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Abstract: As a step towards addressing a scarcity of references on this topic, we compared the
Eulerian and Lagrangian Computational Fluid Dynamics (CFD) approaches for the solution of free-
surface and Fluid–Solid Interaction (FSI) problems. The Eulerian approach uses the Finite Element
Method (FEM) to spatially discretize the Navier–Stokes equations. The free surface is handled via
the volume-of-fluid (VOF) and the level-set (LS) equations; an Immersed Boundary Method (IBM)
in conjunction with the Nitsche’s technique were applied to resolve the fluid–solid coupling. For
the Lagrangian approach, the smoothed particle hydrodynamics (SPH) method is the meshless
discretization technique of choice; no additional equations are needed to handle free-surface or FSI
coupling. We compared the two approaches for a flow around cylinder. The dam break test was
used to gauge the performance for free-surface flows. Lastly, the two approaches were compared
on two FSI problems—one with a floating rigid body dropped into the fluid and one with an elastic
gate interacting with the flow. We conclude with a discussion of the robustness, ease of model setup,
and versatility of the two approaches. The Eulerian and Lagrangian solvers used in this study are
open-source and available in the public domain.

Keywords: Computational Fluid Dynamics; fluid solid interaction; free-surface; Eulerian method;
Lagrangian method

1. Introduction

Insofar as the space discretization step is concerned, the majority of CFD models can
be classified as: (i) Eulerian approaches, where the unknown state variables are attached to
stationary observers; or (ii) Lagrangian approaches, in which the unknown state variables
are attached to moving observers. The two approaches are vastly different, and this
contribution’s goal was to shed light onto how they compare when used in conjunction
with 3D applications that involve interactions with the solid phase.

Eulerian methods have been successfully applied and are very popular in CFD. Indeed,
Finite Difference (FD) represents a robust technique for solving partial differential equations
on simple domains, while the Finite Volume (FV) has been predominantly applied in fluid
flows with complex geometries. Conversely, the Lagrangian methods gained traction only
about two decades ago, although the idea of using Lagrangian discretization dates back to
1957 [1]. Among Lagrangian methods, SPH [2,3] has been widely adopted as the low-order
approximation of choice for a variety of problems [4], while Moving Least Squares and
Radial Basis Functions emerged as the leading high-order meshless methods [5–8].

For the class of free-surface flows, Eulerian approaches rely on either interface-tracking
or interface-capturing techniques. The former is considered more accurate; yet, it involves
an update stage in the computational mesh as the shape of the spatial domain occupied
by the fluid changes in time. The latter is more flexible in terms of meshing, since the
solution relies on one fixed spatial grid that contains two fluid phases. Owing to the
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introduction of two distinct phases, interface-capturing methods require the solution of
additional equations governing the advection of the interface and/or conservation of the
phase fraction [9–12]. The ability to handle two distinct phases is critical in many practical
applications in which two or more fluids with different viscosities and densities play
equally important roles in the problem, e.g., in the oil and gas industries. On the other
hand, handling free-surface problems is more straightforward in Lagrangian approaches.
Owing to their meshless nature, these methods eschew the costly re-meshing requirement
of interface-tracking methods.

For FSI problems, just as for free-surface flows, the Eulerian approaches are challenged
by large mesh deformations, which call upon remeshing operations. A widely used
approach is the Arbitrary Lagrangian–Eulerian (ALE) method [13], which handles well
sufficiently small mesh deformation, yet it becomes expensive when the motion of the solid
objects is relatively large. The IBM [14] addresses this shortcoming by implicitly treating
the solid objects, as opposed to the ALE explicit representation of solid bodies that calls for
body-fitted meshing. Thus, IBM alleviates the mesh deformation conundrum at the cost of
a higher mesh resolution in the vicinity of the solid objects.

Handling FSI problems with complex geometries comes more naturally to meshless
methods, e.g., SPH, owing to the their Lagrangian nature that interfaces well with the
Lagrangian framework used in solid mechanics [15]. However, SPH-based methods
generally have enjoyed a somewhat limited adoption due to their reduced order and
deficiencies in numerical approximation near boundaries [5]. Kernel-correction methods
have been recently proposed to enforce linear consistency and second-order accuracy, yet
they alter the conservation properties of SPH [16–20]. Likewise, the use of larger support
basis functions improves robustness but leads to a higher computational cost.

Against this backdrop, this contribution sought to provide insight into a simple
question of practical interest: how do the Lagrangian and Eulerian approaches compare
when used in non-trivial problems? A pen-and-paper attempt to settle this question is
unlikely to be fruitful for nontrivial 3D problems. Indeed, these approaches are too complex
in their formulation and depend on too many factors in their software implementation
for a pen-and-paper exercise to provide meaningful insights. We regarded this effort as
worthwhile since although being relatively long-time practitioners in this field, we had
no clear answer to the question at hand. It should be pointed out that we did not set out
to produce definite answers to questions, such as “Which approach is better?” or“Which
approach is faster?”, since these questions are too nuanced. The answer depends on
many factors such as the nature and size of the problem solved; the particular numerical
discretizations used (explicit vs. implicit integration, SPH vs. generalized moving least
squares, etc.); numerous software implementation decisions (programming language, code
flexibility vs. speed of execution, etc.); hardware architecture (multi-node vs. multi-core
vs. GPU acceleration); etc. Ultimately, to address the question of interest, we embraced a
pragmatic approach in which we used several nontrivial test problems to compare the two
approaches as implemented by two relatively mature open-source codes—one that draws
on an Eulerian approach and the other on a Lagrangian solution. On the Eulerian side,
we used the FE implementation in a computational modeling toolkit called Proteus [21].
This Eulerian model uses the Nitsche’s technique and IBM to consider the solid motion
and combines both LS and VOF techniques to simulate the multiphase fluid motion. On
the Lagrangian side, we used the SPH method as implemented in Chrono [22]. The
motion of the solid-phase in both the Eulerian and Lagrangian approaches was simulated
via Chrono’s multibody dynamics engine. Both Chrono and Proteus are open-source
frameworks and available in the public domain.

This manuscript is organized as follows. Section 2 describes the governing equa-
tions of the fluid-phase via incompressible Navier–Stokes equations for Newtonian fluids.
Section 3 provides details of the numerical methods used in the Eulerian (Section 3.1)
and the Lagrangian (Section 3.2) models. Section 3.3 describes the boundary condition
enforcement and fluid-structure coupling algorithms. Section 4 compares the methods
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for several benchmark tests. These experiments are representative for a range of fluid
dynamics problems. We conclude by discussing advantages and disadvantages of both
approaches in Section 5.

2. Governing Equations

The mass and momentum balance, i.e., the continuity and Navier–Stokes equations,
were formulated for the incompressible fluid phase as [23]

dρ

dt
= −ρ∇ · u (1)

du
dt

=
1
ρ
∇ · σ + fb = −1

ρ
∇p +

1
ρ
∇ · τ + fb , (2)

where

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 = −pI + τ = −

p 0 0
0 p 0
0 0 p

+

σxx + p τxy τxz
τyx σyy + p τyz
τzx τzy σzz + p


is the stress tensor; and p and τ are the volumetric and deviatoric components of the stress
tensor, respectively. The pressure p = − 1

3 (σxx + σyy + σzz) is tied to the trace of the stress
tensor and represents a mechanical property of the system. Upon adopting a Newtonian

constitutive model to express τij = µ(
∂ui
∂xj

+
∂uj

∂xi
) and accounting for the incompressible

flow assumption (∇ · u = 0), Equation (2) leads to the following form of the Navier–Stokes
equations:

du
dt

= −1
ρ
∇p + ν∇2u + fb , (3)

where ν = µ/ρ and ρ are the fluid kinematic viscosity and density, respectively; fb is the
volumetric force density; and u is the flow velocity.

3. Numerical Models
3.1. The Eulerian Approach

In the Eulerian approach, we considered two incompressible Newtonian phases, air
and water, separated by a sharp material interface, across which density and viscosity are
discontinuous but velocity and pressure are continuous. Surface tension was, therefore,
neglected.

Denote the domains of the air and water phases as Ωa(t) and Ωw(t). The whole
domain is Ω = Ωw(t) ∪Ωa(t), and the air/water interface is Γ(t) = ∂Ωw(t) ∩ ∂Ωa(t).

The Navier–Stokes equation above was used to model the motion of each phase of
fluid {

ρi
∂ui
∂t + ρiui · ∇ui = −∇pi +∇ · τi + f, x ∈ Ωi(t)

∇ · ui = 0 ,
(4)

where ui is the velocity, pi is the pressure, f is the body force, µi is the dynamic viscosity,
σi ≡ −piI + 2µε(ui) is the stress tensor, ε(u) ≡ 1

2 (∇u +∇uT), and i ∈ {w, a}.
To solve the Navier–Stokes equations, Equation (4), one has to provide proper bound-

ary conditions on the exterior boundary ∂Ω and on the interface Γ(t). The boundary
condition on ∂Ω depends on the problem, and, based on the assumption of continuity of
velocity and stress across the interface,

pa = pw, ua = uw, σa · n = σw · n, x ∈ Γ(t) . (5)
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Using this interface condition (Equation (5)) and neglecting the potential loss of
smoothness due to the jump discontinuities in density and viscosity, we can introduce
continuous global pressure and velocity fields p and u and solve a single Navier–Stokes
equation {

ρ ∂u
∂t + ρu · ∇u = −∇p +∇ · (2µε(u)) + f, x ∈ Ω
∇ · u = 0 ,

in the whole domain Ω, with ρ := ρw1x∈Ωw(t)+ ρa1x∈Ωa(t) and µ := µw1x∈Ωw(t)+µa1x∈Ωa(t).
Note that ρ and µ vary in time and space due to the dynamic interface Γ(t). In this work,
we used a conservative level set scheme described in [24], which represents the interface
Γ(t) implicitly as the zero-level set

φ(t, x) = 0 , (6)

where φ is the negative of the signed distance to Γ(t) within the water phase and the
positive signed distance in the air phase.

In this approach, both an air volume fraction, θ, and the dynamics of the signed
distance field, φ, are modeled based on the governing equations for material surface
motion

∂φ

∂t
+ u · ∇φ = 0 , (7)

and phase volume conservation

∂θ

∂t
+∇ · (uθ) = 0 . (8)

We then compute ρ and µ as

ρ(t, x) = ρw[1− H(φ)] + ρaH(φ) (9)

µ(t, x) = µw[1− H(φ)] + µaH(φ) , (10)

where H(·) is the Heaviside step function.
As the solution evolves, the level set φ will gradually lose the signed distance property

and the phase mass conservation property. To simplify the presentation, we assumed that
there is no flow through external boundaries, so that, for all time, the air mass Ma should
maintain the phase mass conservation property

Ma =
∫

Ω
ρa H(φ(t, x) . (11)

Note that, under the given assumptions, this statement can be written equivalently as
a volume conservation statement and that analogous statements hold for the water phase.

Several methods have been proposed to correct the violation of these conservation
constraints, see, for instance, [12,25]. Here, we are correcting φ based on the conserved
quantity θ as suggested in [24]. The idea is to compute the correction u satisfying the
equation {

H(φ + u)− θ = κ∆u
∇u · n = 0, on ∂Ω

(12)

in order to keep the mass conservation, where κ is a parameter that penalizes the deviation
of u = φ′ from a global constant.

As noted above, the use of continuous and differentiable fields for pressure and
velocity over the entire domain Ω is an approximation that is inconsistent with actual jump
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discontinuities in density and viscosity. In fact, we used a regularized Heaviside function,
Hε(x) as follows

Hε(x) :=


0, if x ≤ −ε
1
2 (1 +

x
ε + 1

φls
sin(x φls

ε )) if |x| ≤ ε

1, if x ≥ ε

, (13)

to approximate H(x) used in Equations (9) and (10). This represents a first-order regular-
ization of the two-phase flow problem. While much prior work uses this regularization,
notable recent research provides methods and proofs that more-precise, second-order accu-
rate treatment of the fluid–fluid interface is achievable in the finite element context [26,27].
Finally, we corrected the loss of the signed distance property by solving

∂τφ + sign(φ)(|∇φ| − 1) = 0 , (14)

subject to boundary conditions φ = 0 on Γ(t) (i.e., the distance correction does not move
the air–water interface). The algorithm for the time step tn → tn+1 can is described in
Algorithm 1.

Algorithm 1 FE procedure for tn → tn+1.

Solve Equation (4) with ρ(tn) and µ(tn) defined in Equations (9) and (10) to get the
velocity field un+1 and pressure pn+1

Solve Equation (7) to get φ∗(tn+1)
Solve Equation (8) to get θ∗(tn+1)
Solve Equation (14) to get φ∗∗(tn+1) from φ∗(tn+1)
Solve (12) to get corrected φ(tn+1) and θ = Hε(φ) using φ∗∗(tn+1) and θ∗(tn+1).

We used continuous finite elements to implement an IBM for the solid phase boundary
as well. Let Vh and Mh be the approximation space of the velocity and the pressure, respec-
tively. For the incompressible Navier–Stokes equations, not all pairs Vh ×Mh of piecewise
polynomial spaces are stable—see, for instance, [28,29]. In addition to instabilities that
can arise due to the choice of velocity and pressure spaces, the numerical solution of the
Navier–Stokes equations for Re > 1 can also experience advective instabilities, resulting in
velocity (and pressure) oscillations. In this work, we followed the variational multiscale
stabilization and shock-capturing method used previously in [24], which introduces ad-
ditional numerical viscosity in a manner that stabilizes the advective instabilities as well
as the equal-order velocity and pressure spaces. As these additional terms are unchanged
from [24], we simply reference them as (stabilization− terms) below. Thus, in addressing
point 1 above, the numerical method used produces un+1 ∈ Vh and pn+1 ∈ Mh such that:

∫
Ω

ρ
un+1 − un

τ
· v− (ρun+1 · ∇un+1) · v +∇pn+1 · v + 2µε(un+1) : ε(v)− f · v

+
∫

Ω
[−2µε(un+1)n · v− 2µε(v)n · (un+1 − un+1

S ) + Cαv · (un+1 − un+1
S )]δε(d∂ΩS(tn+1)(x))

+
∫

Ω
Cβ(u

n+1 − un+1
S ) · vHε(d∂ΩS(tn+1)(x))

+
∫

Ω
un+1 · ∇q

+
∫

∂ΩD

[−2µε(un+1)n · v− 2µε(v)n · (un+1 − un+1
D ) + Cγv · (un+1 − un+1

D )]

+ (stabilization− terms) = 0 ∀v ∈ Vh, q ∈ Mh , (15)

where ε(u) = (∇u +∇u2) and Cα, Cβ, and Cγ are numerical parameters. In this formula-
tion, the first row is the weak formulation of Navier–Stokes equations with integration-by-
parts applied to the viscous term; the second row is the Nitsche’s method for enforcing
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the no-slip boundary condition on the surface of the solid, using the regularized Dirac
delta function δε (derived from Equation (13)) to replace the boundary integral with a
volume integral; the third row is the penalty term on the velocity inside the solid; the
fourth row is from the continuity equation; the fifth row is due to the boundary con-
dition of u|∂ΩD (t) = uD(t) and 2νε(u) · n|∂ΩN (t) = g(t) with ∂ΩD ∩ ∂ΩN = ∅ and
∂Ω = ∂ΩD ∪ ∂ΩN .

We solved this system using a first-order operating splitting scheme for variable-
coefficient Navier–Stokes equations following [30]. The first step is to solve for the velocity
ũn+1 by solving

∫
Ω

ρ
ũn+1 − un

τ
· v + ρ(u∗ · ∇ũn+1) · v +∇p# · v + 2µε(ũn+1) : ε(v)− f · v

+
∫

Ω
[−2µε(ũn+1)n · v− 2µε(v)n · (ũn+1 − un+1

S ) + Cαv · (ũn+1 − un+1
S )]δε(d∂ΩS(tn+1)(x))

+
∫

Ω
Cβ(ũ

n+1 − un+1
S ) · vHε(d∂ΩS(tn+1)(x))

+
∫

∂ΩD

[−2µε(un+1)n · v− 2µε(v)n · (un+1 − un+1
D ) + Cγv · (un+1 − un+1

D )]−
∫

∂ΩN

g · v

+ (stabilization− terms) = 0, ∀v ∈ Vh , (16)

where u∗ and p# are the extrapolation of the velocity and the pressure computed as u∗ := un

and p# := pn + φn. This choice results in a linear system for the velocity components. The
second step of the projection scheme corrects the velocity field ũn+1 to obtain a divergence
free velocity field un+1 and an accurate pressure, pn+1. The velocity field ũn+1 is defined as

ũn+1 = ũn+1 − τ

ρmin
∇φn+1 ,

with the help of the pressure increment, φn+1, which satisfies the Poisson problem

∇ · ∇φn+1 = ∇ · ũn+1

with appropriate boundary conditions. For example, at the part of the boundary where
un+1 and ũn+1 are specified, one has to enforce ∇φn+1 · n = 0.

The pressure pn+1 is then defined as

pn+1 := pn + φn+1 − µ∇ · ũn+1 .

Details pertaining to the stability of this algorithm and a proof of second-order accu-
racy in time when a second-order BDF method is used in place of the Backward Euler used
above are provided in [30].

3.2. The Lagrangian Approach

We employed SPH for the spatial discretization of Equations (1) and (3). The SPH
approximation assumed the form [4]

f (ri) ≈ 〈 f 〉i = ∑
j∈supp(i)

mj

ρj
f (rj)Wij , (17)

where 〈 f 〉i indicates the SPH approximation of f at the location of particle i; supp(i) repre-
sents the collection of SPH particles found in the support domain associated with particle i;
ρj is the density ρ(rj) at location rj of particle j; mj = ρjVj and Vj = (∑k∈supp(j) Wjk)

−1 are
the mass and volume associated with marker j, respectively; Wij ≡W(|ri − rj|, h), where
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|r| is the length of r. The kernel function W can assume various expressions, e.g., a cubic
spline kernel for 3D problems:

W(|r|, h) =
5

14πh3 ×


(2− q)3 − 4(1− q)3, 0 ≤ q < 1

(2− q)3, 1 ≤ q < 2

0, q ≥ 2

, (18)

where, if the kernel function is located at the origin, q ≡ |r|/h. The radius of the support
domain, κh, is proportional to the characteristic length h through the parameter κ, the latter
commonly set to 2 for the cubic spline kernel.

The standard SPH approximation of the gradient and Laplacian of the function f
assumes the following form [4]:

∇ f (ri) = 〈∇ f 〉i = ∑
j∈supp(i)

Vj∇iWij( f j − fi), (19)

∇2 f (ri) = 〈∇2 f 〉i = 2 ∑
j∈supp(i)

Vj(eij · ∇iWij)
fi − f j

|rij|
, (20)

where eij =
rij

|rij|
. The expression for the gradient of the kernel function described in

Equation (18) is

∇iWij =
rij

|rij|
∂W
∂q

∂q
∂|rij|

∣∣∣∣∣
i,j

=
−15rij

14πh5q
×


(2− q)2 − 4(1− q)2, 0 ≤ q < 1

(2− q)2, 1 ≤ q < 2

0, q ≥ 2

. (21)

In Equation (21),∇i denotes the differentiation in space with respect to the coordinates
of SPH particle i.

A consistent discretization of the higher-order operators; i.e., one that maintains
second-order convergence, has been proposed in [16,18] and assumes the form

∇ f (ri) = 〈∇ f 〉i = ∑
j∈supp(i)

Vj( f j − fi) Gi ∇iWij, (22)

∇2 f (ri) = 〈∇2 f 〉i = 2 ∑
j∈supp(i)

(Li : eij ⊗∇iWij)

(
fi − f j

|rij|
− eij · ∇ fi

)
Vj, (23)

where “⊗” represents the dyadic product of the two vectors; “:” represents the double dot
product of two matrices; and Gi and Li are second-order symmetric correction tensors. The
mn element of the inverse of Gi is expressed as [16–18]:

(G−1
i )mn = −∑

j
rm

ij∇i,nWijVj . (24)

The matrix Li is symmetric, and its six entries are obtained by solving a linear system of
equations [16]. The six equations are obtained by expanding the following equation for the
upper/lower triangular elements of a 3× 3 matrix, e.g., m = 1, n = 1, 2, 3, m = 2, n = 2, 3,
and m = 3, n = 3:

− δmn = ∑
j
(Akmn

i ek
ij + rm

ij en
ij)(Lop

i eo
ij∇i,pWijVj) , (25)

where δ is the Kronecker delta function, and the elements of the third order tensor Ai can
be obtained from

Akmn
i = ∑

j
rm

ij rn
ijG

kq
i ∇i,qWijVj . (26)
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A detailed account of the procedure to obtain the elements Li is provided in [31].
We computed once at the beginning of the time step and stored the discretization

matrices AG and AL that arose from either the standard discretization Equations (19)
and (20) or the consistent discretization of Equations (22) and (23). For instance, when
Equation (20) is re-formulated in matrix format, it yields

〈∇2 f 〉i = AL
i f, (27)

f =
[

f1 f2 · · · fnp
]T (28)

AL
i =

[
· · · , 2 ∑j∈supp(i) Vj(eij · ∇iWij)

1
|rij |︸ ︷︷ ︸

ith element

, · · · , −2Vj(eij · ∇iWij)
1
|rij |︸ ︷︷ ︸

jth element s.t. j∈supp(i)

, · · ·
]

, (29)

where np denotes the number of SPH particles in the domain. Similarly, using Equation (19),
the gradient of a scalar field 〈∇ f 〉i and the divergence of a vector field 〈∇ · u〉i may be
computed as

〈∇ f 〉i =

AGx
i

AGy
i

AGz
i

f, (30)

〈∇ · u〉i = AGx
i ux + AGy

i uy + AGz
i uz, (31)

f =
[

f1, f2, · · · , fnp
]T , (32)

ux =
[
(ux)1, (ux)2, · · · , (ux)np

]T , (33)

uy =
[
(uy)1, (uy)2, · · · , (uy)np

]T , (34)

uz =
[
(uz)1, (uz)2, · · · , (uz)np

]T , (35)

where

AGx
i =

[
· · · , −∑j∈supp(i) Vj∇i,1Wij, · · · , Vj∇i,1Wij, · · ·

]
(36)

AGy
i =

[
· · · , −∑j∈supp(i) Vj∇i,2Wij, · · · , Vj∇i,2Wij, · · ·

]
(37)

AGz
i =

[
· · · , −∑j∈supp(i) Vj∇i,3Wij, · · · , Vj∇i,3Wij, · · ·

]
(38)

AG
i =

[
· · · , −∑j∈supp(i) Vj∇iWij︸ ︷︷ ︸

ith element

, · · · , Vj∇iWij︸ ︷︷ ︸
jth element s.t. j∈supp(i)

, · · ·
]

. (39)
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Similar techniques may be used for the consistent discretization of Equations (22) and
(23). The system level AG and AL matrices may be obtained by concatenating the AG

i and
AL

i matrices to compute the gradient, divergence, or Laplacian of a field as follows:

〈∇ f 〉x =


〈∇ f 〉x1
〈∇ f 〉x2

...
〈∇ f 〉xnp

 = AGxf, 〈∇ f 〉y =


〈∇ f 〉y1
〈∇ f 〉y2

...
〈∇ f 〉ynp

 = AGyf, 〈∇ f 〉z =


〈∇ f 〉z1
〈∇ f 〉z2

...
〈∇ f 〉znp

 = AGzf, (40)

〈∇ · u〉 =
[
〈∇ · u〉1, 〈∇ · u〉2, · · · , 〈∇ · u〉np

]T
= AGxux + AGyuy + AGzuz, (41)

AGx =



AGx
1

AGx
2
...

AGx
np


, AGy =



AGy
1

AGy
2
...

AGy
np


, AGz =



AGz
1

AGz
2
...

AGz
np


(42)

〈∇2 f 〉 = ALf, (43)

〈∇2 f 〉 =
[
〈∇2 f 〉1, 〈∇2 f 〉2, · · · , 〈∇2 f 〉np

]T
, (44)

AL =



AL
1

AL
2

...

AL
np


. (45)

This approach allows for a succinct representation of the space discretization of the
Navier–Stokes equations (Equation (3)) in the x, y, and z directions:

dux
dt ≈ − 1

ρ AGxp + νALux + f b
x

duy
dt ≈ − 1

ρ AGyp + νALuy + f b
y

duz
dt ≈ − 1

ρ AGzp + νALuz + f b
z

, (46)

where

p =
[
p1, p2, · · · , pnp

]T , (47)

is the vector of pressures, and ux, uy, and uz are the velocity of the SPH markers—see
Equation (35).

We used an implicit variant of the SPH method that addresses some of the limitations
of the classical weakly compressible SPH counterpart. However, it does so at the cost
of solving a linear system of equations at each time step. In what follows, we use the
Helmholtz–Hodge decomposition and the Chorin’s projection method [32] to integrate the
continuity and the Navier–Stokes equation as:
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prediction:


(u∗ − un)

∆t
= ν

2 (∇2u∗ +∇2un) + fb x ∈ Ω,

u∗ = 0 x ∈ ∂Ω
(48)

correction:


(un+1 − u∗)

∆t
= −1

ρ
∇pn+1 x ∈ Ω

∇ · un+1 = 0
. (49)

Equation (48) is the predictor step used to find the intermediate velocity u∗. If the
pressure is known, Equation (49) may be used to find un+1 as

un+1 = −∆t
1
ρ
∇pn+1 + u∗. (50)

Taking the divergence of the Equation (49), the Poisson equation for pressure is
obtained as

∇ · un+1 −∇ · u∗
∆t

= −1
ρ
∇2 pn+1 . (51)

The continuity equation (Equation (1)) in combination with the incompressible flow
assumption yields ∇ · un+1 = 0, which simplifies Equation (51) to

1
ρ
∇2 pn+1 =

∇ · u∗
∆t

∇pn+1 . n|∂Ω = 0
. (52)

With pressure values available, Equation (50) is used to update the velocities. The
algorithm described above, known as velocity-based projection, is usually preferred when the
density variation is small and dρ

dt = 0 holds. However, when working with free-surface
flows, it is advantageous to use the density-based projection method described in [33], which
takes into account the density variation of the free surface particles. In this method, the
continuity equation is used to replace the velocity divergence term ∇·u∗

∆t in Equation (52)

ρ∗ − ρn

∆t
= −ρn∇ · u∗. (53)

Using the right-hand side of (53), Equation (52) yields
1
ρ
∇2 pn+1 = − 1

ρn
ρ∗ − ρn

∆t2

∇pn+1 . n|∂Ω = 0
, (54)

which takes into consideration the density variation as a source term in the Poisson equa-
tion. Following a similar approach as the one introduced in [33], we used a stabilization
technique pertaining the source term of the Poisson equation:

Pressure equation:


1
ρ
∇2 pn+1 = α

1
ρn

ρn − ρ∗

∆t2 + (1− α)
∇ · u∗

∆t
∇pn+1 . n|∂Ω = 0

, (55)

which linearly combines Equations (52) and (54). We found this stabilization technique
critical in simulations where density variations are relatively large.
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Finally, in the implicit SPH approach adopted herein, the above time-discretized
equations were combined with the space-discretization mentioned in Equations (40) and
(43) to yield

(
1

∆t I− ν
2 AL

)
u∗x =

(
1

∆t I + ν
2 AL

)
un

x + f b
x for all particles ∈ Ω,(

1
∆t I− ν

2 AL
)

u∗y =
(

1
∆t I + ν

2 AL
)

un
y + f b

y for all particles ∈ Ω,(
1

∆t I− ν
2 AL

)
u∗z =

(
1

∆t I + ν
2 AL

)
un

z + f b
z for all particles ∈ Ω,

u∗ = 0 on ∂Ω.

(56)


1
ρ

ALpn+1 = α
1
ρn

ρn − ρ∗

∆t2 + (1− α)
AGxu∗x + AGyu∗y + AGzu∗z

∆t
,

∇pn+1 . n|∂Ω = 0
(57)



(un+1
x − u∗x)

∆t
= −1

ρ
AGxpn+1

(un+1
y − u∗y)

∆t
= −1

ρ
AGypn+1

(un+1
z − u∗z )

∆t
= −1

ρ
AGzpn+1

(58)

The algorithm for the time step tn → tn+1 is described in Algorithm 2.

Algorithm 2 SPH procedure for tn → tn+1.

Solve Equations (56) and (53) to obtain the predicted velocity and density fields u∗ and
ρ∗

Solve Equation (57) to obtain pn+1

Solve Equation (58) to obtain un+1

3.3. Boundary Conditions
3.3.1. Eulerian Model

Two additional aspects need to be addressed in the coupling of the solid and fluid
dynamics: the motion of the solid–fluid interface, Γs(t), and the non-slip boundary con-
dition on Γs(t). In the ALE method [34], the non-slip boundary condition can be treated
as an ordinary boundary condition. In contrast, the IBM can be used over the entire
domain Ω including the interface Ωs(t). In IBM, the non-slip boundary condition, as a
constraint, can be enforced by using a Lagrange multiplier or using penalty methods. The
original IBM [14] enforced the no-slip boundary condition via Lagrange multipliers over
the surface of the elastic body—see also [35]. In particular, the Dirac delta function was
used to exchange information between the Lagrangian and Eulerian coordinates. In the
Distributed-Lagrange-Multiplier/Fictitious-Domain Method [36], a Lagrange multiplier
comes into play in conjunction with a kinematic constraint that enforces the equality of the
fluid and solid velocities on Ωs(t). A penalty/regularization method was used in [37] to
enforce the no-slip boundary condition by assuming there is a stiff spring connecting the
fluid and solid domains over Ωs(t).

In this work, as presented in Section 3.1, we drew on the IBM and introduced Nitsche’s
weak boundary integral form of the non-slip (Dirichlet) condition into the continuous finite
element weak formulation. We used the regularized Dirac distribution δε(φs) where φs is
the signed distance to the fluid–solid interface with the convention that φs < 0 inside the
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solid. To be more explicit, the approximation we used for the boundary conditions on the
solid interface is∫

Γs(t)
−2µε(un+1)n · v− 2µε(v)n · (un+1 − un+1

s ) + Cαv · (un+1 − un+1
s ) ≈∫

Ω
[−2µε(un+1)n · v− 2µε(v)n · (un+1 − un+1

s ) + Cαv · (un+1 − un+1
s )]δε(φs)

Above, un+1
s is the solid’s velocity approximated at tn+1 by the simulation engine

associated with the solid; Γs(tn+1) is the boundary of the solid body at tn+1 obtained from
the solid solver; and the surface integrals of Nitsche’s terms are used through domain
integrals with the help of quasi-Dirac delta function δε defined as

H
′
ε(x) = δε(x) =

{
1
2ε (1 + cos(πx

ε )), if |x| ≤ ε ,
0, otherwise ,

see, for instance, ref. [11]. The interface of the solid body does not need to be reconstructed
as it is represented implicitly via φs. Since Nitsche’s terms enforce the no-slip condition
un+1 = us on x ∈ ∂Ωs(t) only weakly and can lead to ill-conditioning of the system matrix
for small cut cells; a ghost fluid penalty term was used to increase the accuracy of un+1

inside Ωs(t) with the help of Hε. This penalty is given by∫
Ωs(t)

Cβ(ũn+1 − un+1
s ) · v ≈

∫
Ω

Cβ(ũn+1 − un+1
s ) · vHε(φs)(x)) .

Note also that inside the solid phase we “switch off” the convective, viscous, and body
force contributions in the momentum balance by multiplying by (1− Hε(φs)), leaving
only the pressure and the aforementioned volumetric penalty, which together with the
continuity constraint represents a simple mixed formulation of Poisson’s equation. That is,
the ghost fluid is formally a steady-state flow in a porous medium with the solid velocity
given by us.

3.3.2. Lagrangian Model

Compared with Eulerian methods such as Finite Differences and Finite Volume,
imposing boundary conditions in Lagrangian methods such as SPH is more challenging.
In fact, this remains an active area of research. We adopted the Boundary Condition
Enforcement (BCE) method, which rigidly places layers of SPH markers that extend from
the fluid–solid interface towards the interior of the solid. These BCE markers are used to
enforce the no-slip and no-penetration conditions by imposing the u∗ = 0 condition on
the boundary. An early method that implements this idea was introduced in [38] and has
been successfully applied in other studies for fluid–solid interaction problems [39,40]. In
this method, the expected velocity of the BCE markers is dictated by the motion of the solid
bodies to which they belong; their assigned values are calculated such that the no-slip and
no-penetration boundary conditions are implicitly enforced at the interface. The assigned
velocity, ua, of the BCE marker a is calculated as [38]

ua = 2up
a − ũa . (59)

Above, up
a is the expected wall velocity at the position of the marker a, and ũa is an

extrapolation of the smoothed velocity field of the fluid phase to the BCE markers

ũa =

∑
b∈F

ubWab

∑
b∈F

Wab
, (60)
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where F denotes a set of fluid markers that are within the compact support of the BCE
marker a. The pressure at the location of a BCE marker may be calculated via a force
balance condition at the wall interface, which leads to [38]

pa =

∑
b∈F

pbWab +
(

g− ap
a

)
· ∑

b∈F
ρbrabWab

∑
b∈F

Wab
, (61)

where g is the gravitational acceleration and ap
a is the acceleration of the solid phase at the

location of marker a.
The no-slip boundary condition should be implemented in the linear system described

in Equation (56). Similarly, the pressure boundary condition should be incorporated into
the linear system in Equation (58). For velocity boundary conditions, the rows of the
coefficient matrix associated with the boundary particle a should be modified such that
Equations (59) and (60) are included in the linear system of Equation (56). In terms of the
coefficient matrix for velocity prediction (Equation (48)), the elements of the row associated
with the boundary marker a can be formed by rearranging Equation (59) as

Av
aux = 2(up

x)a ∑
b∈F

Wab, Av
auy = 2(up

y)a ∑
b∈F

Wab, Av
auz = 2(up

z )a ∑
b∈F

Wab, (62)

Av
a =

[
· · · , ∑

b∈F
Wab︸ ︷︷ ︸

ath element

, · · · , Wab︸︷︷︸
bth element s.t. b∈F and ∈supp(a)

, · · ·
]
. (63)

In regard to the pressure boundary conditions, the rows of the coefficient matrix
associated with the boundary particle a should be modified such that Equation (61) is
incorporated into the linear system of Equation (57). In terms of the discretized system of
equation for pressure, Equation (61) leads to

Ap
a p =

(
g− ap

a

)
· ∑

b∈F
ρbrabWab, (64)

Ap
a =

[
· · · , ∑

b∈F
Wab︸ ︷︷ ︸

ath element

, · · · , −Wab︸ ︷︷ ︸
bth element s.t. b∈F and ∈supp(a)

, · · ·
]
. (65)

Another approach in setting the pressure boundary conditions is to enforce
∇pn+1 . n|∂Ω = 0, which mimics the traditional Eulerian approach. In terms of the
discretized pressure equation, the row of the system in Equation (57) that corresponds to
boundary particle a should be modified such that:

Ap
a p = 0 (66)

Ap
a =

[
· · · , ∑

b∈F
AG

ab · na︸ ︷︷ ︸
ath element

, · · · , AG
ab · na︸ ︷︷ ︸

bth element s.t. b∈F and ∈supp(a)

, · · ·
]
. (67)

Above, AG
ab ∈ R3 is the bth element of the discretized gradient matrix AG

a (see Equa-
tion (39)), na is the surface normal vector at the position of particle a, and p was defined in
Equation (47).

3.3.3. FSI Coupling via Force-Displacement Co-Simulation

The dynamics of the fluid and solid phases were coupled herein via a co-simulation
strategy for both the Eulerian and Lagrangian approaches. The two-way coupling was
implemented in two stages as shown in Figure 1: (1) before each time step of the solid
phase solver, the forces due to interaction with the fluid were imposed on each solid object
as external forces; and (2) after each time step of the solid solver, the position and velocity
of the solid phase objects were reported to the fluid solver to provide boundary conditions.
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Fluid Dynamics Surface Force
Calculation

Structural
Mechanics

Displacement
Calculation

tn+1 = tn + ∆t

Figure 1. Schematic showing the two-way coupling between the structure and fluid systems.

4. Results and Discussion

The Eulerian and Lagrangian approaches were compared and contrasted using four
tests. The first test pertains to the flow around a cylinder, a widely used single-phase CFD
benchmark problem. A dam break test was used to gauge performance for free-surface
flows. Lastly, the two approaches were compared in conjunction with two FSI problems—
one pertaining to a floating rigid body and one that had the fluid interacting with an
elastic/deformable gate. All the fluid–solid interactions presented below are according to
the two-way coupling scheme described in Figure 1.

4.1. Flow around Cylinder—Single-Phase Internal Flow

This single-phase, internal flow test was used to compare the FE and SPH solutions
for a benchmark problem where the flow is shaped by the interplay between the pressure
gradient and the viscous and body forces. The description of the problem geometry and
boundary conditions is as follows. The cylinder of diameter D = 0.1 m was positioned at
the center of a rectangular domain of height 0.4 m and length 1.0 m and was fixed. No-slip
boundary conditions were applied to the cylinder and the top and bottom walls, while
periodic (cyclic) conditions were maintained at the left (inlet) and right (outlet) patches. A
constant body force fb = 1.0 m/s2 was applied in the x direction in order to balance the
viscous force. The density and viscosity were set to ρ0 = 20.0 kg/m3 and µ = 0.1 Pa · s,
respectively. The grid generated for the FE simulation contained 8 k triangles. The mesh
independence study showed a negligible difference in the drag coefficient after increasing
the number of triangle from 32 k to 200 k—see Figure 2. We used the same characteristic
length and spacing in the SPH simulation as the characteristic triangle size in FE; in this
case, h = 0.01 m was chosen for the SPH simulation. As illustrated in Figure 3, the
steady-state = velocity predicted by SPH and FEM were qualitatively in close agreement.
Note that the difference in the appearance of the plots was not quantitative. Indeed, the
“dotted-like” look of the SPH plots was a consequence of the Lagrangian nature of the SPH
solution in which field values (velocity, in this case) are provided at the location of markers
that convect with the flow. Note that the FEM and SPH pressure profiles also showed close
agreement as illustrated in Figure 4.
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Figure 2. Flow around a cylinder—variation of the drag coefficient over time.

Figure 3. Comparison of the steady-state velocity profiles predicted with SPH (top) and FEM
(bottom).
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Figure 4. Comparison of the steady-state pressure profiles predicted with SPH (top) and FEM
(bottom).

Lastly, we compared the two methods in terms of the drag force. For the drag
coefficient, the expression used was Cd = Fd

0.5ρ A U2 , where Fd is the drag force magnitude
along the x axis, ρ = ρ0 and U = 1.5 m/s are the reference density and velocity, and
A = wD is the frontal area of the cylinder, where w is the width of the cylinder. As shown in
Figure 2, SPH and FEM showed different drag coefficients at the onset of the simulation, yet
the steady state solutions were in good agreement. We posit that two reasons contributing
to these discrepancies were: (i) the different time-integration schemes and (ii) the vastly
different space discretization technique and boundary-condition enforcement used in the
formulations. The IB method requires a fine mesh near the solid level-set (cylinder) for
accurate representation of the fluid-structure interface and forces. Handling this interface
poses no major challenge to SPH or boundary-fitted mesh-based approaches, owing to the
explicit representation of the fluid-structure interface.

4.2. Dam Break—Two-Phase Free-Surface Flow

We used the classical dam break problem to demonstrate FE and SPH for free-surface
problems. The description of the problem geometry and initial and boundary conditions is as
follows. The initial condition and the geometry of the problem is illustrated in Figure 5. The
reference density of the air and water domains were ρa = 1.2 kg/m3 and µa =1.8× 10−3 Pa·s
and ρw = 1000 kg/m3 and µw =1× 10−3 Pa·s, respectively. The gravity g = −9.8 m/s2

was applied in the y direction. The initial velocity of the fluid was set to zero everywhere,
and the pressure was initialized via a hydrostatic distribution. The wall boundary con-
dition, i.e., the no-slip for velocity and the Neumann boundary ∇p · n = 0 for pressure,
was applied to all solid boundaries. For volume fraction θ, a zero Dirichlet boundary
condition was used on the top boundary (and open boundaries in general), while a zero
Neumann condition was applied to other boundaries. Note that the air physical prop-
erties are only used in the FEM simulation given the two-phase methodology described
above. In the SPH simulation, only the water properties were employed, and the effect
of the surrounding air was neglected. The SPH and FEM results were compared from
two perspectives: (i) the fluid front position over time and (ii) the roll up and the sec-
ond splash—two characteristics highlighted in previous studies [38,41]. As shown in
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Figure 6, the SPH solution of the fluid front position over time slightly under-estimated
the FEM solution. SPH had an easier task in handling the free-surface since in the La-
grangian framework solving the Navier–Stokes equation (Equation (3)) automatically
provides for a tracking of the free-surface [39,41–44]. In contrast, the Eulerian framework
calls for four additional equations: (i) the advection of the level-set field via the velocity
(Equation (7)); (ii) the conservation of the volume fraction (Equation (8)); (iii) level-set cor-
rection (Equation (14)); and (iv) the mass correction (Equation (12)). This adds significantly
to the complexity of the Eulerian solution, a drawback that might be eliminated in the
future given that very recent work demonstrates that this multistage algorithm can be
collapsed into a single stage [45].

Figure 5. The fluid domain in the dam break problem is a rectangular prism of size 2 m × 1.0 m and
is placed on the bottom-left end of the rectangular domain of size 5.3 m × 3.0 m.

Figure 6. Comparison of fluid-front propagation between SPH and FEM.

With regard to the roll-up and second splash characteristics, both methods predicted
well these two hallmark features of the dam break experiment—see Figures 7 and 8—where
the results reported were 1.75 and 2.05 s into the simulation.
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Figure 7. Comparison of the roll-up (t = 1.75 s) in the dam break—FEM (top) and SPH (bottom).

4.3. Falling Cylinder—Two-Phase Fluid and Rigid–Solid Interaction

This experiment was used to compare the Eulerian and Lagrangian approaches in
conjunction with a 3D scenario that displayed ample fluid–solid boundary movement. It
may be regarded as a simplified problem that, in more complex forms, is conspicuous
in several fluid–structure interaction applications in coastal and offshore structures, e.g.,
renewable energy devices and caissons. Insofar as the solution methodology is concerned,
the test assesses the robustness of the fluid–structure coupling methodology described in
Section 3.3.3.

The description of the problem geometry and initial and boundary conditions is as
follows. A cylindrical object of radius r = 0.12 m and length L = 0.2 m was released from
the height h = 0.25 m above the surface of a tank of water at t = 0 s. The dimension
of the fluid domain was 1.0 m × 1.0 m × 0.2 m (width × height × depth). The gravity
g = −9.8 m/s2 was applied in the y direction. The reference density of the air and
water domains were ρa = 1.2 kg/m3 and µa =1.8× 10−3 Pa·s and ρw = 1000 kg/m3 and
µw =1× 10−3 Pa·s, respectively. The density of the cylinder was ρs = 0.7ρw, which turned
it into a floating structure. The wall boundary conditions were applied to the bottom and
side walls of the container and the cylinder. Note that, similar to the dam break problem,
the SPH simulation employed a single-phase model neglecting the effect of the surrounding
air. Figure 9 illustrates the distribution of the pressure in the frontal cross-section of the
domain at t = 0.5 s.
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Figure 8. Comparison of the second splash (t = 2.05 s) in the dam break—FEM (top) and SPH
(bottom).

The cylinder oscillates until its initial potential energy damps out. The steady-state
solution of this problem is given by Newton’s second law and basic hydrostatics. Indeed,
the upward buoyant force exerted on the body should balance the weight of the object;
i.e., ρsgV = 62.0. Figure 10 illustrates the vertical component of the fluid–structure
interaction forces obtained with FEM and SPH and the fact that both methods close in on
the steady-state solution approximately 6 s into the simulation. Although the two models
showed similar characteristics and steady-state configuration for the vertical force, the SPH
solution damped out the oscillation faster due to (i) more numerical damping and, more
importantly, (ii) a tighter connection between the fluid and the structure degrees of freedom
demonstrated by denser system matrices. Specifically, the FEM fluid-structure force uses
the smoothed Heaviside and Dirac delta functions (see Equation (13)). This smoothing is
numerically done along he < ε < 2he in the mesh where he is the element’s characteristic
length scale. Incorporating the information from nodes further away at any point requires
increasing this smoothing length, which consequently deteriorates the accuracy of the
numerical fluid-structure forces.



Fluids 2021, 6, 460 20 of 27

Figure 9. Comparison of the steady-state pressure profiles predicted with SPH (top) and FEM
(bottom).

Figure 10. Upward buoyant force imparted over time by the fluid to the floating cylinder.
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4.4. Flexible Gate—Two-Phase Fluid and Flexible-Solid Interaction

In this experiment [46,47], water was stored in a cubic container that had three rigid
vertical sides, while the fourth one was partially made up of a rectangular elastic rubber
gate, see the specifications of the elastic gate experiment and the schematic of the initial
configuration in Figure 11. The elastic gate, which experienced large deformations, was
simulated using a non-linear finite element method called the Absolute Nodal Coordinate
Framework (ANCF) [48]. The details about the gradient-deficient ANCF element used
herein fall outside of the scope of this contribution but may be found in [49].

Figure 11. Schematic and specifications of the elastic gate experiment. Fluid properties: ρ = 1000 kg/m3,
µ = 0.001 Pa·s. Gate properties: ρs = 1100 kg/m3, E = 10 MPa, ν = 0.4, thickness = 0.005 m [46].

Due to the hydrostatic pressure, the elastic gate gradually deflects, and the water exits
the tank as shown in Figure 12.

Figure 12. Snapshots of the elastic gate simulation with FEM (top) and SPH (bottom). The fluid
domain colored according to velocity magnitude. The x axis is horizontal, pointing to the left; the y
axis is vertical, pointing up.
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The position of the tip of the gate was measured in the experiment reported in [46].
As shown in Figure 13, the simulation results of both SPH and FEM under-predict the
deformation results reported in [46] but are consistent with numerical results reported
in [47].

Figure 13. Comparison of the position of the tip of the gate between SPH, FEM, and experimental
results [46].

Finally, to provide a general understanding of where both methods stand in terms of
computational costs, we present a comparison of the run time of each simulation. Making
a fair and conclusive comparison, however, is more challenging than it may appear. Firstly,
our Lagrangian and Eulerian packages employ different hardware architectures; the SPH
simulations reported below ran on an Nvidia RTX2080 GPU, while the FEM simulations
ran on an Intel 3.60GHz core i9-9900K CPU. This is because the parallelism paradigm of the
former maps well with the SPH method, whereas the latter is more suitable for Eulerian
methods. Second, making a comparison in terms of computation domains is biased and
cannot be accurately generalized depending on the problem type. For instance, solving a
free-surface problem via a single-phase SPH model is less costly than FEM because the FEM
solver in our study has to solve for two phases, i.e., the smaller the size of the fluid domain
compared to the overall problem domain, the larger the computational advantage of the
SPH approach (even for a similar resolution). Therefore, our choice of the computational
domains was based on producing similar-quality results, rather than matching the number
of degrees of freedom. Third, the required spatial order of accuracy can change the scenarios
toward one or the other method. Computation cost was more favorable for FEM schemes if
one employs spatially higher-order accurate methods, as achieving the same goal with SPH
requires either increasing the number of interacting neighbor particles, which increases
matrices’ sparsity and/or solving local systems per particle for correction matrices. Forth,
numerical tolerances and stopping criteria chosen for the methods cannot be directly
compared. For instance, in our experience, solving the pressure Poisson equation requires
tighter tolerance in FEM compared to SPH. Early stopping in SPH has been shown in
previous works [50] to be beneficial in terms of smoothness of the pressure/density field.
Last but not least, both of our solvers are research-oriented codes that have great potential
for further optimization. All being considered, we provide the computation time of each
simulation in Table 1 for completeness, noting that they should be taken with a grain of salt.
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Table 1. Computation time of Eulerian and Lagrangian methods (in seconds) for 1000 time steps of
each simulation.

Simulation SPH Time (# Markers, # Neighbors per Marker) FEM Time (# Triangles)

Flow around cylinder 233/2900 (42 k, 27/93) 1049/2797 (8 k/32 k)
Dam break 151/486 (54 k, 27/93) 577/5448 (9 k/20 k)

Falling cylinder 464 (115 k, 27) 622 (115 k markers)
Flexible gate 1652 (328 k, 27) 6812 (16 k markers)

5. Conclusions

We report the results of a study that compared and contrasted the Eulerian and
Lagrangian approaches for the solution of free-surface and fluid–solid Interaction (FSI)
problems. The two approaches were implemented in two open-source and publicly avail-
able codes—Proteus and Chrono—which embrace FEM-based and SPH-based solutions,
respectively. Four tests were considered in this study: flow-around-a-cylinder, dam-break,
falling-yet-floating-cylinder-in-a-fluid-tank, and elastic-gate problems. We conclude that
the SPH methodology is permissive and expeditious. When compared to a more robust
Eulerian method such as FEM, the GPU-parallelized SPH solver delivers a solution that is
reasonably accurate, computationally less demanding, and easier to produce for the class
of problems investigated in this work. The FEM solver is more accurate as are the methods
it draws on.

Solving fluid–solid interaction problems of practical relevance remains a challenging
undertaking that usually draws on the interplay of complex modeling, numerical algo-
rithms, and software solution techniques. In this context, our goal was that of gaining
insights into how the Eulerian and Lagrangian approaches dictate the quality of the FSI
numerical solution, which touches on ease of simulation setup as well as solver robust-
ness and efficiency. The two solutions considered herein are polar opposites since the
dynamics of the fluid phase were resolved via vastly different space and time discretiza-
tion techniques as well as software implementations. Indeed, the Lagrangian, SPH-based
solver in Chrono condenses the non-linear velocity advection term present in the momen-
tum conservation of the Eulerian formulation (Equation (4)) into the material derivative
(Equation (3)). Moreover, the Lagrangian description (Equations (48) and (49)) embraced
in Chrono renders the system of equations linear with respect to the velocity unknown.
Consequently, the most demanding stage of the Chrono implementation calls at each time
step for the solution of a linear system for pressure and velocities. In contrast, the FEM
solution in Proteus builds off a more involved implementation that considers additional
equations that capture the fluid–solid interface; i.e., the level set advection (Equation (7))
and the volume fraction conservation (Equation (8)). Since the solution of Equation (7)
does not guarantee that the new level set is a sign distance function, the level set field
needs to be re-initialized (Equation (14)). A mass conservation correction is also required
(Equation (12)). The non-linearity associated with the advection term is resolved by using
the previous time-step velocity. Nonetheless, even if a projection method is used to decou-
ple pressure and velocity and linearize the Navier–Stokes equation, the mass conservation
equation remains non-linear. All things considered, the FEM solver is more sophisticated
and computationally demanding. This is because: (i) more equations need to be solved in
the FEM solver and (ii) the FEM solver calls for the solution of a non-linear system, which
requires the derivation of Jacobian and residual terms. Regarding the parallelization of the
solvers, the SPH solver leveraged GPU computing through CUDA, which is suitable for
the fine grain parallelization required in SPH. The FEM solver used a distributed memory
multi-core parallel implementation via the Message Passing Interface (MPI).

The quality of the pressure field was superior in the FEM solution. Obtaining the
correct smooth and accurate field in SPH is more challenging. For instance, if one uses the
classical weakly compressible SPH solver that is widely employed in the community but
which was not considered herein, the pressure field will experience severe checker-boarding
patterns. This can be traced back to the use of a stiff equation of state for evaluating the
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pressure field, as well as to the decoupling of the velocity and pressure fields—aspects that
do not plague the implicit SPH solution discussed herein. The implicit SPH formulation,
although more robust than the weakly compressible alternative, may still show checker-
boarding effects in highly transient problems where the density of individual particles
drops below the rest density. In such cases, the free-surface boundary condition for pressure
(p = 0) kicks in and causes a zigzagging pressure field in the neighborhood of the particles
with low density. The checker-boarding artifact has been fixed in Eulerian methods such as
the FD method by using staggered grids. The same artifact is avoided on collocated grids
in the FV method by Rhie–Chow-type algorithms. FE overcomes this artifact by requiring
a mixed FE space seen in the Taylor–Hood elements, in which a lower order approximation
space is used for pressure compared to velocity.

Regarding the solution robustness and flexibility, the FEM solver is more robust
insofar as the fluid handling is concerned since it takes advantage of the good accuracy
and stability of established Eulerian methods. It also allows for a richer set of boundary
condition types and flow regimes. On the other hand, the SPH solver in our experience is
more robust when dealing with the class of FSI problems studied herein. This is mainly
due its Lagrangian framework that lends itself well to the coupling between the fluid and
solid phases.
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Nomenclature

Common Variables and Notations
()n, ()n+1 current and new time step variable
()i ith component of a vector
()ij ij component of a tensor
σ sress tensor
τ deviatoric sress tensor
µ dynamic viscosity
∇ · () divergence operator
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∇() gradient operator
∇2() Laplacian operator
ν kinematic viscosity
Ω domain
∂Ω domain boundary
ρ density
f b volumetric force density
p pressure
t, dt time, time-step
u velocity

FEM Variables
()w, ()a water and air variables
ε(u) deformation-rate tensor
u∗ extrapolated velocity
δε quasi-Dirac delta function
ε heaviside regularizition
κ Mass correction penalty constant
φ level set function
θ air volume fraction
f b body force
H(·) heaviside step function
Hε(·) regularized heaviside function
Mh pressure space
p# extrapolated pressure
Vh velocity space
Γ air-water interface

SPH Variables
()∗ predicted/intermediate variable
()p expected variable due to boundary conditions
()j particle j variable
< () > SPH approximation
α Poisson equation’s source term relaxation
n boudnary unit normal vector
AG gradient discretization matrix
AL Laplacian discretization matrix
G gradient correction tensor
I indentity matrix
L Laplacian correction tensor
(̃) extrapolation of a variable
h kernel characteristic length
m particle mass
np number of total particles
V particle volume
Wij j and i particles interaction weight
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