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Abstract: Convection induced in a layer of liquid with a top free surface by a distribution of heating
elements at the bottom can be seen as a variant of standard Marangoni–Rayleigh–Bénard Convection
where in place of a flat boundary at constant temperature delimiting the system from below, the
underlying thermal inhomogeneity reflects the existence of a topography. In the present work,
this problem is investigated numerically through solution of the governing equations for mass,
momentum and energy in their complete, three-dimensional time-dependent and non-linear form.
Emphasis is given to a class of liquids for which thermal diffusion is expected to dominate over
viscous effects (liquid metals). Fixing the Rayleigh and Marangoni number to 104 and 5 × 103,
respectively, the sensitivity of the problem to the geometrical, kinematic and thermal boundary
conditions is investigated parametrically by changing: the number and spacing of heating elements,
their vertical extension, the nature of the lateral boundary (solid walls or periodic boundary) and
the thermal behavior of the portions of bottom wall between adjoining elements (assumed to be
either adiabatic or at the same temperature of the hot blocks). It is shown that, like the parent
phenomena, this type of thermal flow is extremely sensitive to the specific conditions considered.
The topography can be used to exert a control on the emerging flow in terms of temporal response
and patterning behavior.

Keywords: Marangoni-Rayleigh-Bénard Convection; liquid metals; patterning behavior;
numerical simulation

1. Introduction

Before being solid, many materials pass through a liquid state and the properties that
they display in the final solid state often depend on the convective phenomena that are
established in their liquid state. This concept applies to a variety of manufacturing and
materials science applications. Whilst there are a plethora of materials that are of industrial
relevance and importance due to the related technological applications and impact on
world’s societies, silicon and other semiconductor materials have attracted a significant
increasing interest especially during the late 20th and early 21st century. This interest partly
stems from the abundance of these materials (especially silicon) on the surface of our planet.
However, it also originates from some of the remarkable physical properties that these
substances display, through which over the last 50 years specific technological applications
have been enabled (leading to what nowadays is often referred to as the ‘silicon age’).

Single crystals of these substances are of great importance in the electrical and opto-
electronic industries due to their ‘purity’. A single crystal, often also referred to as a mono-
crystalline material is a pure crystal lattice. The purity of these mono-crystalline materials
is essential in electronics applications as the purer the material, the better its performances
will be. Vice versa, for the use of semiconductors in microprocessors, which operate on the
quantum scale, the presence structural or chemical defects in the crystal lattice can prevent
these materials from reaching the expected targets in terms of electronic performances.
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These simple arguments explain why the convective processes that dictate the crys-
talline evolution of these substances have become a subject of great interest from both the
engineering and physics standpoints. Convection within the melt can deeply influence
microstructure formation in solidifying materials through its intrinsic transportation mech-
anisms of heat, mass and momentum and related studies show no obvious sign of reaching
a limit yet. Given the difficulties in observing directly semiconductor melts and liquid
metals due to their opacity, most of such studies are being based on alternate methods
such as theoretical analysis and numerical simulations (see, e.g., Kaddeche et al. [1] and
references therein). By virtue of them, it has been clarified that the branch of convection
known as natural (buoyancy) convection, which is driven by gravity as a result of thermally
induced density inhomogeneities in the liquid, plays a crucial role in such dynamics.

Landmark fundamental studies on the behavior of buoyancy convection in liquid
metals date back to 1981 when this subject was investigated given its relevance to other
(natural) problems such as the motion of liquid iron in Earth’s core and the ensuing
generation of a magnetic field. Considering a physical domain as simple as an infinite
layer of liquid metal uniformly heated at the bottom and cooled at the top, Busse and
Clever [2], Clever and Busse [3–5] revealed that Rayleigh-Bénard (RB) convection in such
systems is initially steady and then it undergoes bifurcation to an oscillatory flow as the
Rayleigh number is increased. It was shown that the instability leads to the emergence
of waves that travel in the fluid along a horizontal direction. These waves were also
found numerically by McLaughlin and Orszag [6], Meneguzzi et al. [7], Thual [8] and
Lappa [9]. It has been shown that superposition of these waves can also produce peculiar
states known as ‘standing waves’, i.e., solutions where the disturbances do not travel in
the fluid, but grow and shrink in time at fixed spatial positions.

Another line of inquiry has originated from the realization that if the fluid is not
delimited by a solid wall at the top, i.e., it displays a free liquid-gas interface (which
is often the case in most of the technological processes used for the production of the
aforementioned single crystals, [10]), another source of convection is represented by surface
tension and related gradients. Surface tension of many liquids (including semiconductor
melts and liquid metals) depends on temperature. If the fluid is subjected to a temperature
difference, this results in fluid motion, generally referred to as Marangoni-Bénard (MB)
convection when the fluid is uniformly heated at the bottom. Unlike RB flow, which
typically manifests in the form of parallel rolls extended in the horizontal direction (playing
the role of substrate for the propagation of the aforementioned waves when a certain
temperature difference is exceeded), Marangoni-Bénard convection is known for its ability
to produce patterns with the hexagonal symmetry. In the case of liquid metals, these
hexagonal cells are featured by rising currents along their boundary and a central column
of descending fluid (a structure known as an “inverted hexagon” to distinguish it from the
companion case in which these cells form in oils and display fluid rising at the center, see,
e.g., Thess and Bestehorn [11]; Parmentier et al. [12]; Boeck and Thess [13]). On increasing
the related characteristic (Marangoni) number, this topology can be taken over by different
patterns, such as stationary two-dimensional rolls either with the roll axes parallel to the
short domain boundary or in two different oblique orientations. Time-dependent solutions
are also possible, namely three-dimensional (3D) travelling waves.

All of these phenomena can have a detrimental impact on the quality and purity of
the crystalline materials discussed before. That is why, in general, attempts are made to
control these flows and the related hierarchy of bifurcations through magnetic fields or
other methods such as the application of vibrations ([14,15] and all references therein).

Most surprisingly, despite all these valuable studies, very few pieces of literature have
appeared where an attempt has been made to ‘control’ these forms of convection through
alteration of their ‘boundary conditions’, i.e., by using containers with walls that display a
given topography and/or a structured thermal inhomogeneity. The problem of planform
selection in such conditions has long been a theoretical puzzle.
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As a first step in this direction, the present study is devoted to the numerical investi-
gation (in the framework of DNS, i.e., direct numerical simulation) of hybrid buoyancy-
Marangoni convection in a layer of liquid metal cooled at the top by an adjoining gas phase
and heated at the bottom by a discrete distribution of heating elements (cubic blocks).
The main objective is an understanding of the relationships existing between the imposed
thermal forcing and the properties of the emerging flow.

2. Mathematical Model
2.1. The Geometry

As illustrated at the end of the introduction, the distinguishing mark of the present
study is the ‘patterned’ surface delimiting the considered liquid from below. More pre-
cisely, a fixed topography is imposed at the bottom consisting of wall-mounted hot rods
with square cross-section (having side length `horiz) and thickness `vert. A series of such
box-shaped blocks, regularly arranged in space is implemented along both the x and z
(horizontal) directions, as shown in Figure 1. As evident in Figure 2, this results in a bottom
wall with N ×M elements mounted on it, which protrude vertically (along the y axis) into
the liquid. The free surface is cooled by an adjoining gas phase. The cooling is described in
the framework of the one-layer model by a Biot-type boundary condition. The height of
the blocks is variable but remains below the layer depth. The number (spacing) of blocks
can also be changed.

It is clear that a strong link with standard forms of convection such as those described
in the introduction, should be invoked since the beginning. The blocks will indeed provide
the required energy (heat) for the activation of the aforementioned mechanisms of convec-
tion based on the dependence of density and/or surface tension on temperature. Along
these lines and for the sake of completeness, we consider both situations in which the floor
(the portions of flat bottom boundary between adjoining elements) is either adiabatic or set
at the same temperature Thot of the blocks (hot floor case).
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Figure 1. Sketch of the fluid layer with successions of square bars evenly mounted on the bottom
wall along two perpendicular directions (as seen from above).

For simplicity, however, the free surface separating the liquid from the external gas
environment is assumed to be flat and undeformable. This assumption reflects practical
situations in which the so-called Galileo and Capillary numbers are relatively small (see,
e.g., [16,17] and references therein for additional arguments about this point). These can
be expressed as Gac = µVr/∆ρgd2 and Ca = µVr/σ, respectively, where g is the gravity
acceleration, d is the characteristic depth of the fluid layer, ∆ρ ∼= ρ is the difference be-
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tween the density of the liquid ρ and that of the overlying gas, µ is the liquid dynamic
viscosity, σ is the surface tension and Vr is a characteristic flow velocity, which reads
as Vg = ρgβT∆Td2/µ or VMa = σT∆T/µ depending on the dominant driving force, be it
buoyancy or the Marangoni effect (βT and σT being the thermal expansion coefficient and
the surface tension derivative with respect to temperature, respectively; ∆T being a charac-
teristic temperature difference). It is known that if these numbers are smaller than 1, the
order of magnitude of the non-dimensional deformation δ of the free surface due to viscous
forces can be estimated as δ = O(Gac) or δ = O(Ca), respectively. Following a common
practice in the literature, the interface can therefore be considered flat and undeformable
provided Gac << 1 and/or Ca << 1 (see again [16,17] and references therein).
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2.2. The Governing Equations

The problem briefly defined in Section 2.1 is addressed through solution of the par-
tial differential equations which account for the conservation of mass, momentum and
energy under the assumption of incompressible flow (complemented with the Boussinesq
approximation). As specified at the end of the introduction, no turbulence model is used.
Moreover, as in earlier studies on classical RB and MB convection, the equations are solved
in non-dimensional form, that is, length, time and the primitive variables (velocity V,
pressure p and temperature T) are divided by relevant reference quantities. Scaling the
Cartesian coordinates (x,y,z), time (t), velocity (V), pressure (p) and temperature (T) by the
reference quantities d, d2/α, α/d and ρα2/d2, and ∆T respectively (where α is the liquid
thermal diffusivity and ∆T is, the difference between the temperature of the hot solid
elements and the ambient temperature Tref), in particular, the following form is obtained:

∇ ·V = 0 (1)

∂V
∂t

= −∇p−∇ · [VV] + Pr∇2V + PrRaTig (2)

∂T
∂t

+∇ · [VT] = ∇2T (3)

The parameter Pr appearing there is the well-known Prandtl number (namely, the
ratio of the fluid kinematic viscosity v = µ/ρ and the aforementioned thermal diffusivity
α), Ra = gβT∆Td3/vα is the standard Rayleigh number and ig is the unit vector along the
direction of gravity.
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In the present study, the gradients of surface tension are also present, and these
are taken into account through a dedicated equation obtained imposing that they have
to balance the viscous shear stresses at the free surface of the layer. Considering the
shear stress in the external gas negligible, such relationship can be cast in condensed
non-dimensional form as:

∂VS
∂n

= −Ma∇ST (4)

where n is the direction perpendicular to the free interface (planar in our case), ∇S is the
derivative tangential to the interface and Vs is the surface velocity vector. Moreover, Ma is
the Marangoni number defined as Ma = σT∆Td/µα.

Additional degrees of freedom are represented by purely geometrical parameters, namely:

δhoriz =
`horiz

d
, δvert =

`vert

d
, Abar =

δvert

δhoriz
(5)

Ax =
Lx

d
, Az =

Lz

d
(6)

While the first group can be used to characterize the blocks aspect ratio, the second
refers to the entire fluid domain (where Lx and Lz are the (dimensional) horizontal exten-
sions of the layer along x and z, respectively). By denoting with N the number of blocks
along z and by M the corresponding number along x, the nondimensional distance between
adjoining elements can therefore be written as:

ξx =
Lx −M`x

Md
=

Ax

M
− δhoriz, ξz =

Lz − N`z

Nd
=

Az

N
− δhoriz (7)

As a result, in the considered coordinate system, the coordinates of each block simply read:
(i− 1)δhoriz +

(
i− 1

2

)
ξx ≤ x ≤ (i)δhoriz +

(
i− 1

2

)
ξx f or1 ≤ i ≤ M

0 ≤ y ≤ δvert

(k− 1)δhoriz +
(

k− 1
2

)
ξz ≤ z ≤ (k)δhoriz +

(
k− 1

2

)
ξz f or1 ≤ k ≤ N

(8)

where we assume:
V = 0 (no slip conditions) and T = 1 (9)

Moreover, for the space between elements, adiabatic or constant temperature condi-
tions are set at the bottom (y = 0), i.e.,

∂T
∂y

= 0 (10)

or
T = 1 (11)

Finally, the classical Biot-type boundary condition is used to account for the heat
exchange occurring between the liquid and the external gas (at y = 1):

∂T
∂y

= −BiT (12)

No-slip and adiabatic conditions or periodic boundary conditions (PBC) are imposed
at the lateral boundaries. At the initial time t = 0, the flow is motionless and at the same
temperature as the external gas, that is, T = 0. As time passes, its temperature increases as
a result of the heat being exchanged with the heated elements until an equilibrium (steady
or oscillatory) state is attained.
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In the present work, such heat exchange is quantitatively substantiated using properly
defined non-dimensional parameters, namely the Nusselt numbers for the lateral, top or
total surface of each heated element, i.e.,

Nuik
barlateralsur f ace =

1
(2δhorizδvert+2δhorizδvert)

[
δvert∫
0

xi+δhoriz∫
xi

∂T
∂z

∣∣∣
z=zk

dxdy−
δvert∫
0

xi+δhoriz∫
xi

∂T
∂z

∣∣∣
z=zk+δhoriz

dxdy

+
δvert∫
0

zk+δhoriz∫
zk

∂T
∂x

∣∣∣
x=xi

dzdy−
δvert∫
0

zk+δhoriz∫
zk

∂T
∂x

∣∣∣
x=xi+δhoriz

dzdy

] (13)

Nuik
bartop = − 1

δ2
horiz

zk+δhoriz∫
zk

xi+δhoriz∫
xi

∂T
∂y

∣∣∣∣
y=δvert

dxdz (14)

Nuik
bar =

Nuik
barlateralsur f ace(2δhorizδvert + 2δhorizδvert) + Nuik

bartopδ2
horiz

(2δhorizδvert + 2δhorizδvert) + δ2
horiz

(15)

where xi = (i− 1)δhoriz +
(

i− 1
2

)
ξx and zk = (k− 1)δhoriz +

(
k− 1

2

)
ξz.

The multiple values taken by these parameters for the different blocks are finally
combined into a single space averaged values using the following relationships:

Nuaverage
side =

1
NM

N

∑
k=1

M

∑
i=1

Nuik
barlateralsur f ace (16)

Nuaverage
top =

1
NM

N

∑
k=1

M

∑
i=1

Nuik
bartop (17)

Nuaverage
bar =

1
NM

N

∑
k=1

M

∑
i=1

Nuik
bar (18)

3. Numerical Method

Integration of Equations (1)–(3) supplemented with the proper initial and boundary
conditions described in Section 2 allows for the unknown pressure (p), velocity (V), and
temperature (T) fields to be determined. In the present work these equations have been
integrated in the framework of a projection method. The details of such approach and the
related time-marching algorithm have already been illustrated in several earlier papers of
the present authors and, for this reason, they are not duplicated here [18,19]. Here we limit
ourselves to recalling that the foundations of this category of methods have been laid by
Gresho [20] and further developed by [21–25]. Here schemes that are explicit in time have
been used in combination with central difference and the QUICK schemes for the diffusive
and convective terms appearing in the equations, respectively.

3.1. Validation

The numerical method has been validated through comparison with relevant results
in the literature. In particular, the ability of the algorithm to reproduce the critical value of
the Marangoni number needed for the onset of classical MB convection has been verified
through correlation with available data obtained using the LSA approach (Linear Stability
Analysis). Moreover, with regard to the second driving force involved in the considered
problem (buoyancy), the earlier study by Biswas et al. [26] has been considered, where
pure thermal convection was numerically simulated assuming a heated element with
rectangular shape included into (located on the bottom of) a square cavity with adiabatic
bottom boundary and cold (isothermal) top and lateral walls.

The outcomes of such comparisons are reported in Tables 1 and 2, respectively.
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Table 1. Growth rate as a function of the Marangoni number (Pr = 10, layer uniformly heated from
below with aspect ratio A = 11.5, Bi = 1, mesh 150 × 25).

Ma Disturbance Growth Rate

145 1.535
140 1.3791
135 1.15125
130 0.8528
125 0.4899

119.3 (extrapolated) 0

Table 2. Comparison with the results by Biswas et al. [26] (see Figure 7 in their work), square cavity with heater located on
adiabatic bottom and other (lateral and top) walls at constant (cold) temperature (Pr = 25.83, different values of Ra and the
heated element aspect ratio).

δhoriz Abar=
δvert
δhoriz

Ra Nuaverage
side

(Present)
Nuaverage

top
(Present)

Nuaverage
bar

(Present)
Nuaverage

bar
Biswas et al. [26]

0.64 0.3 104 5.56593 4.2414 4.8381 ∼=4.8
0.33 1.0 104 4.8209 3.8613 4.5010 ∼=4.5
0.64 0.3 105 10.0709 7.7318 8.6032 ∼=8.65
0.33 1.0 105 10.5065 6.0701 9.0277 ∼=9.1

In particular, Table 1 provides the so-called disturbance growth, i.e., the constant
inclination (derivative) of the curve that describes the evolution of the logarithm of the
maximum velocity versus time as a function of the Marangoni number. It also includes
(see the last row) the value of the critical Marangoni number determined by extrapolating
(through a quadratic law) the disturbance growth rate to zero (neutral conditions). This
value of the critical Marangoni number is in very good agreement with that obtained with
the LSA approach (Pearson [27]; Colinet et al. [28]), the difference being approximately 1.5%.
For the convenience of the reader, we wish to recall that the definition of the Marangoni
number used for this assessment is slightly different with respect to that introduced in
Section 2.2 (and used in Section 4) because it relies directly on the temperature difference
which would be established without convection between the top and bottom boundaries of
the liquid layer, whereas in Section 2.2, Ma was based on the difference ∆T between the
temperature of the hot surfaces and that of the gas located at a certain distance from the
liquid surface (assumed to maintain a constant temperature in time).

The comparison with the results by [26] is shown in Table 2 and Figure 3. Again, it can
be seen that the departure of the present results from those in the literature is negligible.
In such a context, we would also like to highlight that the numerical method (and related
algorithm) used in this study, has already been exploited in previous investigations of the
present authors for a variety of situations involving buoyancy and surface-tension driven
convection (see, e.g., [16,17]), where they were verified against other relevant benchmarks
and test cases (this information is not duplicated here for the sake of brevity).
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3.2. Grid Refinement Study

A grid refinement study can generally be seen as a trade-off between the opposite
needs of maximizing accuracy and ‘containing’ the computational cost. This becomes
particularly useful in circumstances (like those considered in the present work) where,
given the intrinsically 3D nature of the problem and the long ‘physical’ time needed by the
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emerging flow to saturate its amplitude, even a small decrease in the grid density can lead
to significant benefits.

The outcomes of such an assessment are reported in Table 3. As the reader will
realize by inspecting this table a resolution of 130 × 130 × 30 can be considered more than
sufficient for the values of Ra and Ma (104 and 5 × 103, respectively) considered in the
present work.

Table 3. Grid refinement study (Pr = 0.01, aspect ratio = horizontal length/depth Ax = Az = 10,
N = M = 3, Ma = 5000, Ra = 10,000, Bi = 1.0, δhoriz = 1.0, δvert = 0.6).

Grid Size 135 × 135 × 32 130 × 130 × 30 100 × 100 × 24 85 × 85 × 21 60 × 60 × 15

Nuaverage
side 1.74 1.74 1.75 1.82 1.79

Nuaverage
top 1.42 1.42 1.41 1.74 1.75

Nuaverage
bar 1.66 1.66 1.65 1.80 1.81

4. Results

Not to increase excessively the dimensionality of the space of parameters (but without
loss of generality) we have concentrated on a fixed horizontal extension of the fluid domain
(assumed to be a layer with identical length along x and z, namely Ax = Az = 10). As the
blocks have a square cross-section (δhoriz = 1), this naturally implies that the discrete
distribution of blocks can be directly mapped into a square matrix having dimensions
N × N where N can be set as an input parameter for the simulations. As another degree of
freedom, a variable thickness has been considered for the blocks, with δvert spanning the
range 0.5 ≤ δvert ≤ 0.7.

Moreover, the response of these systems has been examined for three distinct values
of the Prandtl number Pr≤ 1, namely Pr = 0.01, 0.1 and 1 (the first two being representative
of liquid metals or semiconductor melts, the last one corresponding to the companion case
of molten salts).

With the selected number of points, each simulation has taken a time ranging between
one and four weeks.

In the following, for the sake of clarity, the results are presented in three segregated
sections, where the influence of each of the considered degrees of freedom is examined
while keeping all the other parameters fixed. Accordingly we start with the default case
corresponding to pure silicon (Pr = 0.01) with a 3 × 3 distribution of elements (N = 3).
For this case the variations are induced by a change in the height of the blocks and/or a
variation in the considered boundary conditions. As illustrated in Section 2, the floor can
be adiabatic or set at the same temperature of the blocks (hot floor), the lateral boundary
can be solid and adiabatic or treated as a cyclic (or periodic) boundary condition (PBC).

4.1. Silicon Melt with Variable Block Height

Figure 4 provide a first glimpse of the related patterning behavior in terms of 3D
structure of the temperature field. It can be seen that, in general, regardless of the con-
sidered boundary conditions at the bottom and at the domain side, a distribution of hot
spots can be identified at the free surface. Comparison of the results for a fixed value of
δvert (aligned along columns in Figure 4) is instrumental in showing that a replacement
of the adiabatic condition at the bottom with a hot floor generally leads (as expected) to
an increase in the average temperature of the system and the temperature of the surface
spots. Replacement of the solid lateral wall with PBC does not seem to have a big influence
if the floor is adiabatic, whereas it can lead to a slightly more disordered pattern if PBCs
are considered.

An increase in the vertical block extension, obviously makes the temperature of the
surface spots higher as the distance between the top of the blocks and the free interface
becomes smaller (see the results aligned along rows in Figure 4).
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These results are naturally complemented by those reported in Figures 5 and 6. The
former shows the corresponding temperature maps in a transversal section (plane xy),
the latter concerns the velocity field. These confirm the trends discussed before in terms
of expected rise in the temperature when the hot floor is considered, or the height of the
blocks is increased.

In particular, as qualitatively substantiated by Figure 6, the velocity field can be more
complex than the corresponding temperature distribution. As the reader will realize by
inspecting this figure (showing the lines tangent to the projection of the instantaneous
velocity field on the z = Az/2 midplane, colored according to the corresponding distribution
of temperature), the topology of such streamlines is quite intricate with vorticity being
present in the form of more or less extended eddies both in the regions above the blocks
and in the space between them (the former being reduced as δvert is increased).
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Figure 6. Snapshots of the streamlines of the velocity field projected on the z = 5 plane, col-
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4.2. Silicon Melt with Variable Number of Blocks

The next figure of the sequence (Figure 7) shows the 3D structures obtained when the
number of blocks is increased from 3 × 3 to 5 × 5 while keeping their height fixed to 0.6.

The most remarkable change clearly occurs in terms of multiplicity of the surface spots.
However, significant modifications can also be detected in the distribution of tem-

perature in the transversal sections (Figure 8). When the number of blocks is increased,
the amount of heat being released in the fluid per unit time clearly increases causing an
ensuing rise in the average system temperature. Along these lines, it can be seen that when
the configuration with 5 × 5 blocks is considered, the differences between the cases with
adiabatic and hot floor become less evident.

Finally, Figure 9 shows that an increase in the number of blocks also affects the
topology of the streamlines; nevertheless, these retain their behavior with fluid rising from
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the top of the blocks towards the free interface and moving down in the regions between
the blocks.

Most remarkably, taken together all these figures also lead to the conclusion that (in
terms of patterning behavior) in the presence of a distribution of cubic blocks, thermal
convection in a small-Pr fluid can retain neither the classical structure with elongated
two dimensional rolls typical of RB convection, nor the hexagonal-cell based topology of
classical MB convection. Regardless of whether the floor is adiabatic or set at the same
temperature of the blocks, the blocks create a kind of ‘blockage’ or act as barriers (or
perturbing elements) that can break the two-dimensional rolls and prevent the system
from developing a pattern with the honeycomb symmetry. As we will discuss in detail
later, varying the number of blocks can also have a non-negligible impact on the temporal
response (time-dependence) of the flow. Before treating this specific aspect, the next sub-
section is concerned with the influence of another significant parameter, i.e., the Prandtl
number itself.
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Figure 9. Snapshots of the streamlines of the velocity field projected on the z = 5 plane, colored
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SW; (i) 3 × 3 array (ii) 5 × 5 array.
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4.3. Effect of the Prandtl Number

As witnessed by Figure 10, on varying the Prandtl number for a fixed number (N = 3
in this case) and given height of the blocks (δvert = 0.6), significant changes can be induced
in the system in terms of patterning behavior. This is more evident when the configuration
with hot floor is considered and/or the Prandtl number is increased.
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Figure 10. 3D Temperature snapshots (δvert = 0.6): (a) adiabatic floor with PBC, (b) adiabatic floor
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For both Pr = 0.1 and Pr = 1 and hot floor condition (Figure 10(c,ii), (c,iii), (d,ii)
and (d,iii)), the rising columns of hot fluid inside the layer no longer simply reflect the
underlying distribution of hot blocks. In place of nine plumes evenly spaced along the x
and z axes, a set of 4 × 4 thermal pillars is obtained.

As the reader will realize by taking a look at Figures 11 and 12, the increase in the
visible number of columns of rising hot fluid (the aforementioned pillars) is due to a change
in the process leading to plume formation. When the floor is hot and the Prandtl number is
0.1 or 1, plumes originate from the top corners of each block rather than from its center as
it was for Pr = 0.01. This should be ascribed to the increased ability of the vertical walls of
the blocks to produce convection in such conditions.
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Figure 12. Snapshots of the streamlines of the velocity field projected on the z = 5 plane, colored
according to the corresponding temperature distribution (δvert = 0.6): (a) adiabatic floor with PBC,
(b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, (d) hot floor with lateral SW;
(i) Pr = 0.01 (ii) Pr = 0.1 (iii) Pr = 1.

4.4. Time-Dependence and Related Effects

This section is dedicated to treat an aspect that has been glossed over until now,
namely the behavior of these systems from a temporal point of view.

In this regard, it is worth starting from the simple remark that, in all cases relatively
similar dynamics have been observed, namely a flickering behavior of the plumes or ‘pillars’
discussed before due to localized oscillations of the vortical structures supporting them.
In general, these localized oscillations have been observed to be relatively chaotic for the
considered values of the Rayleigh and Marangoni number.

The related spectra for Pr = 0.01 can be seen in Figure 13.
Some meaningful information can be gathered from this figure as follows.
A range of frequencies can be identified where the spectrum follows the so-called

Kolmogorov law (highlighted using a red straight line in the figure). Roughly speaking,
this law states that a range of wavenumbers exists in space [k1, k2], where the energy
density of the flow E scales as k−5/3 (where k denotes the wavenumber). In a completely
equivalent way (because in terms of vorticity the local flow velocity turnover cycle depends
on the length scale) the same law can be formulated stating that a range of frequencies
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exist in time where the energy density of the flow E scales as ω−5/3 (where ω denotes
the angular frequency, see, e.g., De et al. [29]). This is a well-known outcome of a theory
originally elaborated by Kolmogorov [30–33], where it was postulated that, while the large
scales of a flow are not isotropic because they are influenced by the specific geometry of the
considered domain and the nature of the forces driving it, the memory of this geometrical
and directional information is progressively lost while energy cascades from large to
smaller scales. In other words, a range of scales should exist where small-scale turbulent
motions are statistically isotropic (i.e., no preferential spatial direction can be identified)
before the kinetic energy reaches a scale where it is finally converted into internal energy
(heat) due to dissipative (frictional) effects.
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SW and δvert = 0.6 (the red straight line indicates the Kolmogorov scaling; the spectra refer to the
temperature signal measured by a probe located above one of the heated blocks, at y = 0.8).

Cross comparison of Figure 13 leads to the conclusion that if the number of blocks
is increased, the spectra are very similar, although, the latter seems to align with the
Kolmogorov law over a slightly larger interval.

Along these lines, Figure 14 reveals that an increase in the Prandtl number can make
the spectrum slightly more energetic in the range of high frequencies, which, in agreement
with the observations reported in the earlier sections, can be explained considering the
excitation of smaller scale features in the flow.
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Figure 14. Frequency spectra for Pr = 0.01 (left), Pr = 0.1 (right) for adiabatic floor with lateral
SW and δvert = 0.6 (the red straight line indicates the Kolmogorov scaling; the spectra refer to the
temperature signal measured by a probe located above one of the heated blocks, at y = 0.8).
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4.5. Heat Exchange Effects

In line with the approach implemented by [26] and other authors, further characteri-
zation of these systems can be obtained through evaluation of the Nusselt number on the
basis of Equations (13)–(18).

Relevant information about the dependence of Nuaverage
side , Nuaverage

top and Nuaverage
bar on

Pr, N and δvert, has been summarized in Tables 4–6, respectively.

Table 4. As a function of Pr, N, δvert and the considered boundary conditions.

Pr N δvert

Adiabatic
Floor,

Lateral PBC

Adiabatic
Floor,

Lateral SW

Hot Floor,
Lateral PBC

Hot Floor,
Lateral SW

0.01 3 0.5 1.9812 2.0203 0.3864 0.2839
0.01 3 0.6 1.7447 1.7915 0.3351 0.2613
0.01 3 0.7 1.6406 1.6601 0.3313 0.3038
0.01 5 0.6 0.6150 0.6175 0.3691 0.3662
0.1 3 0.6 2.2188 2.1873 0.2822 0.2850
1.0 3 0.6 2.4194 2.4497 0.3880 0.4203

Table 5. As a function of Pr, N, δvert and the considered boundary conditions.

Pr N δvert

Adiabatic
Floor,

Lateral PBC

Adiabatic
Floor,

Lateral SW

Hot Floor,
Lateral PBC

Hot Floor,
Lateral SW

0.01 3 0.5 1.5137 1.5138 1.0898 0.9938
0.01 3 0.6 1.5025 1.4941 1.1511 1.1057
0.01 3 0.7 1.4867 1.4908 1.2336 1.2357
0.01 5 0.6 1.2531 1.2374 1.2176 1.2283
0.1 3 0.6 1.3962 1.4032 1.0314 1.0317
1.0 3 0.6 1.5760 1.5952 0.8291 0.9107

Table 6. Nuaverage
bar as a function of Pr, N, δvert and the considered boundary conditions.

Pr N δvert
Adiabatic

Floor,
Lateral PBC

Adiabatic
Floor,

Lateral SW

Hot Floor,
Lateral PBC

Hot Floor,
Lateral SW

0.01 3 0.5 1.8254 1.8514 0.62085 0.5205
0.01 3 0.6 1.6735 1.7041 0.5751 0.5096
0.01 3 0.7 1.6001 1.6155 0.5688 0.5491
0.01 5 0.6 0.8027 0.800 0.6187 0.6198
0.1 3 0.6 1.9768 1.9567 0.5026 0.5046
1.0 3 0.6 2.1714 2.1984 0.5178 0.5645

The most striking effect that can be seen in these tables concerns the weakening of
heat exchange when the adiabatic floor is replaced with a (hot) isothermal boundary. This
change, which occurs regardless of the considered value of Pr, N or δvert, can be ascribed to
the rise in the average temperature of the liquid when the floor is hot (clearly visible in
Figures 5, 8 and 11). As a result of such an increase, the difference between the temperature
of the liquid and the top or lateral surfaces of the blocks becomes smaller, thereby lowering
the related Nusselt numbers. As similar mechanism is responsible for the decrease in
Nuaverage

bar when δvert is increased for fixed Pr, N and assuming the adiabatic floor. Although
Nuaverage

top does not change much, making the blocks taller leads to an appreciable shrinkage

in the values of Nuaverage
side owing to the larger amount of heat that is released accordingly

in the surrounding fluid and the ensuing increase in temperature. The same arguments
also apply to the cases with a larger number of N. Yet for the case with adiabatic floor,
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if N is increased from 3 to 5 while keeping the other parameters unchanged, the Nusselt
numbers become smaller and approach the values obtained in the corresponding situations
with the hot floor. This is due to a three-fold effect, namely the increase in the average
temperature of the system, the weakening of temperature gradients present in the liquid
and the ensuing damping of convection driven by such gradients.

As a concluding remark for this section, it is also worth noting that, on increasing
the Prandtl number, the average heat exchange occurring between the blocks and the
surrounding fluid (as quantified by Nuaverage

bar ) becomes more intense, and the simplest way
to justify this dependence is to consider a decrease in the thickness of the thermal boundary
layers formed along the horizontal and vertical surfaces of the hot blocks.

5. Discussion and Conclusions

In this section some additional insights into the considered problem are sought
through comparison with ‘companion problems’, not necessary linked to thermal con-
vection driven by buoyancy of Marangoni effects.

A first quite relevant exemplar can be found in the field concerned with the cooling
of printed circuit boards and the assessment of the related thermal performances [34–39].
These problems are generally modeled considering the horizontal flow over a matrix of
wall-mounted ‘cubes’, some of which behave as heat-producing sources. The professional
and researchers involved in this field are typically interested in evaluating the local heat
transfer coefficients owing to their strong connection with the lifespan and reliability
of microprocessors and memories. In turn, these coefficients are highly dependent on
geometrical factors such as the size of the considered chip, its relative position with respect
to other electronic components, and the ‘channel height’ (i.e., the distance between the
upper and lower printed circuit boards). Models based on a staggered arrangement of
finite-size squared elements, however, are not an exclusive prerogative of this specific
area. Parallelepipedic items fully submerged in a (mathematically reconstructed) urban
atmospheric boundary layer, can also be used to model the interaction of wind with an array
of buildings [40,41] or with a set of power generators (power plants, [18]). In these cases,
the elements are typically staggered in the downstream direction and periodically arranged
in the streamwise and/or spanwise directions. Taken together, all these efforts have shown
that flow interruptions created in flow passages at periodic intervals can result in a variety
of fluid-dynamic effects. These include flow separation at the sharp leading top of each
element, flow recirculations originating from side edges with subsequent flow reattachment
along these faces, arc-type vortices formed in the wake of any upstream cube, horseshoe-
type vortices in front of the downstream cubes and other flow instabilities causing vortex
shedding at the side faces of the elements (and ensuing small-scale turbulence in the near
wake region, [42]).

Although the physics of the problem examined in the present work is quite different,
referring to this companion category of phenomena is useful because such studies have
shown that a variation in the gap between two items can produce significant changes in the
heat transfer process. In those cases such modifications are essentially due to the different
‘level of blockage’ that is induced in the flow when the spacing among the protuberances
is altered. The resulting flow physics is made extremely complex by the interplay of the
horizontal flow with the related solid boundaries and the ensuing generation of a large
number of (mutually interacting) vortex systems, and regions of relatively stagnant fluid.
This complex physics, in turn, significantly affects the heat transfer mechanisms.

Obviously, the concept of blockage is not applicable directly to the present conditions,
where the heated elements (regardless of whether the dominant driving force is buoyancy
or thermocapillarity) represent the source of convection rather than factors hindering it.
Moreover, the role of the cold ‘wind’ entering the domain hosting the hot elements is
taken on by the heat exchange with the external gaseous environment through the top free
liquid/gas interface (which acts as an extended heat sink for the entire system). We wish
to remark that, despite these differences in the characteristic directions of fluid flow and
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heat transfer, some useful similarities can still be identified by simply replacing the notion
of blockage with that of ‘heat island’ (visible in Figure 8). Just like portions of stagnant
fluid can contribute to weaken heat exchange effects in a fluid blowing through a set of
warm solid blocks, regions of stagnant heat (due to the excessive proximity of adjoining
hot elements) can hamper the mechanism producing natural convection thereby causing a
decrease in the Nusselt number.

Additional affinity can also be identified in the tendency of both categories of systems
to develop turbulence or relatively chaotic solutions in some circumstances, i.e., large val-
ues of the Reynolds and Marangoni numbers, respectively (both account for the strength of
horizontally directed flow). In the wind-obstacles problem, such complex states are essen-
tially the outcome of purely hydrodynamic effects and related bifurcations [18,42–50].We
have shown that if hybrid buoyancy-Marangoni convection induced by hot blocks in liquid
metals is considered, the frequency spectra still align with the Kolmogorov law in a certain
range of frequencies.

Some general conclusions on the basis of the findings presented in Section 4 and the
analogy with the companion category of phenomena discussed in the present section, can
therefore be drawn as follows. Though quite limited in terms of depth and scope due to
the extremely long time required by the simulations, the present work has shown that a
topography at the bottom of a layer of liquid metal coupled with a thermal inhomogeneity
can deeply alter the flow with respect to the patterns which would be produced in the
equivalent conditions without blocks. The presence of obstructions prevents the layer from
forming the horizontally extended rolls or the hexagonal cells, which would be typical of
RB and MB convection, respectively.

While the outcomes of an increase in the height of the blocks are generally limited to
a rise in the temperature of the hot spots produced by rising thermal currents that meet
the free surface, an increase in their numbers can make the average temperature of the
entire fluid layer much higher. As a result, the difference between the configuration with
adiabatic and isothermal (at the same temperature of the blocks) floor becomes less evident.

On increasing the Prandtl number in the range from 0.01 to 1 even more interesting
phenomena are enabled. Owing to a shift in the location of the regions from which thermal
plumes originate (from the center of the top surface of blocks to their edges), the perfect
correspondence between the disposition of hot blocks at the bottom and the set of hot spots
on the free surface is lost. In such conditions the multiplicity of surface spots overcomes
that of the underlying matrix of heat sources.

Regardless of the considered value of the Prandtl number or the boundary conditions
at the bottom and at the lateral boundary, in place of the traveling waves known to be
the typical outcome of the first Hopf bifurcation for both RM and MB classical forms of
convection in liquid metals, unsteadiness is due to small oscillations in time of the thermal
pillars. Analysis of the related frequency spectra has revealed that a range of frequencies
exists where the spectrum aligns with the prediction of the Kolmogorov theory for isotropic
homogeneous turbulence and that the extension of such a range depends on the specific
conditions considered.

Future studies shall be devoted to determine the minimum height of the blocks for
which the formation of classical hexagonal cells or traveling waves is prevented, assess the
system response when the horizontal size of the blocks is varied continuously in a given
range, analyze all these behaviors also for other values of the Marangoni and Rayleigh
numbers, and eventually exploit relevant turbulence models (such as those elaborated
by Da Vià et al. [51–53] to reduce the otherwise prohibitive computational times required
by DNS).
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