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Abstract: The aim of this work is to propose a numerical study of the interaction of a wave-horizontal
plate fixed and completely immersed in a flat-bottomed tank with a uniform current flowing in the
same direction as the incident wave. We investigate in particular the effect of the plate at minimizing
the impact of the wave on the coast of beaches by studying the free surface elevation and the reflection
coefficient, as well as the influence of the various geometrical parameters on the latter, taking into
account the presence of the current. The numerical method used in this study is the boundary
element method (BEM), and the results obtained will be confronted with experimental and analytical
data existing in the literature.

Keywords: wave; current; plate; boundary element method (BEM); numerical wave tank (NWT);
reflection coefficient; free surface elevation

1. Introduction

The ocean surface is disturbed by numerous physical phenomena that cause defor-
mation of the free surface and lead to a transfer of mechanical energy that manifests itself
in the formation and propagation of an indefinite suite of nearly identical parallel ripples.
The latter propagate fairly uniformly from the open ocean to the coast, known as a wave.
These events and their impact on our continent arouse the interest of many researchers
who have devoted much effort to understanding and modeling the wave.

Numerous experimental, analytical and numerical studies have treated the wave-
obstacle interaction with and without current. Brossard and Chagdali in 2001 [1] studied
the problem of wave-plate interaction experimentally by using a moving probe, which
allowed measuring the reflection and transmission coefficients of a horizontal plate im-
mersed at different depths. In 2009, Brossard et al. [2] improved their research by adding
the Doppler method to quantify the process of wave decomposition over a submerged struc-
ture (plate or step). Liu et al. [3] numerically studied the problem presented by Brossard [2]
using the desingularized boundary integral equation method (DBIEM). Xie, Z. et al. in
2020 [4] presented a numerical study of multiphase flow for performing large-eddy simula-
tions of various three-dimensional wave-structure interaction problems featuring complex
geometries, such as a 3D traveling wave in a closed channel, a 3D solitary wave interacting
with a vertical circular cylinder, a 3D solitary wave interacting with a thin horizontal plate,
and a 3D focusing wave impacting on an FPSO-like structure. In 2020, El Aarabi et al. [5]
numerically studied the problem of wave interaction with two rectangular obstacles spaced
and fixed on the bottom of the numerical wave tank (NWT) using the boundary element
method (BEM).

The propagation of the wave is generally accompanied by currents, and thus many re-
searchers have worked on this problem. Zou et al. in 2013 [6] developed a new formulation
for the Boussinesq-type equations by using a perturbation method to explicitly reveal the
effect of the current on the vertical distributions of the wave velocity and the pressure. In
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2014, Ning et al. [7] presented a numerical study of the higher harmonics in the interaction
of a nonlinear wave with a horizontal cylinder in the presence of a uniform current. In 2017,
Bai et al. [8] studied the interaction between the wave, current and a horizontal cylinder
located near the free surface experimentally and numerically by determining the forces
exerted on the horizontal cylinder. In 2016, Lim et al. [9] made an experimental study on a
near-orthogonal wave-current interaction over smooth and uniform fixed roughness beds;
this study also aimed at understanding the changes in wave-induced mass transport flows
due to wave-current interactions. In 2018, Fan et al. [10] combined the finite difference
method with the Runge-Kutta method to investigate the wave-current interaction in flumes
with horizontal and inclined bottoms. In 2019, Yu Hsiao et al. [11] presented a numerical
simulation of wave-current interaction with a sinusoidal bottom using an open-source
computational fluid dynamics software package (OpenFOAM).

As in our work, several researchers have analyzed the effect of current on the wave-
plate interaction. In 2002, Rey et al. [12] experimentally studied the influence of a homo-
geneous current in the same direction of the incident wave on the reflection coefficient
produced due to a submerged plate. The same author in 2011 [13] extended his experimen-
tal study by treating the problem of wave-plate interaction in the presence of the current for
regular and irregular waves. Zhang et al. in 2020 [14] presented experiments and numerical
simulations to investigate the wave-current forces on coastal bridge superstructures with
box girders. The aim of this study was to enhance the understanding of the mechanism of
bridge damage by waves and currents. In 2019, Ning et al. [15] used the potential theory to
estimate the forces and moment on a submerged plate induced by the wave-current inter-
action. In 2016, Errifaiy et al. [16] conducted an analytical study of the wave-plate-current
interaction, and the study was based on the potential theory linearized with the model of
evanescent modes. Thus, they introduced in 2019 the influence of geometric parameters on
the reflection coefficient [17]. In this present work, the wave-plate-current interaction is
explored using the boundary element method (BEM). To validate the proposed approach,
a comparison between the obtained results, those of the experiment and the analytical ones
are presented. A study of the influence of the current on the free surface elevation and
the reflection coefficient, as well as the effect of the geometrical parameters on the latter,
is revealed.

2. Materials and Methods

We consider a geometrical domain D, where a monochromatic incident wave of low
amplitude is propagating in the same direction as a uniform current of a horizontal velocity
U. In the presence of a plate of length l and thickness e is fixed in a tank with a flat bottom
of length L and depth H. The plate is immersed at a depth h below the position taken
by the free surface at rest. As seen in Figure 1, ΓU stands for the upstream boundary, ΓF
the free surface boundary, ΓB the object and bottom boundaries and ΓD the downstream
boundary.

Figure 1. Descriptive schemas of the problem studied.
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It is assumed that the fluid is perfect and incompressible, and the flow is considered
two-dimensional and irrotational. Under these assumptions, the two-dimensional problem
of a linear wave is reduced to determining the velocity potential Φ(x, z, t) and the free
surface elevation η(x, t). These two variables will be assumed to be complex with harmonic
dependence on time. The velocity potential Φ(x, z, t) can be represented as follows:

Φ(x, z, t) = Φc(x) + Φw(x, z, t) (1)

where Φc(x) = U · x is the velocity potential associated to the current and Φw(x, z, t) =
φw(x, z)exp(iωt) refers to the velocity potential associated to the wave. U, i and t are
respectively the velocity of the current, the complex number and the temporal variable.
The above equation is completed by the boundary conditions as follows:

∆φw = 0 in D
∂φw

∂n
= −ik−φw + i(k− + k+) f (z) on ΓU

∂φw

∂n
= 0 on ΓB

∂φw

∂n
=

ωc2
0(2Uk−ω)

g(U2 − c2
0)

φw on ΓF

∂φw

∂n
= −ik+φw on ΓD

η = − i(ω− k+U)

g
Φw −

U2

2g
the free surface elevation

(2)

where n is the exterior normal on the entire computational boundary (∂D = ΓU ∪ ΓB ∪
ΓD ∪ ΓF), which bounds the global domain (D), g is the gravitational acceleration, k is the
wavenumber of the incident wave in the absence of the current, k+ and k− are, respectively,

the wavenumber of the incident and reflected wave in the presence of the current, ω =
2π

T
is the angular frequency (T is the wave period of incident wave) and c0 is the incident
wave’s celerity in the absence of current, equal to:

c0 =

√
gk · tanh(kH)

kH
(3)

where f (z) is a function that is related to the wave’s characteristics, such that:

f (z) =
aig

(ω− k+U) cosh(k+H)
cosh(k+z) (4)

Note that ai is the amplitude of the incident wave in the presence of the current,
and the constants k− end k+are the solutions of the dispersion equations. Generally, the
dispersion relation in the presence of a uniform current U is defined by:

(ω∓Uk±)2 = gk±tanh(k±H) (5)

We note that the set of boundary conditions for Equation (2) is expressed as relations

between the potential φw and its normal derivative
∂φw

∂n
. This justifies the choice of the

boundary element method.

3. Numerical Formulation

Many branches of physics and mechanics use the boundary element method [18]. It is
mostly used to solve problems governed by linear partial differential equations numerically.
The discretization of the BEM is limited to the interfaces of different environments, which
is perhaps its most important feature. The boundary element method is applied in many
fields of physics and mechanics. It mainly allows the numerical solution of problems
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governed by linear partial differential equations. Perhaps the most important feature of the
BEM is that the discretisation is only on the interfaces of the different media. This feature
reduces the size of the problem and makes the meshing simpler and faster.

This property minimizes the problem’s dimension, which makes meshing easier
and faster.

Applying Green’s second identity, we can express φw in integral form as follows:

cφw(x, z) =
∫

∂D

[
∂φw(x

′
, z
′
)

∂n
G(r)− ∂G(r)

∂n
φw(x

′
, z
′
)

]
ds (6)

where c = 0 if the coordinate points (x, z) /∈ D ∪ ∂D, c = 0.5 if the coordinate points

(x, z) ∈ ∂D and c = 1 if the coordinate points (x, z) ∈ D. G(r) = − 1
2π

ln(r) is the

Green’s function with r =
√
(x− x′)2 + (z− z′)2 is the distance between a field point and

a boundary point.
In the numerical formulation, the boundaries are subdivided into a finite number

of N segments. We subdivide the bottom boundary into N1 elements, the downstream
boundary in N2 elements, the free surface in N3 elements, the upstream boundary in N4
elements, the upper border of the plate in N5 elements, the right border of the plate in N6
elements, the lower border of the plate in N7 elements and the left border of the plate in N8
elements. Therefore, N will be N = ∑8

i=1 Ni Figure 2.

Figure 2. Descriptive schematic of the mesh.

To numerically obtain the velocity potential φw and its normal derivative
∂φw

∂n
on the

set of domain boundaries, those latter are subdivided into small segments of length ∆s and
a singularity is imposed on each segment. The integral of each segment can be obtained
in different ways. For example, by imposing a localized singularity in the middle of each
segment, computing the potential φw on the boundaries reduces to solving a matrix system.

cφi
w =

N

∑
j=1

Eij
∂φ

j
w

∂nj
− Hijφ

j
w (7)

The explicit form of the influence matrices H and E is as follows:

• For i 6= j: Hij =
∫

∆sj

∂G
∂n

ds =
∂

∂n
(ln(

1
r
))∆sj and Eij =

∫
∆sj

Gds = ln(
1
r
)∆sj

• For i = j: Hij = 2π and Eij = 2(1− log(∆sj))∆sj

We can then transform Equation (7) into a relation between the unknown φw and

its normal derivative
∂φw

∂n
on the contour ∂D. The new matrix form of the relation in

Equation (7) is written as:

{φw} = [K]
{

∂φw

∂n

}
(8)
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This system consists of N equations with 2N unknowns, which are the potential and
its normal derivative on the study domain’s boundaries, respectively. The N additional
equations are obtained by writing the boundary conditions. These boundary conditions
can be expressed by relations between the two unknowns of the form:{

∂φw

∂n

}
= [F]{φw}+ {SN} (9)

By inserting Equation (9) into (8), the determination of the velocity potential associated
with the wave φw thus reduces to solving the following system:

[L]{φw} = {SN} (10)

where [L] =
(
[K]−1 − [F]

)
is the tangent matrix, and {SN} is the right-hand side vector.

With regard to the application of the numerical method, we found that there exists a
correlation between the wavelength λ and the boundary discretization step ∆s. From the
numerical tests, we found that it is necessary to respect the following inequality:

∆s
λ

<
1
9

(11)

This result, Equation (11), is also mentioned by other authors [19,20].

4. Results and Discussions
4.1. Validation of the Numerical Code: (Absence of the Current)
4.1.1. Case of Flat-Bottom

In this part, we will validate the proposed numerical approach by comparing its
results with the experimental and analytical ones. We begin by studying the propagation of
the wave, which lies in the free surface elevation, in the presence of a flat bottom (Figure 3).
For this, we consider a monochromatic incident wave, which has an amplitude a = 0.01
m and wavelength λ = 9 m, and propagates in a numerical wave tank (NWT) of length
L = 30 m and depth H = 2.5 m.

Figure 3a presents the numerical free surface elevation along the tank during different

time instants (from 0 to T with the time increment ∆t =
T
10

). On the other hand, Figure 3b
depicts the effect of the mesh on the convergence of the numerical solution obtained by the
BEM with the analytical solution of stokes at order 1 [21] for a period. From this figure, we
can see that the more refined the mesh is, the more the solution converges to the analytical
solution, which allows validating the numerical approach used.

0 5 10 15 20 25 30

x(m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(m
)

Upstream

(a)

Figure 3. Cont.
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x(m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(m
)

Analytical solution

BEM (N=518)

BEM (N=1038)

BEM (N=1238)

(b)

Figure 3. Elevation of the numerical free surface as a function of channel length. (a): For different
instants of time. (b): For t = T.

4.1.2. Case of Wave-Submerged Plate Interaction

Another comparison to affirm the effectiveness of the numerical approach used con-
cerns the reflection coefficient R. This comparison is based on experimental measurements
established by Brossard and Chagdali [1], who took a plate of thickness e = 0.002 m, length
l = 25 cm and a water depth H = 0.188 m for different values of relative immersion
(h/H = 0.24, 0.48, 0.74). Figure 4 shows the variation of the reflection coefficient R as a
function of the incident wavenumber k. These curves demonstrate that there is a good
agreement between the results calculated by the BEM and those measured experimentally.

(a)

(b)

(c)

Figure 4. Reflection coefficient R as a function of k for different values of relative immersion of the
plate (a): h/H = 0.24. (b): h/H = 0.48. (c): h/H = 0.74.
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4.2. Wave-Submerged Plate Interaction in the Presence of Current

After testing the validity of the proposed numerical approach, we will focus in this
part on the effect of the current on the reflection coefficient. For this, Figure 5 depicts a
comparison of our numerical results with the results of a corrected plane wave analytical
model [17] and the experimental results of Rey and Touboul [12], by showing the variations
of the reflection coefficient R as a function of the wave period T where the calculations were
made in the presence of a current U = 0.3 m/s. According to the curves presented in this
figure, we show that our numerical results better approach the experimental measurements
compared to the analytical results, knowing that the numerical and analytical models do
not take into account the generation of vortices by the plate.

The precision of the BEM result is good even if there is current, which justifies the
choice of the BEM for this type of problem.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T

0

0.2

0.4

0.6

0.8

1

R

Experimental.(Rey et al 2011)

Analytical.(Naasse et al 2019)

Present

Figure 5. Comparison of the reflection coefficients of the present model with the analytical solution
of Naasse et al. (2019) and the experimental data of Rey et al. (2011).

4.2.1. Effect of Geometric Parameters of the Plate

In the following, we consider a monochromatic incident wave of amplitude a = 0.01 m,
propagating in a numerical wave tank (NWT) of length L = 30 m and depth H = 2.5 m,
as well as a horizontal immersed plate of depth h = 0.5H, length l = 1.5H and thick-
ness e = 0.1H, with the presence of a current characterized by the Froude number
(Fr = U/

√
gH) = 0.04.

First, we investigate the effect of plate thickness on the reflection coefficient and the
free surface elevation. The obtained results in Figure 6 show that the reflection coefficient
decreases as the thickness of the plate increases, which proves that the reflection coefficient
of a thin plate is more effective than a thick plate.

(a)

Figure 6. Cont.
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(b)

Figure 6. The effect of plate thickness on (a): the reflection coefficients and (b): the free surface
elevation for t = T and λ = 9 m.

Next, we discuss the effect of the length of the plate on the reflection coefficient and
the free surface elevation. As illustrated in Figure 7, the reflection coefficient increases with
the increase in the length of the plate, but the width of the reflection band decreases. Thus,
the maximum of the reflection coefficient is shifted to the low wavenumber k. In addition,
the deformation of the free surface elevation upstream of the plate increases with the plate
thickness increase.

(a)

(b)

Figure 7. The effect of the plate length on (a): the reflection coefficients and (b): the free surface
elevation for t = T and λ = 9 m.
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For the third investigation, we are interested in the effect of the immersion of the plate.
According to Figure 8, we see that the coefficient of reflection and the deformation of the
free surface elevation upstream of the plate decrease when immersion increases. This is
explained by the fact that when the plate is more immersed, the amplitude of reflected
water will attenuate because of the distance between the free surface and the plate.

(a)

(b)

Figure 8. The effect of plate immersion on (a): the reflection coefficients and (b): the free surface
elevation for t = T and λ = 9 m.

4.2.2. Effect of the Current

Finally, we will study the influence of the current on the reflection coefficient and the
free surface elevation. As shown in Figure 9 concerning the coefficient of reflection, the
maximum of the latter and the width of the reflection band increase with the increase in
the Froude number.

Figure 9. Reflection coefficient R as a function of kH for different values of the Froude number
(Fr = 0, 0.04, 0.08).



Fluids 2021, 6, 435 10 of 12

Figure 10 shows the free surface elevation as a function of the length of the tank.
According to Figure 10a–c, we can see a creation of nodes and bellies upstream of the
plate. An increase in the width of the bellies is observed by increasing the current velocity,
which is obvious because the increase in the current velocity implies the amplification of
the wave and then an important reflection, as discussed previously. In the same sense,
Figure 10d shows an increase in amplitude as well as a shift of the maximum and minimum
downwards in the presence of the current and a phase shift linked to the amplification of
the wave by the current.

(a)

(b)

(c)

Figure 10. Cont.
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0 5 10 15 20 25 30

x(m)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(m
)

Fr=0

Fr=0.04

Fr=0.08

(d)

Figure 10. Elevation of the free surface as a function of channel length. (a): For different instants and
Fr = 0. (b): For different instants. (c): For different instants and Fr = 0.08. (d): For t = T at different
Froude numbers.

5. Conclusions

In this work, we have numerically studied the problem of wave-plate interaction in
the presence of a uniform current of the same direction as the incident wave propagation.
The approach adopted consists of numerical modeling based on the boundary element
method (BEM). This numerical approach is validated both in the absence and presence
of the current by a comparison of the numerical linear solution with experimental results
from the literature. Indeed, the numerical calculation code developed proves to be effective
in calculating, on the one hand, the reflection coefficient and, on the other hand, the free
surface elevation. We noticed that the geometry of the plate has a very important influence
on the variation of the reflection coefficient as well as the free surface elevation. These
results are used to better understand the mechanisms of wave attenuation and dissipation
in the presence of current. This will help us to optimize the conception of the attenuators
at the docks and ports and also predict the response of the wave.
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