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Abstract: Heat convection is one of the main mechanisms of heat transfer, and it involves both heat
conduction and heat transportation by fluid flow; as a result, it usually requires numerical simulation
for solving heat convection problems. Although the derivation of governing equations is not difficult,
the solution process can be complicated and usually requires numerical discretization and iteration
of differential equations. In this paper, based on neural networks, we developed a data-driven model
for an extremely fast prediction of steady-state heat convection of a hot object with an arbitrary
complex geometry in a two-dimensional space. According to the governing equations, the steady-
state heat convection is dominated by convection and thermal diffusion terms; thus the distribution
of the physical fields would exhibit stronger correlations between adjacent points. Therefore, the
proposed neural network model uses convolutional neural network (CNN) layers as the encoder and
deconvolutional neural network (DCNN) layers as the decoder. Compared with a fully connected
(FC) network model, the CNN-based model is good for capturing and reconstructing the spatial
relationships of low-rank feature spaces, such as edge intersections, parallelism, and symmetry.
Furthermore, we applied the signed distance function (SDF) as the network input for representing the
problem geometry, which contains more information compared with a binary image. For displaying
the strong learning and generalization ability of the proposed network model, the training dataset
only contains hot objects with simple geometries: triangles, quadrilaterals, pentagons, hexagons,
and dodecagons, while the testing cases use arbitrary and complex geometries. According to the
study, the trained network model can accurately predict the velocity and temperature field of the
problems with complex geometries, which has never been seen by the network model during the
model training; and the prediction speed is two orders faster than the CFD. The ability of accurate
and extremely fast prediction of the network model suggests the potential of applying reduced-order
network models to the applications of real-time control and fast optimization in the future.

Keywords: heat transfer; heat convection; data-driven model; convolution neural networks; signed
distance function

1. Introduction

There are many applications of forced convection in daily life and in the industry.
Attributed to the fast development of computational technique and computational ability,
numerical simulations have been one of the main methods for solving complex convective
heat transfer problems. It is well known that numerically solving differential equations
of heat convection is time-consuming, which may become prohibitive for optimization
problems involving a large number of design parameters. While during the early stage

Fluids 2021, 6, 436. https://doi.org/10.3390/fluids6120436 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://doi.org/10.3390/fluids6120436
https://doi.org/10.3390/fluids6120436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6120436
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6120436?type=check_update&version=2


Fluids 2021, 6, 436 2 of 22

of design/optimization it usually does not require high-fidelity simulation results, what
is favored is that the numerical prediction should be fast for quick iteration. A popular
strategy is to use the framework of reduced order modeling (ROM) to enable a fast fluid
flow and heat transfer predictions [1–3].

In general, a ROM attempts to convert and represent the high-dimension dynamic
system into the linear subspace domain by choosing an appropriate transforming coor-
dinate system [4,5]. An important feature of this transformed space is that it allows for
decoupling of spatial and temporal modes effectively [6]. The most common choice for
the construction of these spatial transformation bases is the method of proper orthogonal
decomposition (POD). The POD method has provided powerful tools for building ROM
for fluid flow and heat transfer problems [7–9]. Indeed, the low computational expense and
small memory requirement of this method make it particularly suitable for optimization
and aftertreatment analysis. However, the POD method is also limited because it is a
linear combination of eigenvectors and eigenvalues and does not explicitly account for the
nonlinear interactions of the highly nonlinear dynamic system. That is to say that the POD
method is significantly effective for quasi-steady-state, time-periodic problems, but might
be challenging for highly nonstationary and nonlinear problems [10].

In recent years, machine learning (ML)- and deep learning (DL)-based techniques/methods
have been showing power on building a surrogate/reduced-order model for highly nonlin-
ear dynamic problems, including applications of aerodynamics, heat transfer, and fluid
flow. The big difference between DL-enabled and POD-based ROM is that DL can be
used to directly set up a nonlinear relationship between abundance of inputs and outputs
of a target system. This process of fitting to available data, known as model training,
generates a low-dimensional subspace, which records the mean behavior of the underlying
phenomena of flows; and this training process allows for the representation of complex
relationships/features, which cannot be expressed explicitly in a functional form [11]. In
practice, the DL-enabled ROM has been demonstrated to be able to accurately capture
the spatial and temporal nonlinear features of fluid flow. Wang et al. [12] presented a
model identification of reduced-order fluid dynamic systems by using deep learning, and
proved that the framework is capable of capturing the features of complex fluid dynamics
with less computational cost. Fukami et al. [13] used machine learning to perform super-
resolution analysis of grossly under-resolved turbulent flow data and reconstructed the
high-resolution flow field; that is, their model successfully builds a nonlinear mapping
between a low-resolution and high-resolution turbulent field. Alternatively, an approach
known as DL-based closure modeling has been used to improve the performance of the
traditional ROM methods [14–16].

The deep learning (DL)-based reduced-order modeling method has started to catch the
attention of the thermal engineering community, although there are only a few publications
available. San and Maulik [6] applied the machine learning method for developing a
data-driven closure modeling for stabilizing projection-based reduced-order models for
the Boussinesq equations, that is, improving the performance of the traditional ROM by
DL. Gao et al. [17] proposed a physics-constrained CNN architecture to learn solutions of
parametric PDEs on irregular domains, where the PDEs include a heat transfer equation
and Navier–Stokes equations. Their results demonstrate the effectiveness of the proposed
DL approach in predicting the temperature field and velocity field.

In the current study, we apply CNN to build a reduced-order, geometry-adaptive,
and steady-state heat convection model, since CNN has demonstrated strong feasibility
in geometry representation and per-pixel prediction in two-dimensional fields [18–20].
In Section 2, we introduce the network architecture of the reduced-order model, the
preparation of the datasets, and the training algorithm. In Sections 3 and 4, we present and
discuss the outstanding performance of the network model.
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2. Methods

In this paper, we propose that a CNN-based ROM directly builds a mapping between
physical fields and signed distance function (SDF), which represents the problem geometry.
The networks and its training are implemented using Tensorflow. The “ground truth”
(training dataset) is generated through CFD simulation using OpenFOAM.

2.1. Design of the CNNs-ROM Framework
2.1.1. Framework Workflow

Figure 1 depicts the schematic of the proposed reduced-order model, which shows the
learning/training strategy and the method of a new prediction using the network model.
For the model training, we use the signed distance function (SDF), which carries physical
information of the geometry as the network input and the results (temperature/velocity)
of numerical simulations as the learning target (output/label) of the CNNs. After training
with the proper amount of dataset, the trained CNNs can predict the temperature/velocity
fields based on the new SDF values.
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2.1.2. Signed Distance Function

The signed distance function (SDF) is proposed as the geometry representation at
the network input. Using the SDF, the geometry of the object is represented as a level-
set function defined over the simulated space in which the object is embedded [21,22].
Compared with the boundaries and geometric parameters representation, the SDF provides
more physical and mathematical information for CNNs. In the SDF representation method,
the zero-level set is created to represent the location of the boundary of the object. That is,
the boundary of the object, ∑, is represented as the zero-level set of a continuous level-set
function “φ” defined in a domain Ω ⊂ R2, and R2 stands for a 2D bounded domain; that is,

∑ =
{

X ∈ R2 : φ(X) = 0
}

(1)

The level-set function φ(X) is defined everywhere in the domain Ω, and φ(X) = 0 if
and only if X(xi, yi) is on the object boundary, such as the edge of the polygon shown in
Figure 2a. The SDF associated with the level-set function φ(X) is defined as

D(X) = min
X2∈∑

∣∣X(xi, yi)− X2
(
x′, y′

)∣∣sign(φ(X)) (2)
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D(X) is an oriented distance function, X2 is a point on the boundary of the object, and
the sign function “sign” is defined as:

sign(φ(X)) =


1 i f φ(X) > 0
0 i f φ(X) = 0
−1 i f φ(X) < 0

(3)

By using the above level-set function, one can represent an arbitrary shape in the fixed
design domain, Ω [23]. Figure 2b gives the distribution of the SDF representation of a
training dataset.
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2.1.3. Architecture of CNNs

The proposed network architecture consists of convolution layers and transposed
convolution (also called deconvolution) layers. To ensure the high nonlinearity of the pro-
posed reduced-order model, we use a multilayer deep structure for our neural network [24].
In the model, multiple convolutional layers are applied to extract a highly encoded [25]
geometry representation from the SDF (input matrix of the network), and the encoded
geometry representation is decoded by multiple deconvolutional layers [26] to predict the
physical fields. The choice of the network structure is highly dependent on the problem,
the data quality, and even the dataset size [27]. For example, it would be necessary to build
deep convolutional neural networks in our problem due to the big size and complexity of
the training dataset. Figure 3 shows the structure and components of the CNN model, and
Table 1 displays the parameters of each layer of the network model. We will describe each
part of the network in the following subsection.
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Figure 3. Architecture of the CNN-based reduced-order model. “Conv” denotes the convolutional layer; “Deconv” denotes
the deconvolution layer.

Table 1. Parameters of the neural network model of each layer, where w× h denotes the size of the convolution
kernel (F), nF denotes the number of F, and Nl × Nl × nF is the size of the lth layer after operation.

Name of Layer Executing Operation
w × h × nF/Stride

Shape
Nl × Nl × nF

Input of model – 250 × 250 × 1
Conv1 4 × 4 × 32/3 83 × 83 × 32
Conv2 5 × 5 × 64/2 40 × 40 × 64
Conv3 6 × 6 × 128/2 18 × 18 × 128
Conv4 6 × 6 × 256/2 7 × 7 × 256
Conv5 3 × 3 × 512/2 3 × 3 × 512
Conv6 2 × 2 × 1024/1 2 × 2 × 1024
Conv7 1 × 1 × 1024/1 2 × 2 × 1024

Deonv1 2 × 2 × 1024/1 3 × 3 × 1024
Deonv2 3 × 3 × 512/2 7 × 7 × 512
Deonv3 6 × 6 × 256/2 18 × 18 × 256
Deconv4 6 × 6 × 128/2 40 × 40 × 128
Deconv5 5 × 5 × 32/2 83 × 83 × 32
Output 4 × 4 × 1/3 250 × 250

2.1.4. Encoding Part

The encoding part aims to reduce the dimension of the input data and extract the
potential spatial features between neighboring points of the SDF matrix and convolution
layers. According to the governing equations, the steady-state heat convection is dom-
inated by convection and thermal diffusion terms; thus the distribution of the physical
fields would exhibit stronger correlations between adjacent points. As the CNNs are very
powerful for handing two dimensional data with a locality structure [28,29], in the cur-
rent approach, the data-driven model is developed using the CNNs. Figure 4 shows the
schematic of the convolution (down sample) operation by the network.
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In Figure 4, the 2× 2× nF light blue matrix denotes the convolutional kernel, the white
matrix is the feature map matrix (also called the next layer’s input matrix), and the blue
translucent matrix represents the output of the convolution operation. Besides the size of
the kernel, F(w× h), the convolutional output is also influenced by the kernel stride, S; the
size of the channels, nF; and the padding size, P. The padding operation adds zeros around
the border of the input matrix, and the kernel stride controls the sliding step size of the
kernel. The size of the output matrix after the convolutional operation can be calculated as:

Nl+1 =
Nl − F + 2P

S
+ 1 (4)

where Nl is the size of feature map at the lth layer (l = 0 represents the layer of the input
matrix of the network model). In the current work, zero padding size (P = 0) is used. From
the above equation, it can be seen that after several convolutional operations, the size of
the original input can be reduced significantly, and the features of the original input are
also highly encoded; thus the memory space required by the CNN training was reduced.

To increase the nonlinear capability of CNNs, each convolution or deconvolution
layer involves the nonlinear activation operations. Mathematically, the nonlinear activation
operation can be expressed as:

al = σ(Wl ∗ al−1 + bl) (5)

where Wl is the weights or convolutional kernel of the current layer; σ denotes the nonlinear
activation function; al and al−1 are the input and the output of the layer, respectively; ∗ is
the convolutional operator; and bl is the bias term. The introduction of σ is crucial for
neural networks to possess nonlinearity. In this paper, we apply the rectified linear unit
(RELU) activation function:

σ(x) =
{

0, x < 0
x, x ≥ 0

(6)

The advantages of RELU are that its computation cost is cheap as the function has no
complicated math, and it converges fast; thus the model takes less time to train or run. It
should be noticed that, because the final prediction of the network model needs to be a
continuous regression, there is no activation function between the output layer and the
“Deconv5” layer.
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2.1.5. Decoding Part

The decoding part is designed to analyze the highly encoded features and decode them
to be a recognizable velocity and temperature fields. The decoding part is composed by
multiple deconvolutional layers, and these up-sample operations (deconvolution) unravel
the high-level features encoded by the encoding part. Figure 5 shows the schematic of the
deconvolution operation of one channel.
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The deconvolution operation needs appropriate basis functions to learn invariant
subspaces of the feature map, and then compensates the minutia information to predict the
physical fields by multilayer iterative optimization. For instance, as shown in Figure 5, for
adjusting the width and height of the output feature map (pool blue block), random values
(optimized by the algorithm) will be padded at the white block around the block (dark
blue block) of the input feature map. Therefore, highly encoded information is recovered
by applying the deconvolutional decoder. Meanwhile, the CNNs learn/train their ability
to predict physical fields based on the SDF through this process.

2.2. Model Training

The model training is an iterative process that continuously minimizes the loss be-
tween the outputs of the network predicted (ψ̂) and the ground truth (ψ) for obtaining the
optimal model parameters, θ. Further, we need to condition our ROM prediction based on
the SDF, as the flow field within the geometry should be ignored and must not affect the
loss function. The SDF-based conditioning operation is defined as follows:

J =
1
N

N

∑
n=1

((
ψn(x, y)− ψ̂n(x, y)

)
·δ(x, y)

)2
+ λ||W||2 (7)

δ(x, y) =
{

1, φ(x, y) ≥ 0
0, φ(x, y) < 0

(8)

where (x, y) is the index of the space point and n is the index of the case number, N is the
size of the (batch) dataset, ψ indicates the result by the numerical simulation, ψ̂ is the result
predicted by the network model, W denotes all the weight of the network layers, λ is the
regularization coefficient, and λ||W||2 is the L2 regularization term for preventing model
overfitting. Such a conditioning operation eases the training process and improves the
prediction accuracy [30].
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During the training process, the SDF (shape: 250 × 250) and velocity/temperature
field (shape: 250 × 250) are the input and the output of the CNN model. Specifically, the
velocity/temperature field is regarded as the ground truth (label) of the network model,
while the SDF is treated as the input matrix of the CNNs. After the model training, the
network extracts the features from the input matrix and builds a proper mapping between
the SDF and the physical fields. Obviously, the training process of the CNNs is to reduce
the deviation of Equation (7).

To train the model efficiently, a minibatch-based learning strategy is used. Small batch
training has been shown to provide improved generalization performance and reduces
the memory cost significantly [31]. The loss function is computed using a randomly
selected subset (i.e., the batch size), and the whole optimization process forms an iteration
way. Moreover, the adaptive moment estimation (Adam) method is implemented as
the optimization algorithm for the model training; the Adam method has been proved
to be robust and well suited for large datasets and/or optimization problems of high-
dimensional parameter spaces [32]. The hyperparameters of the optimization algorithm
for the network training are shown in Table 2.

Table 2. Hyperparameters of the optimization algorithm. Regularization coefficient (λ) and learning rate (β).

Hyperparameter Value

Batch size 64
λ 0.0001
β 0.00008

2.3. Preparation of Dataset

The simulation domain of the studied heat convection problem is shown in Figure 2a,
where the geometry of the hot object is changeable. The flow direction is flow left to
right. The up and bottom boundaries are a cold wall, whose temperature is same to
that of the inlet flow. Such a configuration is chosen as it is a typical forced convection
problem and can be seen in many engineering applications [33,34]. The training and test
datasets consist of 5 types of 2D simple hot objects in a square simulated domain (see
Figure 2 as an example): triangles, quadrilaterals, pentagons, hexagons, and dodecagons.
With the simulated domain kept unchanged, each set of the hot objects is randomly
different in size, shape, orientation, and location. In general, it is more often that the
object locates near the center of the studied domain; therefore, the location of the object
is generated following a normal distribution in the function of x- and y- coordinates and
using the center of the domain as the mean. Each 2D simple object is preprocessed into a
250 × 250 pixel matrix based on the SDF. The training and testing datasets contain a total
of 10,000 samples (2000 random samples for each type of object), where the testing dataset
contains 1000 samples (random separated from the whole training and testing dataset). The
simulated domain is discretized using an unstructured mesh tool, SnappyHexMesh [35,36],
and the numerical simulation is performed using OpenFOAM (openfoam.org), where
the SIMPLE algorithm is used. Regarding the validation dataset, which is dedicated to
validating and indicating the generalization ability of our CNN model, more complex
geometries of the hot objects are chosen (see Figure 6). Those samples have never been
seen by the network model during the training process. All the processes of the mesh
generation and numerical simulation for generating the validation dataset are similar to
that for the training dataset.
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The physics or governing equations of the steady-state heat convection can be given as:

∇·v = 0 (9)

(v·∇)v = −∇p + ν∇·∇(v) (10)

(v·∇)T = α∇·∇(T) (11)

where v is the velocity vector, p is the pressure, T is the temperature, ∇· is the divergence
operator, and ∇ is the gradient operator; ν and α are the momentum and thermal diffu-
sivity. It should be noticed that the viscous dissipation has been ignored. Based on the
following parameters:

v∗ =
v
v0

; T∗ =
T − T0

T1 − T0
; P =

p
v02 ; Re =

v0Lr

ν
; Le =

α

v0Lr
;∇∗· = Lr∇·;∇∗ = Lr∇

The governing equations can be normalized as follows:

∇·v = 0 (12)

(v·∇)v = −∇P +
1

Re
∇×∇(v) (13)

(v·∇)T = Le∇×∇(T) (14)

where Lr is the reference length, T0 is the temperature of the cold wall and T1 is the
temperature of the hot object, v0 is the inlet mean velocity, Re is the Reynolds number,
and Le is the Lewis number, which is the ratio of thermal diffusivity to convective mass
transport. Notice that the asterisks have been ignored for simplicity. In the following
study, we keep the Reynolds number and the Lewis number at 10 and 15, respectively. The
differential equation is solved based on the SIMPLE algorithm. The boundary conditions
used here are listed in Table 3. Moreover, the grid independency study is carried out
to determine the appropriate meshes to use. We only show the results for the case of a
complex geometry (Car), as shown in Table 4. To speed up the data generation, grid-one
(approximate value) is chosen for further studies.
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Table 3. Boundary conditions of the numerical model.

Boundary Type Temperature Velocity Pressure

Wall Fixed value Fixed value Zero gradient
Inlet Fixed value Fixed value Zero gradient

Outlet Zero gradient Zero gradient Fixed value
Object Fixed value Fixed value Zero gradient

Table 4. Average temperature at the outlet (Ot) with different meshes.

Mesh Grid Number Outlet Temp (Ot)

Grid-one 8849 311.4296
Grid-two 18,786 311.3324

Grid-three 25,068 311.2711
Grid-four 31,514 311.2264

3. Results

We use the average, mean, and maximum relative error to measure the prediction
accuracy of the network model. For a studied case, the relative error for velocity and
temperature is calculated as:

E(x, y) =
|v(x, y)− v̂(x, y)|δ(x, y)

v0
; E(x, y) =

∣∣T(x, y)− T̂(x, y)
∣∣δ(x, y)

|T(x, y)| (15)

The maximum point relative error is defined as:

Emax = max(E(x, y)) (16)

The mean relative error is defined as:

Emean =
∑x ∑y E(x, y)

∑x ∑y δ(x, y)
(17)

For evaluating the performance of the network model over several different cases, we
also define the average relative error as:

Eavg =
1
N

N

∑
n=1

(Emean)n (18)

where n is the index of the studied cases. Furthermore, from Equation (15), it should be
noticed that when calculating the error, we only consider the domain outside the hot object.

3.1. Feasibility of the CNN-Based Model

In this section, we verify the feasibility of the proposed framework on three aspects:
(1) the outstanding performance of the CNN model in predicting the velocity and tempera-
ture fields, (2) the advantage of the SDF representation, and (3) the optimization process of
the CNN model structure.

3.1.1. Performance of the Temperature Field Prediction

We first evaluate the prediction performance of the temperature field of the network
model. After proper model training, the prediction accuracy of the testing dataset is higher
than 98.75%. Figure 7 visualizes two typical temperature fields of the test dataset predicted
by the network model and numerical simulation (OpenFOAM) and the corresponding
relative error distribution (see Figure 7). We can see that the network model has given
a satisfied accurate prediction on the temperature field. Furthermore, the figure of the
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relative error distribution indicates that the large error mainly locates in the region with a
large temperature gradient.
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Figure 8 shows the temperature fields of the validation cases by the network model and
the numerical simulation. The displayed validation cases include: Car, Car2, Airplane, and
Locomotive. For the cases shown in Figure 8, the maximum relative error (Emax) is lower
than 5.2%; the large error happens more frequently near the hot objects, especially at the
boundary with large curvature. Figure 9 shows the temperature profile distribution along
the y-direction at a different x-position by the network model (symbols) and numerical
simulation (lines). The good coincident of the symbols and lines quantitatively affirms
the accuracy of the network model. From the results, a comparatively poor prediction
performance appears in the wake (x = 0.65, blue line), but the error is still within the
acceptable range.

Overall, considering that the network model has only “seen” triangles, quadrilaterals,
pentagons, hexagons, and dodecagons during the training process, such a high-prediction
accuracy on the validation cases with much complex geometries indicates that the network
model has an outstanding ability of generalization and extensionality.
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Figure 9. Dimensionless temperature profiles of the validation case distribution along the y-direction at x1 = 0.35,
x2 = 0.5, and x3 = 0.65 by the network model (symbols) and numerical simulation (lines): (a) Car, (b) Car2, (c) Airplane,
(d) Locomotive, (e) Ship, (f) Submarine.

Furthermore, we study the computational cost of the field prediction by the network
model and CFD. Table 5 quantitatively compares the time consumption for predicting the
steady-state temperature field by the network model and the numerical simulation. Overall,
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the network model can speed up the prediction for two orders; and as the geometry of the
problem becomes more complex (that is, it requires a finer mesh for the CFD to converge
the simulation), the prediction speedup by the network model becomes more outstanding.
In addition, we compare the prediction time costs by the network model using different
GPUs, 2080ti and 1660s (see Table 6). From the table, we can see that the performances of
these two equipment have no big difference.

Table 5. Time consumption for predicting the steady-state temperature field by the network model
(GPU, 2080ti) and the numerical simulation (CPU, Ryzen 7 3700X, OpenFOAM).

Geometry Object CNNs (s) OpenFOAM (s) Grid Quantity Speedup

Car 0.2354 38 10,144 161
Car2 0.2423 31 10,000 128

Airplane 0.2314 23 9032 99
Locomotive 0.2284 20 7758 88
Bionic Fish 0.2463 28 8252 114

Missile 0.2324 26 8528 112
Ship 0.2364 22 8956 93

Submarine 0.2394 26 9876 109

Table 6. Time consumption for predicting the steady-state temperature field by the network model
on GPU 1660s and GPU 2080ti.

Geometry Object 1660s Time (s) 2080ti Time (s)

Car 0.3983 0.2354
Car2 0.3723 0.2423

Airplane 0.3523 0.2314
Locomotive 0.3793 0.2284
Bionic Fish 0.3194 0.2463

Missile 0.3164 0.2324
Ship 0.317 0.2364

Submarine 0.3184 0.2394

3.1.2. Performance of the Velocity Field Prediction

The steady-state velocity fields of the validation cases predicted by the network model
and numerical simulation are shown in Figure 10. From the results, it can be observed that
the velocity field by the network model shows good agreement with the CFD simulation.
The right column in Figure 10 shows the distributions of the relative error: we can see that
the maximum error happens frequently on the edge of the objects, because the flow field
there is usually accompanied by a large velocity gradient.

We further verify the ability of generalization and extensionality of the network model
with validation datasets (see Figure 6). The velocity fields of the validation dataset predicted
by the network model and numerical simulation (OpenFOAM) and the corresponding
relative error distribution are shown in Figure 11. For the six cases shown in the figure,
the maximum mean relative error (Emean) is less than 6%, and the maximum point relative
error is less than 10%. In Figure 12, we quantitatively compare the max (Emax) and mean
relative error of the studied validation cases. Compared with the testing cases, since the
complexity of the geometric objects increases, the prediction error of the network model
becomes larger. Furthermore, as the predicted shape gradually deviates from the polygon
(e.g., Ship, Submarine), the prediction error increases. Overall, the low mean error suggests
that the network model is able to provide an accurate prediction on cases with arbitrary
complex geometries.
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3.1.3. Advantages of the SDF Representation

In previous subsections, we showed the outstanding performance of the proposed
network model, where the SDF is used as the geometry representation and the neural
network inputs, while according to the literature review, in most previous works a binary
image is used as the input of the CNNs [37,38]. The binary image represents the geometry
as follows: its element is 0 if and only if the position is on the object boundary or inside the
object. To indicate the effectiveness of the SDF, we trained a model using a binary image
as the geometric representation with the exact same network architecture. The average
relative error (Eavg) by two different network models on the testing and validation datasets
is summarized in Table 7.

Table 7. Average relative error (Eavg) on the prediction of the testing and validation datasets by the
network models using the SDF and binary image representation.

Datasets Prediction Field SDF Binary

Testing Velocity 2.79% 6.56%
Temperature 0.83% 4.62%

Validation
Velocity 5.12% 18.27%

Temperature 1.91% 10.82%

Table 7 indicates that the SDF representation is much more effective than the binary
representation. Regarding the validation dataset, the error of using the SDF representa-
tion is significantly smaller than the model using the binary representation. This can be
attributed to the reason that each value in the SDF matrix carries a certain level of global
information, while for a binary image, only the values on the boundary of the object carry
useful information. Therefore, the SDF representation achieves a much better performance
than the binary representation. In the following investigation, only the SDF representation
is used as the model input.

3.1.4. Influence of the CNN Model Structure

The outstanding performance of the prediction results is sufficient to illustrate the
feasibility of the current network structure. To further gain insight into the performance
and the characteristic of the network model, we study the optimization process of the
network structure. To avoid showing the tedious trial and error, the results presentation
will be simplified, and we will only study the performance of the network model with
different numbers of the layers, which represents the depth of the network. Four types of
network depth, L = {3, 4, 5, 6}, are studied, where each layer is accompanied by a symmetric
decoding layer. All cases are trained in the same iterations.

Figure 13 shows that, as the number of the network layer increases, the validation
loss decreases obviously, especially when the layer number changes from 3 to 4. Figure 14
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shows the prediction of the temperature fields of each network model and proves the
above observation. The studied geometry is a car placed on the lower left of the calculation
domain, and the network with six layers has the smallest error. In addition, in terms
of error distribution, the result of a six-layer network is more reasonable than the result
of a three-layer model, which implies that a deeper neural network model has stronger
learning capabilities than a shallow one. On the other hand, it should also be noticed that
the parameters of the network, the training time, and the prediction time rise accordingly
(see Table 8). It can be found that when the number of the layers increases from five to
six, there is no significant improvement in the validation loss, but the prediction time cost
increases significantly. Hence, when optimizing the structure of the neural network, the
prediction accuracy and the time cost need to be balanced according to the demand. In this
paper, the main aim is to improve the performance of the network model; therefore, the
current network structure has been designed to have six layers.
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3.2. Influence of the Space Distribution of the Hot Object

In this part, first, we investigate the effect of the space distribution of the hot object
on the performance of the network model. Although the network model has shown good
prediction accuracy on the validation dataset, the predicted objects above are fixed at the
center of the entire field. As mentioned in the section of data preparation, the location of the
object is generated following a normal distribution in the function of x- and y-coordinates
and using the center of the domain as the mean. Hence, in this section, we study the effect
of the distance between the center of the hot object and the center of the studied domain.
Figure 15 shows the prediction results by the network model and numerical simulation
(OpenFOAM) and the corresponding relative error. The result shows that the maximum
error is less than 6%, which illustrates that the network model is robust to the randomness
of the space distribution of the hot object in the entire flow field.
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Second, since all the training cases only contain a single hot object, here we also
investigate the performance of the network model in predicting the problems with multiple
hot objects. Compared with studying the spatial distribution of the hot object, the problem
with multiple hot objects is providing a huger challenge to the network model. Figure 16
shows the temperature fields of the case with two circles predicted by the network model
and numerical simulation and the corresponding relative error. It can be observed that the
network model can still give a less accurate but still reasonable prediction. Using more
training datasets to train the network model is an effective solution to further improve the
prediction accuracy of the cases with multiple hot objects.
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3.3. Influence of Incorporating Velocity into Input Matrices

For most thermal applications, people are more interested in the temperature than the
velocity field. In this section, we study the effect of additionally incorporating the velocity
field as a portion of the input matrices. The prepared cases have the same hyper-parameters
and network architecture. Figure 17 shows the mean (Emean) and maximum (Emax) relative
prediction error on the temperature field by the network models with and without incorpo-
rating the velocity field as the portion of the input matrices. Figure 18 plots the relative
prediction error of the two studied situations along the y-direction at different x-positions.
The relative error (E(x, y)) is calculated by Equation (15). From Figures 17 and 18, it can
be observed that the overall prediction accuracy increases as the network model further
incorporates velocity information, while the improvement is moderate. Therefore, for
current problems, incorporating velocity information is not economic.
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It can be concluded from the above results that additionally incorporating the velocity
field as the portion of the input matrices can enhance the accuracy of the temperature
prediction of the neural network. Here, we further investigate the impact of the type of the
embedded velocity field on the performance of the neural network model. In the above
portion, the input matrix of the SDF combined with the velocity magnitude is studied;
then, we investigate another two types of input matrix: SDF-combined x-velocity, SDF-
combined y-velocity. Figure 19 shows the training history of the model with different input
matrices. Figure 20 shows the temperature profile distribution along the y-direction at
the dimensionless x-position of 0.8, predicted by the network model with different input
matrices and numerical simulations. It can be seen from Figures 19 and 20 that the case of
the SDF-combined velocity shows the fastest convergence speed and the highest accuracy,
as it contains the most physical information.
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4. Discussion

Reduced-order modelling is a data-driven method, and it provides a way of fast
predicting physical fields without solving partial differential equations (PDEs) iteratively
and numerically. An efficient reduced-order prediction model is useful for production
design and optimization and real-time simulation/prediction in some control scenarios.
The results discussed in the last section indicate that the proposed CNN-based reduced-
order model achieves high accuracy and robustness, even though the geometry of the
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problem is much more complex than that of the training dataset. The strong ability of
generalization and extensionality is one of the major advantages of the CNNs. Furthermore,
compared with the CFD, the time consumption for the field prediction by the network
model can be negligible.

Although the proposed model has shown outstanding extensionality, the prediction
accuracy is still affected obviously as the physical conditions (geometric in the current
paper) gradually deviate from the training dataset; and of course, this also applies to the
traditional data-driven method, such as POD and DMD [39,40]. Certainly, for relieving this
problem, a CNN-based ROM should be trained using as exhaustive a dataset as possible,
while it is time-consuming to retrain the network model once we get new/additional data.
One solution to this problem is to make full use of the trained reduced-order model for fast
reconstruction/retraining of the model.

This is a preliminary attempt to develop the reduced-order model predicting the heat
convection fields with arbitrary geometries based on the CNNs. As the beginning of the
exploration, the studied problem is kept two-dimensional and laminar, and the perfor-
mance of the network model is satiated and exciting, while the problems of engineering
optimization and design in real applications are usually three-dimensional and turbulent,
which are greatly challenging for the network model. Therefore, paying more attention to
machine-learning-based reduced-order modeling and making it able to better serve the
physics or engineering community is warranted.

5. Conclusions

In this paper, based on the deep convolutional neural networks (CNNs), we proposed
a data-driven model for predicting the steady-state heat convection of a hot object with
an arbitrary complex geometry in a two-dimensional space, and the signed distance
function (SDF) is applied to represent the geometry of the problem. The training and
validation datasets only contain the hot objects with simple geometries, including triangles,
quadrilaterals, pentagons, hexagons, and dodecagons. According to the results, the velocity
and temperature fields of the problems with complex geometries predicted by the network
model agree well with the CFD simulation. As the location and the number of hot objects
vary, the network model is still able to give a satisfied prediction. In addition, further
incorporating velocity information into the input matrix will moderately improve the
performance of the network model in the temperature field prediction. Although the
training process takes about 42 min in the current work, the time cost of the CNNs to predict
the heat convection fields is negligible compared with the CFD simulation; specifically,
the prediction speed of the network model is two orders faster. Therefore, it is potentially
possible that this approach can provide some enlightenment for fast optimization, real-time
simulation, and control.

Author Contributions: J.-Z.P. performed the numerical simulations and results preparation. W.-T.W.
developed the structure of the paper. X.L., Z.-D.X., N.A., Z.C. and W.-T.W. supervised the work and
revised the manuscript. All authors contributed to the manuscript preparation. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of China, No. 11802135, and
the Fundamental Research Funds for the Central Universities, No. 30919011401.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Fluids 2021, 6, 436 21 of 22

References
1. Ravindran, S.S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer.

Methods Fluids 2000, 34, 425–448. [CrossRef]
2. Burkardt, J.; Gunzburger, M.; Lee, H.-C. POD and CVT-based reduced-order modeling of Navier–Stokes flows. Comput. Methods

Appl. Mech. Eng. 2006, 196, 337–355. [CrossRef]
3. Lucia, D.J.; King, P.I.; Beran, P.S. Reduced order modeling of a two-dimensional flow with moving shocks. Comput. Fluids 2003,

32, 917–938. [CrossRef]
4. Lucia, D.J.; Beran, P.S.; Silva, W.A. Reduced-order modeling: New approaches for computational physics. Prog. Aerosp. Sci. 2004,

40, 51–117. [CrossRef]
5. Taira, K.; Hemati, M.S.; Brunton, S.L.; Sun, Y.; Duraisamy, K.; Bagheri, S.; Dawson, S.T.; Yeh, C.A. Modal analysis of fluid flows:

Applications and outlook. AIAA J. 2020, 58, 998–1022. [CrossRef]
6. San, O.; Maulik, R. Machine learning closures for model order reduction of thermal fluids. Appl. Math. Model. 2018, 60, 681–710.

[CrossRef]
7. Li, T.; Gao, Y.; Han, D.; Yang, F.; Yu, B. A novel POD reduced-order model based on EDFM for steady-state and transient heat

transfer in fractured geothermal reservoir. Int. J. Heat Mass Transf. 2020, 146, 118783. [CrossRef]
8. Mahapatra, P.S.; Chatterjee, S.; Mukhopadhyay, A.; Manna, N.K.; Ghosh, K. Proper orthogonal decomposition of thermally-

induced flow structure in an enclosure with alternately active localized heat sources. Int. J. Heat Mass Transf. 2016, 94, 373–379.
[CrossRef]

9. Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic
Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [CrossRef]

10. El Majd, B.A.; Cordier, L. New Regularization Method for Calibrated POD Reduced-Order Models. Math. Model. Anal. 2016, 21,
47–62. [CrossRef]

11. Demuth, H.B.; Beale, M.H.; de Jess, O.; Hagan, M.T. Neural Network Design; Hagan, M.T., Ed.; PWS Publishing Co: Cambridge,
MA, USA, 2014.

12. Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.C.; Guo, Y. Model identification of reduced order fluid dynamics systems using
deep learning. Int. J. Numer. Methods Fluids 2018, 86, 255–268. [CrossRef]

13. Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019,
870, 106–120. [CrossRef]

14. Lui, H.F.S.; Wolf, W.R. Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid
Mech. 2019, 872, 963–994. [CrossRef]

15. Kani, J.N.; Elsheikh, A.H. Reduced-order modeling of subsurface multi-phase flow models using deep residual recurrent neural
networks. Transp. Porous Media 2019, 126, 713–741. [CrossRef]

16. Nair, N.J.; Goza, A. Leveraging reduced-order models for state estimation using deep learning. J. Fluid Mech. 2020, 897, R1.
[CrossRef]

17. Gao, H.; Sun, L.; Wang, J.-X. PhyGeoNet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving
Parametric PDEs on Irregular Domain. arXiv 2020, arXiv:2004.13145. [CrossRef]

18. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 2758–2766.

19. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. Adv. Neural Inf.
Process. Syst. 2014, 3, 2366–2374.

20. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning rich features from RGB-D images for object detection and segmentation. In
European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 345–360.

21. Park, J.J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 165–174.

22. Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance regularized level set evolution and its application to image segmentation. IEEE Trans.
Image Process. 2010, 19, 3243–3254. [CrossRef] [PubMed]

23. Yamasaki, S.; Nomura, T.; Kawamoto, A.; Sato, K.; Izui, K.; Nishiwaki, S. A level set based topology optimization method using
the discretized signed distance function as the design variables. Struct. Multidiscip. Optim. 2010, 41, 685–698. [CrossRef]

24. Yeung, E.; Kundu, S.; Hodas, N. Learning deep neural network representations for Koopman operators of nonlinear dynamical
systems. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 4832–4839.

25. Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural
Netw. 1997, 8, 98–113. [CrossRef]

26. Mohan, R. Deep deconvolutional networks for scene parsing. arXiv 2014, arXiv:1411.4101.
27. Zolotukhin, A.B.; Gayubov, A.T. Machine learning in reservoir permeability prediction and modelling of fluid flow in porous

media. IOP Conf. Ser. Mater. Sci. Eng. 2019, 700, 012023. [CrossRef]
28. Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the 31

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 1655–1661.

http://doi.org/10.1002/1097-0363(20001115)34:5&lt;425::AID-FLD67&gt;3.0.CO;2-W
http://doi.org/10.1016/j.cma.2006.04.004
http://doi.org/10.1016/S0045-7930(02)00035-X
http://doi.org/10.1016/j.paerosci.2003.12.001
http://doi.org/10.2514/1.J058462
http://doi.org/10.1016/j.apm.2018.03.037
http://doi.org/10.1016/j.ijheatmasstransfer.2019.118783
http://doi.org/10.1016/j.ijheatmasstransfer.2015.11.027
http://doi.org/10.1007/s00332-015-9258-5
http://doi.org/10.3846/13926292.2016.1132486
http://doi.org/10.1002/fld.4416
http://doi.org/10.1017/jfm.2019.238
http://doi.org/10.1017/jfm.2019.358
http://doi.org/10.1007/s11242-018-1170-7
http://doi.org/10.1017/jfm.2020.409
http://doi.org/10.1016/j.jcp.2020.110079
http://doi.org/10.1109/ACCESS.2020.2991727
http://www.ncbi.nlm.nih.gov/pubmed/20801742
http://doi.org/10.1007/s00158-009-0453-6
http://doi.org/10.1109/72.554195
http://doi.org/10.1088/1757-899X/700/1/012023


Fluids 2021, 6, 436 22 of 22

29. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X. DNN-Based Prediction Model for Spatio-Temporal Data. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Francisco, CA, USA, 31 October–3
November 2016.

30. Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 481–490.

31. Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612.
32. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
33. Turki, S.; Abbassi, H.; Nasrallah, S.B. Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated

square cylinder. Int. J. Therm. Sci. 2003, 42, 1105–1113. [CrossRef]
34. Baranyi, L. Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow. J. Comput. Appl.

Mech. 2003, 4, 13–25.
35. Gisen, D. Generation of a 3D mesh using snappyHexMesh featuring anisotropic refinement and near-wall layers. In Proceedings

of the 11th International Conference on Hydroscience & Engineering (ICHE), Hamburg, Germany, 29 September–2 October 2014;
pp. 983–990.

36. Lucchini, T.; della Torre, A.; D’Errico, G.; Montenegro, G.; Fiocco, M.; Maghbouli, A. Automatic Mesh Generation for CFD
Simulations of Direct-Injection Engines. SAE Tech. Pap. 2015. [CrossRef]

37. Zhang, Y.; Sung, W.J.; Mavris, D. Application of convolutional neural network to predict airfoil lift coefficient. In Proceedings of
the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January
2018; pp. 1–9, No. 210049. [CrossRef]

38. Sekar, V.; Jiang, Q.; Shu, C.; Khoo, B.C. Fast flow field prediction over airfoils using deep learning approach. Phys. Fluids 2019, 31,
57103. [CrossRef]

39. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
40. Pan, S.J.; Kwok, J.T.; Yang, Q. Transfer learning via dimensionality reduction. AAAI 2008, 8, 677–682.

http://doi.org/10.1016/S1290-0729(03)00091-7
http://doi.org/10.4271/2015-01-0376
http://doi.org/10.2514/6.2018-1903
http://doi.org/10.1063/1.5094943
http://doi.org/10.1109/TKDE.2009.191

	Introduction 
	Methods 
	Design of the CNNs-ROM Framework 
	Framework Workflow 
	Signed Distance Function 
	Architecture of CNNs 
	Encoding Part 
	Decoding Part 

	Model Training 
	Preparation of Dataset 

	Results 
	Feasibility of the CNN-Based Model 
	Performance of the Temperature Field Prediction 
	Performance of the Velocity Field Prediction 
	Advantages of the SDF Representation 
	Influence of the CNN Model Structure 

	Influence of the Space Distribution of the Hot Object 
	Influence of Incorporating Velocity into Input Matrices 

	Discussion 
	Conclusions 
	References

