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Abstract: We obtained a theoretical analysis of stationary Mach configurations of shock waves with a
pulsed energy release at the main (normal) shock and a corresponding change in gas thermodynamic
properties. As formation of the stationary Mach configuration corresponds to one of two basic,
well-known criteria of regular/Mach shock reflection transition, we studied here how the possibility
of pulsed energy release at the normal Mach stem shifts the von Neumann criterion, and how it
correlates then with another transition criterion (the detachment one). The influence of a decrease
in the “equilibrium” gas adiabatic index at the main shock on a shift of the solution domain was
also investigated analytically and numerically. Using a standard detonation model for a normal
shock in stationary Mach configuration, and ordinary Hugoniot relations for other oblique shocks,
we estimated influence of pulsed energy release and real gas effects (expressed by decrease of gas
adiabatic index) on shift of von Neumann criterion, and derived some analytical relations that
describe those dependencies.

Keywords: steady shock wave; Mach reflection; von Neumann criterion; triple configuration; deto-
nation; real gas effects

1. Introduction

The theory of triple-shock configurations in steady supersonic flows of perfect gas
seems almost completed nowadays. In the recent 15–20 years, a classification of triple
configurations [1,2] was developed, their parametric analysis was obtained [2–6], con-
figurations with special properties of individual shocks [4] and extreme ratios of flow
parameters on both sides of the emanating slipstream [4,7] were found and studied, and
the obtained solutions were generalized for triple configurations of propagating shock
waves [8]. Possible additional studies in this direction in the near future can cover the prob-
lems of performability of triple configurations forming at Mach reflection with a negative
inclination angle of the reflected shock [7,9–13] or the analysis of differential characteristics
of the flowfield applying the dynamic compatibility conditions [2,14].

It is shown in [4,7,15] that the gas temperature behind the main (Mach) shock of the
triple configuration (in region III, see Figure 1) can be much larger than the temperature of
the flow that passes the sequence of incident (j1) and reflected (j2) shocks to the region II on
the other side of the slipstream τ. The temperature ratio IT = TIII/TII across the slipstream
is especially significant at high freestream Mach numbers M. For example, it tends to the
value [4]

IT = 1/ε = 6 (1)
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in extreme (providing a maximum of this ratio at fixed values of M) triple configurations in
high supersonic limit (M→ ∞ ). The same relation of temperatures tends to the value [4,15]

IT = 1+2ε−2ε3+ε4+(1−ε)D
2ε(2−ε)

= 3.363

D =
√
(1 + ε)2 − ε(1− ε)[2(1 + ε)(2− ε)− ε3(1− ε)]

(2)

in stationary Mach configurations (configurations with a normal main shock j3, see Figure 1;
hereinafter referred to as SMCs). Here ε = (γ− 1)/(γ + 1), and γ is the gas adiabatic
index (it is assumed by default that γ = 1.4 if other value is not mentioned). Real gas
effects inherent to high supersonic flows and high temperatures usually lead to a decrease
in the “effective adiabatic index” of the flow at the main shock. It usually results in further
increase of the values (1) and (2).
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main shock (but not after the sequence of the incident shock and the reflected one) is most 
effective at high supersonic flights, which corresponds to modern trends in jet aerospace 
engineering. Gas stream in the region II downstream the reflected shock 2j  (on the up-
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Figure 1. The stationary Mach configuration. Here, M is flow Mach number; j1 is the incident shock;
j2 is the reflected shock; j3 is the main shock (Mach stem); I, II and III are the flow regions downstream
the corresponding shocks; T is the triple point; τ is the slipstream; ω1 and ω2 are shock slope angles;
θ1 and θ2 are flow deflection angles on the incident shock and on the reflected one.

It is evident from (1) and (2) that sudden temperature increase of combustible gas
mixture occurs generally at the main (Mach) shock. It can initiate the combustion or the
detonation with corresponding pulsed energy release. Initiation of detonation after the
main shock (but not after the sequence of the incident shock and the reflected one) is most
effective at high supersonic flights, which corresponds to modern trends in jet aerospace
engineering. Gas stream in the region II downstream the reflected shock j2 (on the upper
side of the slipstream τ) has sufficiently smaller temperature, but its stagnation pressure
can be larger in many times. Relation of the stagnation pressures across the slipstream after
the “extreme” configurations strives to the value [4]

Ip0 = ε−
1+ε
2ε = 529.1 (3)

at large Mach numbers. After the SMCs, it tends to also very large value:

Ip0 =

[
1 + 2ε− 2ε3 + ε4 + (1− ε)D

2ε(2− ε)

] 1+ε
2ε

= 69, 72 (4)

Relations (1)–(4) demonstrate the applicability of combustible gas flow behind the
main (Mach) shock in detonation engines (including ramjet ones). Further, they reveal
that the peripheral flow behind the reflected shock is more efficient to use according to the
scheme of a “classic” ramjet engine with flow deceleration without any energy release until
the combustion chamber [16–18].
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A theoretical analysis of the existence conditions, flow stability and flowfield parame-
ters behind triple configurations that result in irregular (Mach) shock reflection with pulsed
energy release at the main shock is required for further practical implementation of mixed-
type jet engines proposed in [16–18]. A model example of such a structure, which is the
simplest and most accessible to theoretical analysis, is the SMC with a normal main shock
(Figure 1), which corresponds to von Neumann criterion (“the criterion of mechanical
equilibrium”) of the transition from Mach reflection to regular one [19].

It should be noted that the origin of the name “stationary Mach configuration” (SMC)
is associated with the problem of unsteady oblique reflection of a propagating shock
wave from a wedge: the size of the Mach shock wave when such a configuration moves
along the wedge remains constant [20]. The results of the analysis of triple configurations
of shock waves, which do not move in chosen coordinate system, can be generalized for
configurations of propagating blast and detonation waves. For example, they are applicable
to blast waves interacting in a steady cloud of an explosive mixture or in the flow of this
mixture induced by a wave of its preliminary sputtering. Such a generalization seems to
be useful for solving a number of problems of fire and explosion safety of combustible
mixtures and for estimation of the durability of structures exposed to blast-wave effects (in
particular, in propulsion systems of aircraft).

In this study, we obtained a theoretical analysis of stationary Mach configurations
of shock waves with possible pulsed energy release at the main (normal) shock and a
corresponding change in gas thermodynamic properties. It is known in the theory of shock
interactions [19] that formation of the stationary Mach configuration corresponds to one of
two basic, well-known criteria of regular/Mach shock reflection transition. It is proven
here analytically and numerically that the possibility of pulsed energy release at the normal
Mach stem shifts the von Neumann criterion, and simple (single) Mach reflection becomes
possible even at small Mach numbers. The influence of a decrease in the “equilibrium” gas
adiabatic index at the main shock also shifts the Mach reflection solution domain. In this
paper, we applied a standard Zel’dovich–von Neumann–Döring (ZND) detonation model
for a normal shock in stationary Mach configuration, and ordinary Hugoniot relations
for other oblique shocks, as the simplest reliable detonation and shock models. So, we
estimated influence of pulsed energy release and real gas effects (expressed by decrease
of gas adiabatic index) on shift of von Neumann criterion, and derived some analytical
relations that describe those dependencies.

2. Model and Methods

The standard ZND detonation model was applied to a normal shock in stationary
Mach configuration, and ordinary Hugoniot relations were applied for other oblique shocks,
because they are the simplest reliable shock and detonation models which admit analytical
solutions describing the studied effects qualitatively.

The compatibility conditions on the tangential discontinuity (the slipstream) emanat-
ing from the triple point (Figure 1) lead to the following system of equations connecting
the parameters of shocks j1, j2 and j3:

θ1 + θ2 = θ3 (5)

J1 J2 = J3 (6)

For an SMC with normal main shock wave j3, the system (5)–(6) is to be solved at
θ3 = 0. Here θi (i = 1, 2, 3) are the angles of flow deflection at the corresponding shocks,
Ji are their strengths (the ratio of gas static pressures behind the shocks and before them).

The flow deflection angles (θ1 and θ2) on the incident and reflected shocks depend on
the corresponding shock strengths:
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tan|θ1| =

√
(1 + ε12)M2 − ε12 − J1

J1 + ε12
· (1− ε12)(J1 − 1)
(1 + ε12)M2 − (1− ε12)(J1 − 1)

(7)

tan|θ2| =

√
(1 + ε12)M2

I − ε12 − J2

J2 + ε12
· (1− ε12)(J2 − 1)
(1 + ε12)M2

I − (1− ε12)(J2 − 1)
(8)

Here, M is Mach number of the unperturbed flow ahead of the triple configuration;
MI is flow Mach number in region I downstream the shock j1 (hereinafter, the subscripts
“I–III” correspond to various flow parameters in regions I–III behind the shocks j1–j3);
ε12 = (γ12 − 1)/(γ12 + 1), and γ12 is gas adiabatic index in the upper part of the flow
(above the triple point and the slipstream).

The values of the Mach numbers behind the shock waves are determined by the relations.

MI =

√
(J1+ε12)M2−(1−ε12)(J2

1−1)
J1(1+ε12 J1)

MII =

√
(J2+ε12)M2

I−(1−ε12)(J2
2−1)

J2(1+ε12 J2)

(9)

Relations (7) and (8) can be displayed on the plane (θ; Λ = ln J) by shock polars (I and
II in Figure 2a–c). Points l corresponding to the maximum deflection angles divide shock
polars into two parts (“strong” and “weak” branches). The strength Jl of the shock with
the maximum flow deflection angle depends on flow Mach number:

Jl(M) =
M2 − 2

2
+

√√√√(M2 − 2
2

)2

+ (1 + 2ε12)
(

M2 − 1
)
+ 2

Jl(MI) =
M2

I − 2
2

+

√√√√(M2
I − 2
2

)2

+ (1 + 2ε12)
(

M2
I − 1

)
+ 2

Curve 1 in Figure 3 demonstrates the dependence Jl(M).
Gas flow downstream the shocks that correspond to the upper branch of the polar

(at Jl ≤ J < Jm; here Jm = (1 + ε12)M2 − ε12 is the strength of the normal shock) is
subsonic. Behind the shocks that correspond to the weak branch (at 1 < J < Jl), it is
usually supersonic.
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The relations connecting the pulsed energy release at the shock 3j  with its shape, 
changes in flow properties and stream deflection angles are given in [21–25]. In particu-
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Figure 2. Graphic solution using shock polars: (a) at M > Mb (here M = 5 ); (b) at Ma < M < Mb
(here M = 1.8 ); (c) at M < Ma (here M = 1.2 ). Polars IIIa–IIIf correspond to pulsed energy release at
the main shock equal to 15, 30, 45, 60, 75 and 90% of the maximum value φ∗; point “∗ ” corresponds
to this maximum value. Vertical arrows point to variation of Mach shock strength (it diminishes as
pulsed energy release increases). Inclined arrows correspond to variation of strength of the incident
shock forming the SMC (it decreases at M > Mb, but at M < Mb it initially increases and decreases
only afterwards, at larger pulsed energy releases). Point l corresponds to shocks with maximum flow
deflection angles, point N to von Neumann criterion, point d to the detachment criterion, and point
1s to the incident shock that forms the SMC at maximum impulse energy release.
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batic index changes at the main shock. Points c1–c4 demonstrate the shift in Mach number Mb of 
coincidence of the reflection type criteria at adiabatic index variation. 

Figure 3. Special shock strengths. Curve 1 corresponds to maximum flow defection: J1 = Jl(M),
curve 2 corresponds to von Neumann criterion: J1 = JN(M), curve 3 corresponds to detachment
criterion: J1 = Jd(M), curve 4 corresponds to normal Mach shocks without pulsed energy re-
lease: J3 = Jm(M), curve 5 corresponds to maximum pulsed energy release of the main shock:
J3 = J∗(M), curve 6 corresponds to incident shocks forming SMCs at maximum pulsed energy re-
lease: J1 = J1S(M), curve 7 corresponds to Mach shocks in SMCs with maximum incident shock
strength; curve 8 corresponds to critical flow velocity after the incident shock. Curves 2a–2d and
6a–6d describe the variation of maximum and minimum shock strength at SMCs when the adia-
batic index changes at the main shock. Points c1–c4 demonstrate the shift in Mach number Mb of
coincidence of the reflection type criteria at adiabatic index variation.
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The classical relations describing the thermodynamic parameters of a perfect gas on
the shock waves determine density, temperature, stagnation pressure, speed of sound, and
acoustic impedance in region II behind the reflected shock:

ρII = ρ/(E1E2), TII = E1E2 J1 J2T, p0II =
(

J1 J2Eγ12
1 Eγ12

2
)− 1−ε12

2ε12 p0,

aII = a ·
√

E1E2 J1 J2, zII = ρIIaII = z ·
√

J1 J2/(E1E2).

Here, Ei = (1 + ε12 Ji)/(Ji + ε12) is the inverse ratio of gas densities on the sides
of the incident shock or of the reflected one. The flow velocity in region II and other
parameters are dependent on it (flow rate q = ρv, dynamic pressure d = ρv2/2, flow
impulse f = p + ρv2) in a similar way:

vII = MIIaII = MIIa
√

E1E2 J1 J2,qII = ρIIvII = ρa ·MII
√

J1 J2/(E1E2),

dII = ρIIv2
I I/2 = γ12 J1 J2M2

II p/2, fII = pII + ρIIv2
II = J1 J2 p

(
1 + γ12M2

II

)
.

The relations connecting the pulsed energy release at the shock j3 with its shape,
changes in flow properties and stream deflection angles are given in [21–25]. In particular,
according to [23], the flow turn angle θ3 depends on the shock strength J3 as it follows:

tan|θ3| =
(J3 − 1)

√
F− 1

γIIIM2 − (J3 − 1)
(10)

F =
2γM2

(γ− 1)(J3 − 1)
(γ− γIII) + (γ− 1)

[
(J3 − 1)− (γIII − 1)φ

]
(γIII + 1)(J3 − 1) + 2γIII

Here, φ = φp/ρ = γφ/(γ− 1)cpT is the dimensionless pulsed energy release; φ is
the specific pulsed energy release at the shock wave. The values of cp, p, ρ, T, γ and
M characterize, respectively, the specific isobaric heat capacity, static pressure, density,
temperature, adiabatic index and Mach number of the gas flow before the shock; γIII is
the adiabatic index that corresponds to the thermodynamic properties of the gas flow
downstream the strong shock.

Introducing the averaged (between γ and γIII) “effective” adiabatic index γ3, which de-
scribes the thermodynamic properties at a shock with pulsed energy release, relations (10)
is noticeably simplified:

tan|θ3| =
√

Jm3−J3−ξ
J3+ε3

· (1−ε3)(J3−1)
(1+ε3)M2−(1−ε3)(J3−1)

,

ξ = 2ε3γ3M2φ
J3−1 ,

Jm3 = (1 + ε3)M2 − ε3, ε3 = (γ3 − 1)/(γ3 + 1).

(11)

Shift of value of γ3 (comparing with γ12) reflects real gas effects, such as excitation of
vibration oscillations, electronic excitation of a gas to a higher energy level dissociation,
ionization, non-equilibrium processes and so on. The change in gas adiabatic index depends
on the degree of manifestation of the effects of a real gas. It is calculated in each specific
problem, depending on the type of effect, according to the mathematical models used for
that effect type.

Relation (11) describes so-called detonation shock polar, whose name suggests that
the pulsed energy release at the shock or in the immediate vicinity of it occurs as a result of
detonation initiated by a sudden increase in temperature on the shock surface. Figure 2a–c
demonstrates a family of detonation polars IIIa–IIIf, which correspond to the effective
adiabatic index γ3 = γ12 = 1.4 and different values of pulsed energy release.

The intensity J3 of the shock j3 with a positive pulsed energy release (φ > 0) varies in
the range.
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Jmin ≤ J3 ≤ Jmax (12)

Here,

Jmin = 1 + δ, Jmax = Jm3 − δ, δ =
(1 + ε3)

(
M2 − 1

)
2

1−

√√√√√1− 8ε3M2φ(
1− ε2

3
)(

M2 − 1
)2

 (13)

As is obvious from relations (13), the range (12) of shock strength variation is narrower
than the interval 1 ≤ J ≤ Jm3 of possible strengths of the shocks without energy release.
Visual comparison of the shock (at φ = 0) polar I and detonation (at φ > 0) polars
IIIa–IIIf, corresponding to the same Mach number before the shock wave, confirms it. The
dependences Jmin

(
φ
)

and Jmax
(
φ
)

for various Mach numbers of undisturbed flow are
shown in Figure 4.
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Figure 4. Minimum (the lower branches of curves 1–5) and maximum (the upper branches) shock
strengths at various Mach numbers (curves 1–5 correspond to M = 2, 3, 4, 5 and 7). Curves “∗”
correspond to the maximum pulsed energy release and to degeneration of shock polar to a single
point (see Figure 2).

At the limiting dimensionless value of the pulsed energy release

φ∗ =
(

1− ε2
3

)(
M2 − 1

)2
/
(

8ε3M2
)

which corresponds to the dimensional value

φ∗ = (1− ε3)
(

M2 − 1
)2

cpT/
(

4M2
)

the values of Jmin
(
φ
)

and Jmax
(
φ
)

coincide:

J∗ = Jmin = Jmax = (1 + Jm)/2 (14)

In this case, detonation polar (11) degenerates to a point “∗” (see Figures 2a–c and 4),
which corresponds to the critical flow velocity behind the normal detonation wave (it
means that MIII = 1). A further increase in pulsed energy release leads to the loss of the
stability of the shock j3 and of the triple configuration as a whole.
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Thus, the system of Equations (5)–(9) and (11), solved at θ3 = 0 and J3 = Jmax, allows
us to find the flow deflection angles and the strengths of shocks that form the SMC. The
flow parameters behind the triple point, determined by the ratios for shock and detonation
waves [2,23], should be compared to optimize various gas-dynamic devices, including
detonation engines [26–30], in the further studies.

3. Analytical Results: Description of the Existence Domain of Stationary
Mach Configurations

Three main parameters (freestream Mach number M, pulsed energy release φ, and
shift of the adiabatic index γ3 at the main shock as compared to gas adiabatic index γ in
unperturbed flow ahead of the triple point) affect the region of existence of the SMCs.

3.1. Stationary Mach Configurations in a Perfect Gas Flow with a Constant Adiabatic Index and
without Real Gas Effects

The conditions for the existence of an SMC in a perfect gas flow without pulsed energy
release and real gas transformations were studied in detail in [2,4,13]. A stationary Mach
configuration exists at M > Ma; here Ma =

√
(2− ε)/(1− ε) = 1.483. At M < Ma, there

are no simple Mach reflections in steady flows. Relatively weak oblique shocks reflect
regularly; von Neumann reflection and the Vasilev one [19] are theoretically possible when
a stronger shock reflects.

In the stationary Mach configurations, the parameters of the reflected shock at M > Mb
(Mb = 2.202 at γ = 1.4) correspond to the lower (weak) branch of shock polar II (Figure 2a).
At Ma < M < Mb, the reflected shock parameters correspond to its upper (strong) branch
(Figure 2b). The parameters of the main (normal) shock correspond to the point m in
Figure 2a,b. At M < Ma, there are no solutions for any SMC without pulsed energy release
at its shocks (see polar IIa in Figure 2c).

The following equation [31] determines the strength J1 = JN of the incident shock,
which forms the SMC at M > Ma:

3
∑

n=0
En Jn

N = 0

E3 = 1− ε,E2 = −
[(

1 + ε− ε2 + ε3)M2 + (1− ε)
(
1− ε + ε2)],

E1 = ε
[
(1 + ε)M2 + 1− ε

]
·
[
(1− ε)M2 − 2 + ε

]
,

E0 = (1− ε)
(

M2 − 1
)
·
[
(1 + ε)M2 − ε

]
.

(15)

It corresponds to the well-known von Neumann criterion of the oblique shock reflec-
tion transition (curve 2 in Figure 3). Another well-known criterion of reflection transition
(the “detachment criterion”) is determined by the condition of maximum angle of flow
deflection at regularly reflected shock: J2 = Jl(MI). This condition leads to the following
equation for the incident shock strength J1 = Jd [31], which is applicable at any M > 1:

5
∑

n=0
Dn Jn

d = 0

D5 = (1− ε)2,D4 = −(1− ε) ·
[(

3 + 4ε− ε2)M2 +
(
4− 5ε + ε2)]

D3 =
(
3 + 4ε + 2ε2)M4 + 4(1− ε)

(
1 + 2ε− ε2)M2 + 2(3− 2ε)(1− ε)2,

D2 = −(1 + ε)M6 + ε
(
1 + 2ε2)M4 − 4ε(1− ε)(1− 2ε)M2 − 2(2− 3ε)(1− ε)2,

D1 = −
[
1 + ε

(
M2 − 1

)]
·
[
2(1 + ε)M4 + ε(1 + 4ε)M2 −

(
1− 5ε + 4ε2)],

D0 = −
[
(1 + ε)M2 − ε

]
·
[
1 + ε

(
M2 − 1

)]2

(16)
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(curve 3 in Figure 3). The only touch point of curves 1 and 2 corresponds to the Mach
number M = Mb, which obeys the equation

4
∑

n=0
FnM2n

b = 0

F4 = (1− ε)
(
2− 4ε + 2ε3 − ε4)

F3 = −10 + 20ε− 10ε2 − 10ε3 + 12ε4 − 4ε5

F2 = 12− 24ε + 10ε2 + 16ε3 − 18ε4 + 6ε5

F1 = −2(1 + ε)
(
3− 4ε + 2ε2)(1− ε)2

F0 = (1 + ε)(1− ε)4

(17)

For all other Mach numbers, the inequality JN < Jd determines the dualism (the exis-
tence of solutions describing both regular and Mach reflection at the same flow parameters)
in the region between curves 2 and 3 in Figure 3.

As two basic criteria of shock reflection transition coincides at M = Mb, and the
strength of the incident shock that corresponds to SMC at Ma < M < Mb is too small to cause
the Mach reflection really, some researchers postulate [19] that the detachment criterion is
correct at M < Mb, and the von Neumann one is correct at M ≥ Mb in steady flows.

3.2. Influence of the Pulsed Energy Release at the Main Shock

According to relations (16) and (17), an increase in the pulsed energy release at the
main shock from zero to the limiting value φ = φ∗ leads to a monotonic decrease of the
main shock wave strength J3 = Jmax in the SMC from the value Jm(M) at φ = 0 (curve 4
in Figure 3) to the value J∗(M) determined by expression (18) at φ = φ∗ (curve 5). If flow
Mach number is moderate or large one (M ≥ Mb), the intensity J1 of the incident shock
also decreases monotonically. In the limiting case (φ = φ∗), the minimum intensity J1 = J1s
of the incident shock that can form the SMC obeys the following equation:

5
∑

k=0
Sk Jk

1s = 0

S5 = 4(1− ε), S4 =
(
8 + 6ε− 8ε2 + 2ε3)M2 + 2(4− ε)(1− ε)2,

S3 = −2(1 + ε)
(
2 + 4ε− 2ε2 + ε3)M4 −

(
10− 4ε− 28ε2 + 14ε3 − 4ε4)M2 − . . .

−2(1− ε)
(
3− 11ε + 5ε2 − ε3)

S2 = (Jm + 1)
[
ε(1 + ε)(2− ε)M4 + ε

(
4− 15ε + 5ε2)M2 + 4(1− ε)

(
1− 3ε + ε2)],

S1 = y3M6 + y2M4 + y1M2 + y0, y3 = 2
(
1− ε + ε2)(1 + ε)2,

y2 = 2(1 + ε)
(
1− 4ε + 7ε2 − 3ε3), y1 = −2 + 4ε + 10ε2 − 22ε3 + 6ε4,

y0 = −2(1− ε)
(
1− 3ε + 5ε2 − ε3),

S0 = −
(

M2 − 1
)
(Jm + 1)

[
(1 + ε)(1− 2ε)M2 − 2ε(1− ε)

]
,

(18)

at γ3 = γ. Solution of (18) corresponds to curve 6 in Figure 3. The reflected shock wave in
the SMC with pulsed energy release that forms at M ≥ Mb always corresponds to a weak
branch of the shock polar (for example, at curve IIa in Figure 2a), and the flow behind it is
usually supersonic.

At low Mach numbers (M < Mb), a small pulsed energy release at the main shock
leads to the appearance of an SMC with a strong reflected shock (see, for example, polar II
in Figure 2c, and solution that corresponds to points m31). With a gradual increase in the
pulsed energy release, the intensity of the main shock wave decreases from Jm(M) (curve 4
in Figure 3) to values that correspond to curve 7 in Figure 4. The strength J1 of the incident
shock increases from unity (at M ≤ Ma) or from JN(M) (curve 2, at Ma < M < Mb) to
Jd(M) (curve 3; see also decision that correspond to point m32 in Figure 3b,c). At a further
increase in the pulsed energy release, the reflected shock wave in the SMC becomes weak
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one (curve IIb in Figure 2b,c, and solutions that correspond to the point m33). The strength
J3 of the Mach shock continues to decrease (from curve 7 to the value of J∗(M) marked by
curve 5), and incident shock strength J1 now decreases from Jd(M) (curve 3, Figure 3) to its
minimum value J1 = J1s at φ = φ∗ (curve 6).

Thus, the pulsed energy release behind the main (Mach) shock leads to an expansion
of the region of existence of SMCs, which occur at all supersonic Mach numbers in a wide
range of parameters of the incident and main shocks (they are marked by vertical and
oblique shading, respectively, in Figure 3).

The incident shock slope angles (ω1) and flow deflection angles (θ1) that correspond
to shock strengths given by curves 2, 3 and 6 in Figure 3, are shown by the corresponding
curves in Figures 5 and 6 (curve 8 shows the parameters of the incident shock with the
critical flow velocity behind it; curve 9 in Figure 6 demonstrates the angles of inclination
of the shocks that degenerate into a weak discontinuity, i.e., the Mach angles). At large
flow Mach numbers (M→ ∞ ), the values corresponding to the von Neumann criterion for
changing the type of shock reflection j1 tend to the following limits [7]:

ω1N → arcsin
√

2ε(1−ε)

1+ε−ε2+ε3+
√

1−2ε+3ε2+4ε3−ε4−2ε5+ε6 = 21.769◦,

θ1N → arctan

√
2ε(1−ε)3(1−ε+ε2+ε3+

√
1−2ε+3ε2+4ε3−ε4−2ε5+ε6)

1−ε+3ε2−ε3+
√

1−2ε+3ε2+4ε3−ε4−2ε5+ε6 = 17.961◦
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Figure 5. Flow deflection angle at special incident shocks. As in Figure 3, curve 2 corresponds to 
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flow velocity after the incident shock. Curves 2a–d and 6a–d describe the variation of incident 
shock features when the adiabatic index changes at the main shock. Points c1-c4 demonstrate the 
shift of Mach number Mb of coincidence of the reflection type criteria. 

Figure 5. Flow deflection angle at special incident shocks. As in Figure 3, curve 2 corresponds to von
Neumann criterion, curve 3 corresponds to detachment criterion, curve 6 corresponds to incident
shocks forming SMCs at maximum pulsed energy release, and curve 8 corresponds to critical flow
velocity after the incident shock. Curves 2a–d and 6a–d describe the variation of incident shock
features when the adiabatic index changes at the main shock. Points c1-c4 demonstrate the shift of
Mach number Mb of coincidence of the reflection type criteria.

The values that correspond to the “detachment criterion” obey the relations [31](
1− ε2

)
sin3 ω1d −

(
1− ε2

)
sin2 ω1d − (1 + 2ε) sin ω1d + 1 = 0

tan|θ1d| = (1− ε) sin ω1d cos ω1d/
[
1− (1− ε) sin2 ω1d

]
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Here, ω1d = 39.971◦ and |θ1d| = 32.018◦. The smallest values of the parameters of the
incident shock, at which the formation of an SMC with pulsed energy release (i.e., Mach
reflection with detonation at main shock) is possible, at M→ ∞ strive to limits

J1s/M2 → C = 0.076 , ω1s → arcsin
(√

C/(1 + ε)
)
= 14.815◦,

|θ1s| → arctan
(√

C(1 + ε− C)/(γ− C)
)
= 12.291◦

Here, the coefficient C is an only positive real root of the equation

4(1− ε)C3 − 2
(

4 + 3ε− 4ε2 + ε3
)

C2 + 2(1− ε)
(

2 + 4ε− 2ε2 + ε3
)

C− ε(2− ε)(1 + ε)2 = 0
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The parameters 1J , 1ω , and 1θ  of the incident shock, whose reflection forms the 
SMC without pulsed energy release, also change as 3γ  decreases: from the values cor-
responding to the von Neumann criterion (curves 2 in Figures 3, 5 and 6) to the values 
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Figure 6. Slope angles of special incident shocks. As in Figures 3 and 5, curve 2 corresponds to
von Neumann criterion, curve 3 corresponds to the detachment criterion, curve 6 corresponds to
incident shocks forming SMCs at maximum pulsed energy release, and curve 8 corresponds to critical
flow velocity after the incident shock. Curve 9 demonstrates the Mach angles. Curves 2a–d and
6a–d describe the variation of incident shock features when the adiabatic index changes at the main
shock. Points c1–c4 demonstrate the shift of Mach number Mb of coincidence of two basic reflection
type criteria.

3.3. Influence of Adiabatic Index Variation Due to Real Gas Effects

Pulsed energy release and other real gas phenomena, as a rule, lead to a decrease in the
“effective” adiabatic index, which approximately describes the change in flow parameters
at a strong main shock.

According to relation (13), a decrease in the adiabatic index γ3 and, accordingly, in
the value ε3 = (γ3 − 1)/(γ3 + 1) leads to a decrease in the normal shock strength Jmax
at maximum possible pulsed energy release. At the same time, the minimum intensity
J1s of the incident shock that forms the SMC (relation (18) determines it at γ3 = γ) also
decreases. Curves 6a–d in Figures 3, 5 and 6 demonstrate, respectively, minimum strengths,
angles of inclination of incident shocks and angles of flow deflection on their surfaces as
the values of γ3 decrease from γ3 = γ = 1.4 (curves 6) to γ3 = 1.3 (curves 6a), γ3 = 1.2
(6b), γ3 = 1.1 (6c) and γ3 = 1 (6d). In the latter limiting case ( γ3 → 1), the asymptotic (at
M→ ∞ ) minimum parameters of the incident shock obey the relations
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J1s/M2 → C1 = 0.065,

ω1s → arcsin
(√

C1/(1 + ε)
)
= 13.646◦ , |θ1s| → arctan

(√
C1(1 + ε− C1)/(γ− C1)

)
= 11.329◦

The following equation determines the coefficient C here:

4(1− ε)C3 − 2
(

4 + 3ε− 3ε2
)

C2 + 2
(

2 + 6ε + 2ε2 + ε3
)

C− ε(2− ε) = 0

The parameters J1, ω1, and |θ1| of the incident shock, whose reflection forms the SMC
without pulsed energy release, also change as γ3 decreases: from the values corresponding
to the von Neumann criterion (curves 2 in Figures 3, 5 and 6) to the values that are shown by
curves 2a–d in Figures 3, 5 and 6: for γ3 = 1.3, γ3 = 1.2, γ3 = 1.1 and γ3 = 1, respectively.
In particular, the strength J1 of the incident shock j1 and flow Mach number in this case
correspond the equation

3
∑

k=0
NkM2k = 0

N3 = (1 + ε3)(1 + εJ1)
[

J1(1− εε3)− 1 + ε + ε2 − ε3
]

N2 =
3
∑

l=0
xl Jl

1, N1 =
4
∑

l=0
yl Jl

1,

N0 = −(1− ε)(J1 + ε)(J1 − 1)2[J2
1 + εJ1(1− ε3)− ε3

]
,

x3 = −1− 3ε + ε2(2ε3 − ε− εε3), x2 = ε[2 + ε3 − 5ε + ε3 + 2εε3(ε + ε3)],

x1 = −ε− ε3 + 3ε2 + 2εε3 − ε3 + 4εε2
3 + ε2ε3(1− 3ε),

x0 = 1 + 3ε3 − 2ε2 − εε3 + 2ε2
3 − 3ε2ε3,

y4 = 2 + ε(1− ε− ε3 + εε3), y3 = −3 + 3ε− ε3 + ε
(
3ε + ε3 − 5εε3 + 2ε2ε3

)
,

y2 = 2− 6ε + 2ε3 + 2ε2 − 6εε3 + 2ε3 + 7ε2ε3 − ε2ε3(ε3 + 4ε),

y1 = −1 + 4ε− ε3 − 3ε2 + 4εε3 − ε3 − 2εε2
3 − 5ε2ε3 + 3ε3ε3,

y0 = −ε− ε3 + ε2 − εε3 − ε3 − ε3(ε + ε3).

(19)

Equation (19) reduces to relation (15) of von Neumann criterion at γ3 = γ. The values
of the shock wave strength determined by (19) decreases monotonically with a decrease in
the adiabatic index γ3 at M > Mb (i.e., at moderate and large flow Mach numbers). In the
limiting case ( γ3 → 1), Equation (19) transforms as it follows:

3
∑

k=0
ZkM2k = 0,

Z3 = (1 + εJ1)
(

J1 − 1 + ε + ε2),
Z2 = −

(
1 + 3ε + ε3)J3

1 + ε(2− 5ε)J2
1 − ε

(
1− 3ε + ε2)J1 + 1− 2ε2,

Z1 = (1 + ε)(2− ε)J4
1 − 3

(
1− ε− ε2)J3

1 + 2(1− ε)
(
1− 2ε− ε2)J2

1 − . . .

−
(
1− 4ε + 3ε2 + ε3)J1 − ε(1− ε),

Z0 = −(1− ε)J1(J1 − 1)2(J1 + ε)2,

and the asymptotic (for M→ ∞ ) shock wave parameters j1 corresponding to this solution
obey the relations

J1/M2 → C = 0.132 , ω1s → arcsin
(√

C/(1 + ε)
)
= 19.682◦,

|θ1s| → arctan
(√

C(1 + ε− C)/(γ− C)
)
= 16.271◦
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The following equation determines the coefficient C here:

(1− ε)C3 − (1 + ε)(2− ε)C2 +
(

1 + 3ε + ε3
)

C− ε = 0

A decrease in the “equilibrium” adiabatic index in a high-speed flow without pulsed
energy release can be associated, for example, with ionization and recombination, with
excitation of additional degrees of freedom of micro-particles.

At small Mach numbers (M < Mb), the parameters of the incident shock, determined
by (23) at γ3 < γ, are larger than those corresponding to the von Neumann criterion (15).
The resulting solution corresponds to a strong reflected shock wave j2 at 1 < M ≤ Mc
or to a weak reflected shock wave j2 at Mc < M ≤ Mb. Here, Mc is the Mach number
corresponding to the coincidence of the solution of equation (19) together with the criterion
(16) of the maximum angle of flow turn on the reflected shock (see points c1, c2, c3, c4 in
Figures 3, 5 and 6). It is determined by an algebraic equation of the fifth degree with respect
to M2

c with coefficients that depend on γ and γ3. At γ3 = γ, this equation reduces to form
(17), so that Mc = Mb. As γ3 → 1 , the equation that determines the special Mach number
Mc converts to the form

5
∑

k=0
AkM2k

c = 0,

A5 = (1− ε)
(
4− 4ε + 2ε2 − ε4), A4 = −(1− ε)

(
20− 22ε + 5ε3 − 11ε4 − 4ε5),

A3 = 24− 58ε + 36ε2 + 18ε3 − 37ε4 + ε5 + 16ε6 + 4ε7,

A2 = −12 + 30ε− 16ε2 − 23ε3 + 22ε4 + 23ε5 − 16ε6 − 12ε7,

A1 = (1− ε)
(
2− 2ε− 5ε2 + 8ε3 + 13ε4 − 12ε5 − 12ε6), A0 = −ε

[(
1− ε2)(1− 2ε)

]2
(in particular, Mc4 = 1.861 for γ = 1.4). The Mach number Mc corresponds to the coinci-
dence of the two main criteria for the change in the type of reflection of shock waves when
the adiabatic index changes at the main shock.

Comparison of the numerical data shown in Figures 3, 5 and 6 leads to the conclusion
that a decrease in the adiabatic index at the main shock wave is factor that acts in the same
direction as the pulsed energy release, but many times weaker. Due to the decrease in the
adiabatic index, at moderate and large Mach numbers, Mach reflection of oblique shocks,
which are weaker than the von Neumann criterion determines, becomes theoretically
possible. At low Mach numbers (1 < M < Mc), a decrease in the adiabatic index leads to
solutions describing Mach reflection with weak incident and strong reflected shock waves.

An increase in the adiabatic index at the main shock comparing with its value in the
unperturbed flow (theoretically possible, for example, at the dissociation of gas molecules)
leads to the opposite effect: an expansion of the range of Mach numbers of the flow at
which the formation of SMC is impossible (comparing with the range 1 < M < Ma at
γ3 = γ), and also of the range of Mach numbers Ma ≤ M < Mb of SMCs with weak
incident and strong reflected shocks.

4. Conclusions

Using a common ZND detonation model for a normal shock in stationary Mach
configuration, and ordinary Rankine–Hugoniot relations for other oblique shocks, we
estimated influence of pulsed energy release and real gas effects (expressed by decrease
of gas adiabatic index) on shift of von Neumann criterion, and derived some analytical
relations that describe those dependencies.

It was proven that pulsed energy release just after the main (Mach) shock, as well as, to
a much lesser extent, a decrease in the “effective” adiabatic index caused by real gas effects,
expand the region of existence of stationary Mach configurations. In the presence of pulsed
energy release and real gas effects, they can form at all supersonic Mach numbers and in a
wide range of parameters of the incident shock and of the main one. Possible pulsed energy
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release at the main shock promotes Mach reflection of relatively weak incident shocks,
which, in absence of combustion, detonation and real gas effects, reflect only regularly.

A complete parametric analysis of all types of triple-shock configurations with pulsed
energy release, which is planned to the closest future, can be of interest in design of gas-
dynamic pulse devices, propulsion aerospace systems. In particular, a theoretical analysis
of the ratios of flow parameters across a slipstream (behind the triple point) is necessary, as
well as the identification of optimal triple configurations for various engineering problems.

In further studies of triple configurations with an energy release and significant
changes in the physicochemical properties of the gas, one should take into account:

- The existence of more up-to-date models of detonation which gradually replace the
standard ZND model applied here (for example, models that use the concept of
detonation induction time, see [32,33]);

- A more complex nature of real gas effects on strong shock waves, which is not always
described by a one-parameter model of the “effective adiabatic index” with a sufficient
degree of accuracy and reliability;

- The ambiguity of the solution for triple-shock configurations of shock waves, espe-
cially at large flow Mach numbers with a reduced gas adiabatic index (comparing
with air, for example, in gaseous hydrocarbons).
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