u∗, ρ∗, and τ) was only marginal. The results for
the case of a very strong shock (Ma = 134) were significantly improved using the modified
theory, with excellent agreement observed for the heat flux profile. These results suggest
that accounting for the Holian conjecture in the OBurnett equations works better for the
case of strong shocks, whereas the original OBurnett theory seems to be a better choice for
modeling weak shocks.
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