Estimation of Turbulent Triplet Covariances for Bora Flows
Abstract
:1. Introduction
2. Theoretical Background
2.1. Prognostic Equations for Turbulence Variances
2.2. Viscous Dissipation
3. Data and Methods
4. Results
4.1. Averaging Time Scales
4.2. Determination of Viscous Dissipation
4.3. Time Series of the Terms in the Prognostic Equation for Turbulence Variances
4.4. Relationship between Turbulent Transport and Mechanical Production Term
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohorovičić, A. Interessante Wolkenbildung űber der Bucht von Buccari (with a comment from the editor J. Hann). Meteorol. Z. 1889, 24, 56–58. [Google Scholar]
- Jurčec, V. On mesoscale characteristics of bora conditions in Yugoslavia. Pure Appl. Geophys. 1981, 119, 215–227. [Google Scholar]
- Smith, R.B. Aerial observation of the Yugoslavian bora. J. Atmos. Sci. 1987, 44, 269–297. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.; Durran, D. Numerical modelling of bora winds. Meteorol. Atmos. Phys. 1987, 36, 215–227. [Google Scholar] [CrossRef]
- Grubišić, V.; Orlić, M. Early observations of rotor clouds by Andrija Mohorovičić. Bull. Amer. Meteorol. Soc. 2007, 88, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Grisogono, B.; Belušić, D. A review of recent advances in understanding the meso− and micro−scale properties of the severe Bora wind. Tellus A 2009, 61, 1–16. [Google Scholar] [CrossRef]
- Večenaj, Ž.; Belušić, D.; Grubišić, V.; Grisogono, B. Along coast features of the bora related turbulence. Bound. Layer Meteorol. 2012, 143, 527–545. [Google Scholar] [CrossRef]
- Bajić, A. Application of the two−layer hydraulic theory on the severe northem Adriatic bora. Meteorol. Rundsch. 1991, 44, 129–133. [Google Scholar]
- Gohm, A.; Mayr, G.J.; Fix, A.; Giez, A. On the onset of bora and the formation of rotors and jumps near a mountain gap. Q. J. R. Meteorol. Soc. 2008, 134, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Belušić, D.; Klaić, Z.B. Mesoscale dynamics, structure and predictability of a severe Adriatic bora case. Meteorol. Z. 2006, 15, 157–168. [Google Scholar] [CrossRef]
- Šoljan, V.; Belušić, A.; Šarović, K.; Nimac, I.; Brzaj, S.; Suhin, J.; Belavić, M.; Večenaj, Ž.; Grisogono, B. Micro−scale properties of different bora types. Atmosphere 2018, 9, 116–141. [Google Scholar] [CrossRef] [Green Version]
- Lepri, P.; Kozmar, H.; Večenaj, Ž.; Grisogono, B. A summertime near−ground velocity profile of the bora wind. Wind Struc. 2014, 19, 505–522. [Google Scholar] [CrossRef]
- Lepri, P.; Večenaj, Ž.; Kozmar, H.; Grisogono, B. Bora wind characteristics for engineering applications. Wind Struc. 2017, 24, 596–611. [Google Scholar]
- Enger, L.; Grisogono, B. The response of bora−type flow to sea surface temperature. Q. J. R. Meteorol. Soc. 1998, 124, 1227–1244. [Google Scholar] [CrossRef]
- Klaić, Z.B.; Belušić, D.; Grubišić, V.; Gabela, L.; Ćoso, L. Mesoscale airflow structure over the northern Croatian coast during MAP IOP 15—A major bora event. Geofizika 2003, 20, 23–61. [Google Scholar]
- Grubišić, V. Bora−driven potential vorticity banners over the Adriatic. Q. J. R. Meteorol. Soc. 2004, 130, 2571–2603. [Google Scholar] [CrossRef]
- Jiang, Q.F.; Doyle, J.D. Wave breaking induced surface wakes and jets observed during a bora event. Geophys. Res. Let. 2005, 32, L17807. [Google Scholar] [CrossRef] [Green Version]
- Belušić, D.; Žagar, M.; Grisogono, B. Numerical simulation of pulsations in the bora wind. Q. J. R. Meteorol. Soc. 2007, 133, 1371–1388. [Google Scholar] [CrossRef]
- Horvath, K.; Ivatek−Šahdan, S.; Ivančan−Picek, B.; Grubišić, V. Evolution and structure of two severe cyclonic bora events: Contrast between the northern and southern Adriatic. Weather Forecast 2009, 24, 946–964. [Google Scholar] [CrossRef]
- Belušić, D.; Pasarić, M.; Orlić, M. Quasi−periodic Bora gusts related to the structure of the troposphere. Q. J. R. Meteorol. Soc. 2004, 130, 1103–1121. [Google Scholar] [CrossRef]
- Večenaj, Ž.; Belušić, D.; Grisogono, B. Characteristics of the near−surface turbulence during a bora event. Ann. Geophys. 2010, 28, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Lepri, P.; Večenaj, Ž.; Kozmar, H.; Grisogono, B. Near−ground turbulence of the bora wind in summertime. J. Wind Eng. Ind. Aerodyn. 2015, 147, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Kozmar, H.; Grisogono, B. Characteristics of Downslope Wind Storms in the View of the Typical Atmospheric Boundary Layer. In The Oxford Handbook of Non−Synoptic Wind Storms; Hangan, H., Kareem, A., Eds.; Oxford University Press: Oxford, UK, 2021; Chapter in press. [Google Scholar] [CrossRef]
- Babić, N.; Večenaj, Ž.; Kozmar, H.; Horvath, K.; Grisogono, B. On turbulent fluxes during strong winter bora events. Bound. Layer Meteorol. 2016, 158, 331–350. [Google Scholar] [CrossRef]
- Bianchi, F.D.; De Battista, H.; Mantz, R.J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design; Springer: London, UK, 2007; Volume 19. [Google Scholar]
- Kuzmić, M.; Grisogono, B.; Li, X.M.; Lehner, S. Examining deep and shallow Adriatic bora events. Q. J. R. Meteol. Soc. 2015, 141, 3434–3438. [Google Scholar] [CrossRef]
- Freire, L.S. Critical flux Richardson number for Kolmogorov turbulence enabled by TKE transport. Q. J. R. Meteorol. Soc. 2019, 145, 1551–1558. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; p. 666. [Google Scholar]
- Piper, M.; Lundquist, J.K. Surface layer turbulence measurements during a frontal passage. J. Atmos. Sci. 2004, 61, 1768–1780. [Google Scholar] [CrossRef]
- Večenaj, Ž.; De Wekker, S.F.J.; Grubišić, V. Near surface characteristics of the turbulence structure during a mountain wave event. J. Appl. Meteor. Climat. 2011, 50, 1088–1106. [Google Scholar] [CrossRef]
- Večenaj, Ž. Characteristics of the Bora Related Turbulence. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2012; p. 83. [Google Scholar]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Welch, P.D. The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. In IEEE Transactions on Audio and Electroacoustics; IEEE: Piscataway, NJ, USA, 1967; Volume 15, pp. 70–73. [Google Scholar]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows. Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994; p. 304. [Google Scholar]
- Champagne, F.H. The finescale structure of the turbulent velocity field. J. Fluid. Mech. 1978, 86, 67–108. [Google Scholar] [CrossRef]
- Mestayer, P.G. Local isotropy and anisotropy in a high−Reynolds−number turbulent boundary layer. J. Fluid. Mech. 1982, 125, 475–503. [Google Scholar] [CrossRef]
- Babić, N. The Analysis of Bora’s Turbulent Fluxes in the Hinterland of Split, Croatia. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2013; p. 52. [Google Scholar]
- Babić, N.; Večenaj, Ž.; Horvath, K.; Grisogono, B. Evaluation of vertical eddy fluxes divergence for multiple bora events. In Proceedings of the ICAM 2013—International Conference on Alpine Meteorology, Kranjska Gora, Slovenia, 3–7 June 2013. [Google Scholar]
- Kuzmić, M.; Li, X.M.; Grisogono, B.; Tomažić, I.; Lehner, S. TerraSAR−X observations of the northeastern Adriatic bora: Early results. Acta Adriat. 2013, 54, 13–26. [Google Scholar]
- Moeng, C.H.; Sullivan, P.P. A comparison of shear−and buoyancy−driven planetary boundary layer flows. J. Atmos. Sci. 1994, 51, 999–1022. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, M.J.; Patton, E.G.; Shaw, R.H. Turbulent kinetic energy budgets from a large−eddy simulation of airflow above and within a forest canopy. Bound. Layer Meteorol. 1997, 84, 23–43. [Google Scholar] [CrossRef]
- Srivastava, M.K.; Sarthi, P.P. Turbulent kinetic energy in the atmospheric surface layer during the summer monsoon. Meteorol. App. 2002, 9, 239–246. [Google Scholar] [CrossRef]
Ratio | |||
---|---|---|---|
Value | 0.71 | 0.25 | 0.04 |
Mid-Level [m] | Direction | Median |
---|---|---|
16 | x | 0.49 |
y | 0.01 | |
25 | x | 0.28 |
y | −0.18 | |
31 | x | −0.37 |
y | −0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Večenaj, Ž.; Malečić, B.; Grisogono, B. Estimation of Turbulent Triplet Covariances for Bora Flows. Fluids 2021, 6, 452. https://doi.org/10.3390/fluids6120452
Večenaj Ž, Malečić B, Grisogono B. Estimation of Turbulent Triplet Covariances for Bora Flows. Fluids. 2021; 6(12):452. https://doi.org/10.3390/fluids6120452
Chicago/Turabian StyleVečenaj, Željko, Barbara Malečić, and Branko Grisogono. 2021. "Estimation of Turbulent Triplet Covariances for Bora Flows" Fluids 6, no. 12: 452. https://doi.org/10.3390/fluids6120452
APA StyleVečenaj, Ž., Malečić, B., & Grisogono, B. (2021). Estimation of Turbulent Triplet Covariances for Bora Flows. Fluids, 6(12), 452. https://doi.org/10.3390/fluids6120452